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ABSTRACT

Bayesian methods for specification analysis or diagnostic checking of the simultaneous
equation model are formulated and applied in analysis of two models. In this work, a direct
Monte Carlo simulation approach is employed to compute exact posterior distributions of
parameters measuring discrepancies from specifying assumptions, e.g., identifying restric-
tions exogeneity, etc. Also, ,a new approach for calculating the posterior distributions of
a structural equation's parameters is developed and applied using Monte Carlo numerical
methods. It is concluded that the methods developed will permit convenient computation
of exact finite sample specification error and estimation results for simultaneous equation
models.



Bayesian Specification Analysis and Estimation of

Simultaneous Equation Models Using Monte Carlo Methods

by

Arnold Zellner, Luc Bauwens and Herman K. van Dijk*

I. Introduction

There have been many studies relating to limited information esti-

mation of the parameters of the simultaneous equation model (SEM) from both

the Bayesian and non-Bayesian points of view--see, e.g. Zellner (1971, Ch.

9), Dreze (1976), Dreze and Richard (1983), Hausman (1983), Tsurumi (1985,

1987), and the references cited in these works. In non-Bayesian approach-

es, there is usually reliance on asymptotic approximations in making infer-

ences.1 Some previous Bayesian approaches also involve asymptotic approxi-

mations. A problem in previous exact Bayesian analyses is that posterior

distributions of structural parameters are in most cases not analytically

tractable2 and thus must be integrated numerically to obtain their moments,

marginal distributions, etc. As regards Monte Carlo numerical integration,

usual posterior distributions of structural parameters do not have simple

forms from which draws can be made easily. As a consequence, the success

*
The first and third authors received support from the National

Science Foundation and from income from the H.G.B. Alexander Endowment

Fund, Graduate School of Business, University of Chicago. The second

author acknowledges support from Erasmus Universiteit. Comments by J.

Dreze and J.F. Richard on an earlier draft were very helpful.

1A brief discussion of small sample results in non-Bayesian limited

information estimation of the SEM is given by Anderson (198)4, pp. 518 and

519). Tsurumi (1987) reports Monte Carlo experimental results.

2An exception is Dreze (1976) where the posterior density is in the

poly-t family. Then one can, in some cases, compute moments of structural

coefficients analytically. See also Tsurumi (1985, 1987).
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of Monte Carlo integration procedures depends importantly on an investiga-

tor's ability to find distribution functions that are good approximations

to posterior distributions and from which pseudo-random drawings can be

made easily. Also, past Bayesian analyses of the SEM have not devoted much

attention to diagnostic checking of models' assumptions, that is to speci-

fication error analysis.

In the present paper, we start from the reduced form of the SEM and

make a distinction between "unrestricted reduced form analysis" (URFA) and

"restricted reduced form analysis" (RRFA). In our URFA, we define indirect

least squares, generalized indirect least squares, two-stage least squares

and limited information maximum likelihood mappings or functions of unre-

stricted reduced form coefficients which do not require that overidentify-

ing restrictions hold exactly and obtain complete posterior distributions

of these mappings or functions by a direct Monte Carlo simulation approach.

Also discrepancy vectors and discrepancy functions are introduced which

measure the extent to which overidentifying restrictions are in error and

we indicate how to obtain their posterior distributions by a direct simula-

tion approach. One may also use Bayesian realized error analysis, Zellner

(1975), to provide further diagnostic checks of the SEM.

In the case that exact identifying restrictions are imposed, we

present a RRFA and discuss a method for computing posterior distributions

of structural parameters which makes use of Monte Carlo integration in a

relatively simple way, namely a direct simulation approach.

The plan of our paper is as follows. In Section 2 we consider sim-

ple, canonical models to illustrate our approach and go on to specify a



3

general system. Then various mappings of the URF coefficients are introduc-

ed and we indicate how to compute their posterior distributions, moments,

etc. This is followed by an analysis of the RRF system to obtain posterior

distributions of structural coefficients. Section 3 is devoted to further

diagnostic checking procedures. In Section 4, our methods are applied in

illustrative analyses of several well known models using actual data. Sec-

tion 5 provides some concluding remarks. An efficient algorithm for gener-

ating pseudo-random drawings from a matrix-Student-t distribution is pre-

sented in the Appendix:

2. Model Specification, Interpretation and Analysis

In this section we first consider canonical models to illustrate

features of our approach. Then we specify unrestricted reduced form (URF)

systems and indicate how to compute posterior distributions for interesting

functions or mappings of URF coefficients. These functions or mappings are

related to discrepancy vectors which measure departures of the URF coeffi-

cients from satisfying usual overidentifying restrictions. Next, we impose

identifying and normalizing restrictions, derive the posterior distribution

of the parameters of a single structural equation using diffuse and infor-

mative prior distributions and discuss a Monte Carlo integration procedure

for the computation of posterior moments and denities. Also, various con-

ditional posterior distributions centered at OLS, 2SLS, LIML, and MELO

point estimates and diagnostic checks of the validity of over-identifying

restrictions are provided.
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2.1 Canonical Models

The first canonical model is a "means model" for two endogenous

variables, namely,

yli = nj "li

Y21 = 41 /r2i

(2.1a)

(2.1b)

where ni and are means of yli and y211 respectively, and the zero-mean

disturbance terms, vu and va are assumed independently drawn from a bi-

variate normal distribution with 2x2 positive definite symmetric (pds) co-

variance matrix. For example, ni and 4i can be interpreted as the i'th

individual's "permanent" or "anticipated" consumption and income, respec-

tively, whereas yli and y2i are their measured counterparts. Interest may

center on various functions of the ni's and 4i's, for example ni/4i, i =
_ n

1,2,...n the "permanent consumption-income" ratios, n = ni/n, =
n i=1

/n a = k1--02/n, a = (ii- )21n, ar = / ( 1-i)(n1-11)/n,
1=1 i=1 " 1=1 i=1
higher order moments, skewness and kurtosis measures, etc. Further, weight-

,
ed averages of the ratios n /. e.g., y = 11/ = 1 in./ / 1 or y

2 
=

i ii, 1 1 i i
n n i=1 1=1 i
v 2 r r 2

ijy L i = L niEi/ L &i = E'n/CE where n' = (ni,n2,...,nn) and
1=1 i=1 1=1 - i=1 - - - - -'

kl,&2,..., 11) might be of interest. If we write i

(2.2)

where y is a scalar parameter and A_ is an nxl discrepancy vector, which
-1

measures the extent to which the n i 
depart from a common value y, then

y2 = n/§is the value of y that minimizes = (n-&,()'(n-&1,), a dis-

_2 _2
creoancy function. Also, the functions al = (nlyi)'(TI- 1)/n and p i = 1

n;
2
/nin are of interest and have obvious regression interpretations.

1 -



Given a posterior distribution for the 2n parameters, n and El draws

can be made from it and complete posterior distributions for ni/&i, n, &,

- -2 -2
a„, ann, atn, y, al, pi, etc., can be obtained by a direct Monte Carlo ap-

proach, that is by repeated evaluations of these quantities using indepen-

dent draws from the joint distribution. If it is the case that the distri-

bution of a
1 
is centered far from zero, there is little support for the as-

sumption di = 0 or n =y. On the other hand, if a
,

l s distribution is cen-

tered close to zero, this provides some support for the assumption A i = 0

and with this assumption, the model becomes a form of the usual "errors-in-

the-variables" model. While we do not pursue the matter now, it is also

possible to compute posterior odds relating to the hypotheses di = 0 and

# O.
-1

If in addition to (2.1), we have proxies for ni and namely,

ni = IS1111

= x'w
i -i-2

(2.3a)

(2.3h)

where x' is a lxk vector of predetermined variables, a typical row of an

nxk matrix X, assumed of full column rank, and w1 2 
and w are kxl coeffi-

- -

cient vectors, the number of location parameters is reduced from 2n

and ni's to 2k w's. Using (2.3), we can express (2.1) in matrix form as

follows:

Yi ' x721 ' Yi

z X:2 4. Y2

(2.4a)

(2.41))

where yi, y2, vi and v2 are nx1 vectors with typical elements yli, y2i,

and v2i, respectively.
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In (2.4), we have two URF equations. Just as with (2.1)1 we may be

interested in various functions or mappings of the URF coefficients,- the

analogues of those for ni and &i with and x1712 replacing ni and &i, re-

spectively in their definitions. Also, we can introduce

X7T = XI y + A
-1 -2 -2

(2.5)

where A2 is an nxl discrepancy vector. Then T2 = 7LX'Xi2.1/7.12'XiX7r2 is the

-2 f
value of y that minimizes .44A2. Further, a2 = OCni-X712 )'(X111-Xnirpn

-2 -2
and p

2 
= 1 - 

2 
na /7

1 
X'Xir

1 
are regression-like mappings of the it's which are 

- -

of interest. Also, if we consider

(2.6)

where A is a kxl discrepancy vector, then the value of y, say y3 minimiz-_3

ing
-2 f

A'A is just y = IT'w and ia = n -7 7,9" n 2
e
-T.,)/k and 4 = 1

-3 -2-1
/ 
-2-2 3 -1 -2-3 ') (-1- 

k;2/Ir'n are measures of the extent to which A = 0 holds.-

Given a joint posterior pdf for IT 1 and !2 from which draws can be

made, a direct Monte Carlo simulation approach can be employed to obtain

the posterior distributions of y2, 13, a2, a3, p2, p3, etc., since these

quantities are given functions or mappings of the unrestricted 7's.

If A 
2 

= 0 in (2.) or A = 0 in (2.7), we have the case of exact 
- - -3 -

restrictions. Then (2.4) can be written as

or

Y1 = X1T2Y vl

Y2 = X112 41

Y1 = Y2Y 21

Y2 = XE2

(2.7a)

(2.7b)

(2.7c)

(2.7d)
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where 21 = yi-y2y and 22 = Irs2. (2.7a-b) is the restricted reduced form

(RRF) equation system which can also be expressed in structural form as

shown in (2.7c-d). On introducing a prior distribution for y, n2 and the

reduced form disturbance covariance matrix, we can obtain a posterior dis-

tribution for these parameters. Note that in working with (2.7a-b), it is

assumed that the overidentifying restrictions hold exactly, that is A2 
_ =

~

in (2.5) or A = 0 in (2.6). The number of coefficients in (2.7) is k+1,

usually a large reduction from the 2k coefficients in (2.4) for k>1. When

k=1, the case of "just identification," the number of coefficients in the

URF and RRF is the same. Also, relative to the 2n location parameters in

(2.1), the reduction is much larger. This reduction, however, is dependent

not only on the identifying restrictions holding exactly but also on the

appropriateness of the proxy expressions in (2.3). Diagnostic checking

procedures relating to these assumptions will be described in a subsequent

section.

We now turn to provide results for general cases including mappings

of reduced form coefficients in the unrestricted case and posterior distri-

butions for structural parameters in the restricted reduced form case after

introducing some needed notation. Let Y = 
a 

(y Y Y ) denote an nxm'
1 . 1 0

matrix of observations on m' endogenous variables with URF,

( • Yi : Yo) = x(E1 ni • n ) (xr : v • v: -1 . 1 : 0) (2.8)

where X is an nxk matrix of observations on k predetermined variables of

rank k and the rows of the disturbance matrix have been independently drawn

from a zero-mean multivariate normal distribution with a pds covariance ma-

trix. A structural equation, say the first, with normalization imposed can
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be written as

,o, P1 1
. (.1 .0, { -1 1 + 

1
u (2.9a)-0

or 0

y. -Yy r.X
1
8
1 
+ u

1-1 - -1 (2.9b)

where Y and X
0 

are observations on endogenous and predetermined variables

excluded from the first equation and X = (X1 : x0). The mi xl vector yi and

the k
1
xl vector are the structural coefficients and u is an nxl vector

-1 -1

of structural disturbance terms.

To obtain the well known restrictions on the reduced form coeffi-

cients, we write (2.8) as

y1 

y

0
) 

n
2 

.11 (x
1 

x0) 
 11 . 

.
11 . 01 + (v : V1 : v0) (2.10) n . .1110 • 10 00

and on multiplying both sides of (2.10) on the right by (1 : -y' : 0')',
-1

the result is:

1111 - 11-
y
1

Y y = (X : X +v (2.11)
1 
- 

1-1 1 . 0) Err n -1 1 1-10 - 10y-1

For compatibility with (2.9b), u1 = v1-Vi yi and

B
Ell - 

= n11- -1

210 - nioxi =
• • •

(2.12a)

(2.12b)

which are restrictions on the reduced form coefficients with y and B ap-

pearing in them, a generalization of (2.6) with A3 = 0. In (2.12b) nis

assumed to be of full column rank.
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On substituting for (Ir' n' 
0 

)' in (2.10) from (2.12), the RRF

equations for yi and Yl are:

yi = X111 y1 + X.01 + yi

Y
1 
= Xil

1 
+ V

1

(2.13a)

(2.13b)

where n = (n' • 
10 

n' ). It is seen that (2.13) is in the form of a multi-

variate nonlinear regression model, a generalization of (2.7). The system

in (2.13) will serve as the starting point for an analysis of the RRF

system, whereas

(Y1 i Y1) x(111 i /1)+ (Y1 i 111). 
(2.14a)

will serve as the starting point for the URF analysis of the data (yi : Y1).

2.2 Mappings of Unrestricted Reduced Form (URF) Coefficients 

We shall obtain a posterior distribution for the parameters .of

(2.14a) and use it to obtain posterior distributions of interesting func-

tions or mappings of the URF coefficients, (n. n.). For convenience, we
. I

write Y = (yi Y1), it = (El : Hi) and V = (y1 : V1) and thus (2.14a) becomes

Y = X it + v . (2.14b)
nxm nxk kxm nxm

The n rows. of V are assumed to be independently drawn from a multivariate

normal distribution with zero mean vector and mxm pds covariance matrix n,

i.e. MVN(0,7). If X includes lagged endogenous variables, we assume that

initial or starting values are given. Then the likelihood function for

(2.1413) is

z(ntnlYix) = iniexPf-i tr(Y-xn)'(Y-xn)n-11

ini-n/2expl_i 
tr[S + (11-VX'X(11-1/fla-11

(2.15)



where cc denotes "is proportional to",

and
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fi = (X'X)-1X'Y (2.16a)

S = (Y-XA)'(Y-X11). (2.16b)

It is seen that the likelihood function in (2.15) is in the same form as

that for a multivariate regressicn model--see, e.g., Zellner (1971 1 Ch. 8)

with ñ and S sufficient statistics.

We shall employ the following standard diffuse prior distribution

for U and the distinct elements of 0,3

-(m+1+v0)/2,

P(nIn) lal (2.17)

where vo >. 0, that is the elements of n and a are independent, with the

former being uniformly distributed and the latter in the form of a degener-

ate, inverted Wishart distribution.

On multiplying (2.15) and (2.17) and using vo= 0, we obtain by

Bayes's Theorem the joint posterior density of n and a, namely

p(11,1210 Ini-(n+m+1)/2exp r_.
itr[S + (n-)'X'X(11-)10-1} (2.18)

where D denotes the given sample information (Y,X) and prior information in

(2.17). On integrating (2.18) with respect to a, we obtain the well known

marginal posterior density for n,

P(1110 c Is 4. (11-4)VX(11-11)1-n12 (2.19)

which is in the form of a matrix Student-t density--see, e.g. Dickey (1967),

3The value vn: k in the exponent of (2.17) has been suggested by

Dreze (1976) while Zenner (1971) employs vo: 0.
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Box and Tiao (1973), Dreze and Richard (1983), Geisser (1965), and Zellner

(1971) for properties of this distribution. As explained below, it is

possible to make independent draws from (2.19) and to use them to determine

the posterior distributions of interesting functions or mappings of. the

elements of n. Some of these mappings are given below.

We first consider the case of "just-identification" in which the

matrix nin (2.12b) is square and non-singular and the matrix (7 -n )

is not of full column rank. Then (2.12b) has a unique solution for y1--see

Graybill (1969, p. 140), and this solution can be substituted in (2.12a) to

express 01 in terms of the RF coefficients. Explicitly, we have,

-1
21 Ell - g1In107.110 

(2.20a)

-1
= 111010 

(2.20b)

which we call the Indirect Least Squares (ILS) mapping since if least

squares estimates of the n's are inserted in (2.20), the result is the

"indirect least squares" estimate of non-Bayesian econometrics. In the

Bayesian approach, with the posterior distribution for n in (2.19), the

least squares quantity = (rX)-1X'Y is the modal value and mean of (2.19)

and the ILS estimate is the modal value of the posterior distribution of Bi

and yi in this case of "exact identification" since (2.20) is a one-to-one

transformation from the n's to 21 and xi. Further, as explained below, we

can make independent draws from the matrix Student-t posterior distribution

for n in (2.19) and evaluate 81 and X1 
for each draw by use of (2.20) and

thus obtain the complete posterior distributions for the elements of 81 and

xi. Also, various measures associated with these distributions can be cal-
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culated, for example medians, inter-quartile ranges, means (if they exist),

etc., as will be illustrated in computed examples below.4

In the case of overidentification, the matrix nio in (2.12b) has

dimension koxml, where ko is the number of columns of X0 or the number of

predetermined variables left out of the first structural equation in (2.9b)

and m
1 
is the number of columns of Y1 

or the number of endogenous variables

included in (2.9b) less one. The rank condition for identification of the

structural coefficients y and B is that the rank of n is m which re-

quires k0
 
>m1, the order condition in the overidentified case. In the over-

identified case, we cannot go from the URF coefficients, the elements of n

in (2.14b) and (2.19) to the elements of y and 8 For example in (2.6)

with A = 0, = 71. y and given that w and w 
2 
are a.s. linearly indepen-

dent in the URF, we cannot solve for y in terms of the elements of the

vectors of URF coefficients, w i and 7r2. In fact, we can only find an 22:

proximate solution (Graybill (1969), p. 103ff.) as follows. Just as in

(2.6), we shall append a discrepancy vector, A2, to (2.12). This yields

1110 11101

(2.21a)

(2.21b)

We can now define discrepancy functions and obtain values of yi and Bi which

minimize them. One example of a discrepancy function is 2.42 and the value

of yi which minimizes this function, denoted by yT and the associated value

of 6
' 

B* are
-1 -1

4Dreze (1976, p. 1055) discusses conditions for existence of

moments of structural coefficients.
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El = ii 1111X1

( ioiooio

(2.22a)

(2.22b)

We shall call the mapping in (2.22) the Generalized Indirect Least Squares 

(GILS) mapping since when least squares estimates of the n's are inserted

in (2.22), the result is the GILS estimate--see Khazoom (1970. In our

Bayesian approach, the posterior distribution of the elements of B1 and yl

can be computed by direct Monte Carlo simulation based on draws from the

matrix Student-t posterior distribution for II in (2.19). Also posterior

distributions for discrepancy functions can be computed, for example

and

= (n - n y*NIT - n y*)/k
10-1 -10 10-1 0

-2
P2 = 1 - :42:42/71107,1W

(2.23a)

(2.23h)

Also, the posterior distributions of the elements of 'A can be
-2 

- 
- - 10 10-1

computed by direct Monte Carlo simulation. The posterior distributions of

-2
/k and p

2 
will provide information regarding the validity of the exact

restrictions in (2.12) in the frequently encountered overidentified case.

We next turn to a mapping that involves the matrix of predetermined

variables by multiplying both sides of (2.12) on the left by X = (X1 X0) to

obtain

X
1 

7r = X11111
 
+ X S

- 1-1

= z11 (2.24)

where n' =' n' = (n' n' ) = (xn x ) and 6' = (X;-1 210)' 1 11 10 ' 1 1 1 -1 . VI). To

allow for possible errors in the exact restrictions in (2.24), we introduce

a discrepancy vector, A3 as follows

Xir 1 =ZtS. +E3. (2.25)
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Then, just as in the cases considered above, we can minimize the discrepan-

cy function with respect to 6 to obtain,

= (2-121)-1Y1X21 
(2.26)

as the minimizing value which defines a mapping of the n's which resembles

that arising in 2SLS estimation.5 Thus we call (2.26) the 2SLS Mapping.

Also from (2.25) and (2.26), we can define

and

- I 0-3 -1 1-1'

in = (Xn - 0)1(xn - 0)/n-3-3 -1 1-1 -1 1-1

-2p3 = 1 - iiqt"

(2.27a)

(2.27b)

(2.27c)

Posterior distributions of 0 , 3, 33 i;2 and other interesting functions-1 - --, 3

of the URF coefficients can be calculated using a direct Monte Carlo simu-

lation approach based on draws from the matrix Student-t distribution in

(2.19).

Last, we define a LIM Mapoin as follows. Write the UHF system

for Y = (y1 Y1) in (2.14) as

Y =Xn +Xn + V (2.28)
()-

where n' = (11'1- 
n6.) and multiply both sides of (2.28) on the right by ya =

(1 •. 11)1 to obtain

Yy XU y +XIIy + Vy (2.29)
-a 1 1--a 0 0--a 

a

= Xnya + Vya.

Note that 110-- 
y 
a 
= 0 if the restrictions in (2.12) hold and thus we intro-

duce a "variance ratio" discrepancy function,

5An alternative procedure to compute al is presented in Section 3.
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0 r. y'V'V y /y'V'Vy
-a r r-a -a -a

•••

(2.30)

_
where V = Y - xn and Vr = Y - X1111. With t being the smallest root of 11.1,Vr

- IITIVI = 0, the value of xa minimizing 4) in (2.30) is obtained by solving

the following set of equations, given n, X and Y,

(V'V - TIPV)y = O.
-

The solution is y* = (1 • -y*')' and we can then define p"1 : 7111 - n11X1

from the restrictions in (2.12). Thus O' = (y*' B*) is the LIML Mapping

which can be substituted in (2.30) to yield e = y:VbIlry:/y:V'Vy:. The

posterior distributions of al, e, 110.1 etc. can be calculated by direct

Monte Carlo simulation based on independent draws of 11 from its posterior

distribution in (2.19).

We have discussed various mappings that are useful in connection

with URF analysis which do not involve assuming that identifying restric-

tions hold exactly. One may extend the GILS mapping and the 2SLS mapping to

the case of a full system of equations [see van Dijk (1985)1. We shall not

pursue this extension herein. We turn now to the derivation of posterior

distributions for structural parameters in a RRF framework.

2.3 Restricted Reduced Form Analysis (RRFA)

We now assume that the restrictions in (2.12) and in the line above

(2.12), hold exactly and impose them td obtain the RRF system of the equa-

tions for yi and Yl as follows. Substitute the expression vi = u1 + V1
ey 1

in (2.13a); use (2.13b) and (2.10), and reexpress (2.13) as

(Y1 Yil 1
-xi

.IIMIII,

= (x1 
x
0
)

••

r1 n1 1
_

0 n10—

(2.13')
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Assuming that the rows of (u1 V1) are independently drawn from a zero-mean

normal distribution with PDS covariance matrix n* where

one can write the likelihood function

/(!ituva* ID)
101-n/2expi 

-itr[(ul 1/1)qui V1)n*-1]}

(2.13")

(2.31)

where 6' = (yl s' 
' 
) D = (Y X) and (u

1 
v 1) is restricted by the equations

-

(2.13'). A well-known diffuse prior for the parameters of (2.31) is

I n* I (2.32)

where vo (?.0) can be chosen in accordance with invariance considerations.

More informative priors are discussed below. Multiplying (2.31) and (2.32)

gives the posterior pdf as

P(61/ill'n* ID) In*I
x expf-itr[Ni v1 P(121 v 1)n*-111 (2.33)

where n* = n + o On integrating the posterior with respect to the ele-

ments of n*, one obtains the marginal pdf for 61 and III, given as

-(n*+m1+2)/2

-n*/2
p(6 ,n ID) . 1(111 111Np...I V )1

-1 1 1

We now make use of

where

and rewrite (2.34) as

1(1-21

p(
1

6 II ID)-' 1

11 1),(111 v1)1 =

m = I - v (vt1 v1 1 1

1(Y1-W161)IM1(Y1-W0-1)1
-n*/2

x 1(Y
1
-Xn

1
NY

1
-Xn1

)1

-n*/2

(2.34)

(2.35)
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where W
1 
= (Y
11

). By making use of the definitions of the multivariate

and matrix-variate Student-t density functions (see Zellner (1971), Appen-

dix B) one can reexpress (2.35) as

where

131(filnl'D) = Cl

and

P(61/11110 = P1(1ln1/OP2(n1lD)

W'M W
1 1 1 2
2 iv1+ (fiql)'141M1W1(6141)/s11
s
l

P2(111 1D) = c2f(111)fc3IS1 (U1-Y'X'34/11-111)1

with f(n
1 
) given as

f( n1) = lw;m1w1 14(22)-y1/2•

-n*/2

(2.36)

(2.36a)

(2.36b)

(2.36c)

The normalizing constants cl and c3 are well known in terms of elementary

functions (see the Appendix and Zellner (1971), Appendix 13). The parameters

of (2.36a) are given as vi = n*-91, = m1+ kl, and

2
= (WiM1W1)-1WiM1Y1' vlsl = (Y1-W1I1)1M1(Y1441i1) 

(2.37a)

2
with 114pA1W1 l > 0, vsi > 0. The parameters of (2.36b) are

ft
1 
= (X'X)-1X'Y S1 = (Y1-Xft1)'(YI-Xft1). (2.37b)

Note that p(61 1il1,D) in (2.36a), the conditional posterior density 
for d i

given ni and D, is in the form of a 21-variate Student-t pdf with vi degrees

2 f
of freedom with mean and covariance matrix (WiMily

,-1 
v1si/(v 1-2), both

of which depend on ni. On integration over the elements of !I in (2.36a),

the marginal posterior density for ni is given in (2.36b) which is written

as c2f(il1) times a normalized matrix-Student-t factor with 02 the normaliz-

ing constant that, to the best of our knowledge, is not known in terms of

elementary functions.
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To obtain the unconditional moments of the elements of 61, 
we make

N draws n(I) i = 1,...IN from the matrix-Student-t factor in (2.36b) (see
1 '

the algorithm described in the Appendix) and use well-known formulas to

compute marginal moments from conditional moments. For example, to compute

the unconditional mean of 6' 
we have

-1

E(6 ID) = falp2(111 1D)dni-1

= igif(n0p3(111 1D)dyff(nOp3(ni lD)dni (2.38)

where p3(111 1D) = c3 1S1 + (n1
-ft

1
)1 X'X(n1

-n
1
)1 . To approximate the ratio

of integrals in (2.38), we make N draws from p3(111 ID), evaluate Z
1f(1I1) and

f(1r1 
) for each draw and then compute

r -(I) f r (i))
L 6 flu J/ L flni

1=1
-1 1 1=1

(2.39)

where gis '6' evaluated at n1 
= n(i). The marginal covariance matrix of

-1 -1 1

6 is defined as the sum of the expectation of the conditional variance an
d

-1

the variance of the conditional expectation, i.e.

v s2r 1 1 (wm, 1-1 Pr
v(s ID) ID)cin
-1 

= 
Jv

1
-2 ' 1 1

w 
V 2'-
,

1 1

-I: f(".1-E(iii))(Zi-ECgi))1 p2(iii ID)dui. (2.40)

Each integral in the formula above can also be approximated by ratios of

To compute the posterior density of an element of 61' 
say 6 we

integrate (2.36a) analytically to obtain the conditional posterior pdf for

61i, p(61ilni,D) which is in the form of a univariate Student-t pdf with v i

degrees of freedom. Then we consider
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p(6111D) = fp(diiIIII,D)p2(111 1D)dll1 
(2.41)

with p2(1111D) given in (2.36b). A Monte Carlo numerical integration pro-

cedure can be employed to evaluate the integral in (2.41). To approximate

p(6111D) at a given value of d say Oh, compute simply

/ P(61i111(ii),D)*(ii))/
i=1 i=1

In this way, complete marginal posterior pdfs for the elements of Si can be

calculated. Also joint posterior pdfs for 61i and 61i can be calculated in

a similar manner since, from (2.36b), p(61i,61.1 1111,D) has a bivariate Stu-

dent-t form and fp(61i,60111,D)p2(111 1D)dill can be evaluated using Monte

Carlo integration procedures. Finally, we note that (2.33) can be inte-

grated analytically with respect to the elements of 6-1, w i and ni to obtain

f 2
p(al ln1,D)p2(111 1D) and numerical integration procedures can be u

tilized to

obtain the marginal posterior pdf for al, p(alID).

Above, we have employed the diffuse prior assumptions in (2.32).

As an alternative, we can use the following informative prior density

13(81'n1'12*) P1(61'n1 11211)132(°)
(2.42)

where p1(fi,111 10) is a multivariate normal density with mean (FA) and

-
covariance matrix 0 C

1
 and p2(0) is an inverted Wishart form. With

this prior, operations similar to those presented above in the case of a

_
diffuse prior are easily performed given values of 611 III, C, and other

prior parameters. It is also possible to use an informative prior for a_-1

given 0* and diffuse priors for the other parameters.

Various conditional posterior densities associated with (2.35) are

now considered. If we condition on XII1 
= Y

1
-10

1' 
where K > 0 is a given
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constant and /
1 
= Y

1
-VI

1' 
we have XII = (1-K)Y

1 
+ 

lail1 1 
or V = 10

1' 
where

1 

V = Y -X11 . Then on defining Al = I - 11(111/0-101 and :6... = (ile, le), the

conditional posterior mean vector, given by 
ilc : (WiAlW1)- 

114'1,Alyi is by

direct evaluation,

Y'Y -
1 1 1 1

XY'
1 1

1-11
1X'Y

1 
Y' - 1

I 
X' X

1 
X'
1

(2.43)

With these conditioning assumptions, glc, the conditional posterior

mean of 6
1 
is in the form of a K-class estimate. As is well known, for K=1,

-

g 
lc 

is the 2SLS estimate, for K=X, the smallest root of a determinantal
-

equation encountered in maximum likelihood estimation, ilc is the LIML es-

timate and for k = 1 - k/(v-2), with v = n-k-mi > 2, ilc is the MELO esti-

mate; see Zellner (1986). Note that if K=0, §̂.1c is the OLS estimate.

While the above conditional results are interesting, it is often the case

that conditional means, etc. are not very good approximations to uncondi-

tional means, etc. in small or even moderate sized samples. This is illus-

trated in computed examples presented in Section 4.

We end this section with two remarks. First, the model (2.13) or

(2.13') does not include a reduced form equation for Yo, the endogenous

variables excluded from the structural equation. This means that, in fact,

our analysis in this section is conditional on the hypothesis that Yo is

independent of yl, and Yl. This hypothesis can be suppressed easily and

the Bayesian analysis of the RRF can be adapted to the more general case.

We note that one may interpret the model (2.13') as an incomplete simul-

taneous equation model [see Richard (1984)]. Second, we did not discuss

conditions for the existence of the marginal posterior moments of * 
Given

-1 
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that our approach of computing posterior moments may be considered as an

alternative to Dreze's (1976) approach, one may argue that Dreze's dis-

cussion of existence conditions [see also Dreze and Richard (1983)] is also

applicable to our case. A more explicit discussion of conditions for exis-

tence of moments will be given in future work.

3. Some Bayesian Diagnostics for the Model Specification

In this section we extend the computational procedures of the pre-

vious section in order to compute posterior moments and densities of param-

eters (or functions of parameters) that give diagnostic checks of the spe-

cification of the model (2.13) or, equivalently, (2.13').

First, we discuss how to check the hypothesis of weak exogeneity

(as defined by Engle et. al. (1983)) of the included endogenous variables

v in equation (2.13').6 In non-Bayesian econometrics this can be done by
-1

testing whether n i F 0 in the expanded first equation of (2.13'), which is

written as

Yi= Yixi x1§1 ' El (3.1)

where /
1 
= Y

1
-Xft

1 
is the nxm

1 
matrix of ordinary least squares residuals of

the set of reduced form equations for Y. [For details, see, e.g., Hausman

(1983), Holly (1982) and Engle (1984, Ch. 9.3)]. In our unrestricted re-

duced form (URF) approach one may proceed as follows:

(i) Use independent random drawings n
(1) 

...,11
(i) ...,n

(N) that are gen-

erated from a matrix Student-t distribution with a density function

6For earlier Bayesian results on testing for exogeneity, see
Reynolds (19801 1982).
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proportional to (2.19) and compute the sequence 011),...,V(i)

V
(N) 

where V(1) = Y
1 
-X11

(i)
1 ' 

i =
1 1 

(ii) Run N ordinary least squares regressions on (3.1) with Vii) instead _

of /
1. 

This yields the sequence

the well-known OLS expression;

A(1) A(i) A(N) A(i)
where n i is

(iii) 

A

Compute the moments and densities of the elements of the vector n i

by standard sampling theory formulas. If the posterior density of

A
n is located around zero, one has an indication that the variables
-1

Y1 in equation (2.13') are weakly exogenous in the sense that the

stochastic component V1 of the variables Yl does not contribute much

to the equation (2.13'). The smaller the dispersion of around

zero the greater one's confidence in this indication.

The sequence (Wi),P1(i)), i = 1,...,N that is obtained in the

OLS-regression described in step (ii) above is equal to the sequence {SIM}

i = 1,...,N that is obtained by usng the 2SLS-mapping (2.26). This follows

by direct verification. As a consequence, one expects that the sample mean

A rA(i)1

'n from the sequence tn j i = 1,...,N contains an approximation error
-1 -1 

with respect to n. when the system (2.13') is strongly overidentified since
-1

* V
1 
in general.

1 

In order to deal with the overidentified case in an exact way, we

consider again the RRF-system (2.13) and (2.13') and reformulate this model

as follows. First, denote the i'th row of (21 V1) by (u1 yli) and decom-

pose the (1+m1)-multivariate normal density of (u1 yii) as a conditional

normal density of ui given a value of and a marginal multivariate nor-

mal density of Tu. This yields (ul ivii) N(y4,121,al - with ni =
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-1
ni (21 and yli - N(2,01). Next, perform the transformation of random vari-

ables from (u1 1111) to (y1 lY1) and from V1 to Yl. This yields

(y1 lY1) N(Y1/1 + X121 + (Y1-X111)11, (al- (21n.i1w
1
)i)

Y
1 
- 

N(XII1'a1 
fa I).

From (3.2) and (3.3) one can write the model

Yi Yixi x121 + V ri +
1-1

(3.2)

(3.3)

Y1 
= XII1 +

 V1 
(3.4)

where (c1,y4), i = 1,...,n, are independent random drawings from a multi-

variate normal distribution with mean zero and covariance matrix

4,--
a
2

ININNIMEM

0'

0 n

a2
1 
- w'n

-1w 0'
(3.4')

Note that cov(Ei' 
vli )

 = 0 which follows from direct verification. There-
- -

fore, testing whether wi = 0 in the model given in (2.13') and (2.13") is

equivalent to testing whether n i = 0 in the model given in (3.4) and (3.4').

Further, note that if n = -y one can substitute XII1 
= Y

1
-V

1 
in the first

-1

equation of (3.4). As a consequence, there are only predetermined vari-

ables on the right hand side of equation (3.4).

The likelihood function of the parameters 61 = Di, a
2 

and a1

is obtained from (3.4) and (3.4') as

-n/2
1

2(6 n a
2 
0 ID) rk a2c) E/2a2c1101

 
In/'2x F1

n-1 111

e' 1

(3.5)

where E and V1 
are given by equations in (3.4). As a next step we have to

transform the prior density on 
(s1 ,n1' 

a2 
'1w ,n

1 
) [see (2.32)] to a prior

- l- 



211

density on the parameter set 
(1'
s n a

2 ,0
1 
). The relevant part is the

- c 
f 2 f

transformation from 01,T1,01) to (a2,2,01) which gives as Jacdbian 'ni l.

As a consequence the prior information specified in (2.32) is given

in terms of (fi lli1,a
2e,11,01) as

2
P(!l'1ll'ac0.1'21) a

-(m1+v0+2)/2 -(1111-1-v0)/2

(ac) 
11111

(3.6)

The posterior density of the p-vector 21 = (!'100, with p = Z1+ ml, and n

a
2, 0 is given by

1
2

2
geinl'aenlID) 

a
c

1°11
2

Integrating (3.7) with respect to ac and ni yipids the marginal posterior

ge'r11 11*

expl-c'c/2a2c1

expl-itr[OPIV IK]l. (3.7)

-(nem1)/2 -(n*-1)/2

ge/11110 (E 1 E) (3.8)

where c and V1 are given in 
(3.4). The density (3.8) may be compared with

the pdf given in (2.34) and (2.35). In a similar way as done below (2.35)

in Subsection 2.3, we can rewrite (3.8) as

ge'n110 = P1(2In1,D)P2(n110 (3.9)

where

W'W li

[ 

2 -(v149)/2
131(81111°)) = el 2 fv1 4. 

(2-PW'W(e-)/s} (3.9a)
81

and

p2(n1 1D) = c2h(11){c31S1 + (111-111)1 X'X(ni-ft01 (3.9b)

and

h(n 1) = 1 1,PW1-1(4)-v1/2. 0.90
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From the definition of W = (W
1 
V
1
) it follows that WWI =

where M1 is given below (2.34). Therefore

h(111) = f(UOITT1 1-1

miwi livivi l,

(3.10)

with f(n1) given in (2.36c). It follows that the posterior density of U1

given in (2.360 is equivalent to the posterior density given in (3.9b).

The parameters of the conditional multivariate Student-t density of the p-

vector 0 are given as vi = n-11, and

=
1 (3.11)

The conditional density p1(01111,D) in (3.9a) is in the form of a p-variate

conditional Student-t pdf of e given ni and D with vl degrees of freedom,

f 
with mean i and covariance matrix 04'Wj v

1
s

1
/(v

1
-2)
' 

both of which •depend

on II. Similar remarks that were made with respect to (2.36a) apply to

(3.9a) and are not repeated. We mention here only that if the marginal pdf

of n i is centered around zero, then one has an indication that Yl is weakly

exogenoui in the sense discussed before.

We note that one may use diffuse or informative priors other than

(3.0. For instance an alternative type of diffuse prior is given by

,4-2)/2 -(m. 0-vA)/2

P(2011,a2en1) = (a:) I V IWW121n1 1 I V
• (3.12)

This prior is equal to (3.6) times WWII, which is the root of the deter-

minant of the information matrix of e given ul. As a result the factor

WW14 will not appear in (3.9c). Further, we note that conditional

moments associated with (3.9) can be formulated in a similar way as was

done in Subsection 2.3. In particular, if we condition p1(01111,D) on ni= fti
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and integrate out 61, the posterior density pi(ni lfti,D) is an m1-variate

Student pdf with mean ;., the OLS estimate of n l in (3.1). The non-Bayes-

ian test procedure for the weak exogeneity of Yl using (3.1) is to reject

the null nypothesis if a (1-a)% confidence region centered at ni= 0 does

not contain the point The Bayesian decision is to reject the null if a
-1

(1-a)% posterior probability region centered at ;1 does not contain the

point n1= 0. An exact Bayesian decision procedure relies on the marginal

posterior density pil(ni lD) rather than on the conditional density p1(n101,D).

Some illustrative results on exogeneity testing are presented in Section

4.1.

Next, we discuss how we can check whether the overidentifying

restrictions in (2.12a) and (2.12b) seem acceptable. It follows from the

discussion, given in Subsection 2.2 (between equations (2.20) and (2.21)),

that the degree of overidentification is equal to the number ko of omitted

predetermined variables in equation (2.9h) minus the number ml of included

endogenous variables on the right hand side of (2.9b). Thus, we may in-

clude some predetermined variables in (2.9b) that were, at first, excluded

from this equation. If we add k0-mi predetermined variables to the right

hand side of (2.9b), then we have an exactly identified equation instead of

an overidentified equation. As a consequence, one can make use of the URF

approach and compute highest posterior density (HPD) regions around zero

for the parameters of the k0-m1 included variables. This yields a check on

the value of the overidentifying restrictions. If we add fewer than k0-511

predetermined variables to (2.9b), then this equation is still overiden-

tified and the RRF approach can be used to analyze the HPD regions around

zero of the paramters of the included variables.
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Several other diagnostic checks may be constructed, i.e. restricted

reduced form moments may be compared with unrestricted reduced form moments.

Diagnostic checks on autocorrelation and outliers may be constructed from

posterior distributions of realized error terms. Further, one may compute

posterior odds relating to exogeneity hypotheses. There are thus ample op-

portunities for much applied work using the methods discussed above.

4. Applications of Methods

In this section we illustrate the methods of Sections 2 and 3 for

the case of an exactly identified simultaneous equation model and for the

case of an overidentified model. As an example of an exactly identified

model we consider the Belgian beef market model (see Dreze and Richard

(1983, Section 2.4)) which is given as

Qt "1 ' ' IlYt ult (14.1)

Qt = a2 BA Y2St u2 (4.2)t

where Qt is the quantity of beef consumed per capita in period t; Pt is the

price-index; Yt is real national income per capita and St is the cattle

stock per capita (measured as the number of heads at the beginning of each

period). The variables Qt and Pt are endogenous and the variables Yt, St

and the constant term are assumed exogenous. The data are annual observa-

tions for the period, 1950-1965. Given our uniform prior with ve 0 and

given that the model is exactly identified, posterior first and higher or-

der moments do not exist. In Figure 1 we present the marginal posterior

density of Bi and give the computed quartiles of the posterior distribu-

tion. The density is concentrated around the mode but has a long tail to
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the left. We note that the mode and the median are almost equal; however

the first and fourth quartiles indicate that the density is skewed to the

left. Further, we find evidence that the exogeneity of the price variable

is rejected. The results reported are based on N 100,000 drawings in

order to obtain an accurate figure. We emphasize, however, that the figure

is already rather accurate withit-t-10-,000-or-N-=-204-000;---

UNIVARIATE POSTERIOR OF BETA1 (BBM)

3.

2.4

0-

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.4 -0.2

HUI

Fig. 1 Marginal posterior density of ai in the Belgian
Beef Market (BBM) model.
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As an example of an overidentified simultaneous equations model we

take Klein's Model I [see Klein (1950)] which is given as

C = + a21)..1 + a3W + ao +

I = 
1
P + 

82P-1 
+ 

83K-1 
+ + u

2

wi = Yix Yix-1

X=C+I+G

P = X - W
1 
- T

K = K
1 
+ I

-

W = W1 
+ W

2

+ y3t + yo +

(4.3)

(14.14)

113 (4.5)

(14.6)

(14.7)

(14.8)

(14.9)

Consumption expenditure (C) is structurally dependent on profits (P), pro-

fits lagged one year (P_1) and on total wages (W). Net investment expendi-

ture (I) depends on profits, lagged profits and on the capital stock at the

beginning of the year (K_1). Finally, private wage income (W1) depends on

net private product at market prices (X), the same variable lagged (x_1)

and on a trend term (t). The model is closed by four identities, which

provide links with three exogenous variables: the government wage bill

(W2), government nonwage expenditure, including the net foreign balance,

(G) and business taxes (T). The model has seven jointly dependent vari-

ables (C, I, WI, X, P, W) and eight predetermined variables (1, P_ 1, X_1,

K_ 1, G, T, W2, t). All variables (except 1 and 0 are measured in constant

dollars. Posterior moments for Klein's Model I are reported in Tables 1-3

and univariate and bivariate marginal posterior densities of a structural

parameter and an exogeneity parameter in the investment equation are given

in Figures 2-3.



TABLE 1: INVESTMENT EQUATION OF KLEIN'S MODEL I: POSTERIOR EXPECTATIONS AND STANDARD DEVIATIONSa

1

Prior with vo= 0:

02 133 eo n1P

URFA with prior (2.17)

GILS 0.59 (0.45) 0.48 (0.45) -0.05 (0.11) 0.75 (22.76)

TSLS 0.35 (0.19) 0.45 (0.18) -0.13 (0.04) 14.20 (8.40) 0.31 (0.15)

RRFA with prior (2.32) or (3.6)

A bconditional on n 0.15 (0.11) 0.62 (0.10) -0.16 (0.02) 20%28 (4.86) 0.57 (0.15)1

marginal

Prior with vo: k:

URFA with prior (2.17)

GI LS

0.20 (0.17) 0.57 (0.17) -0.15 (0.04) 19.02 (8.56) 0.50 (0.19)

0.54 (0.42) 0.52 (0.39) -0.06 (0.10) 3.81 (20.84)

TSLS 0.27 (0.16) 0.51 (0.15) -0.14 (0.03) 16.54 (6.83) 0.39 (0.13)

RRFA with prior (2.32) or (3.6)

bconditional on H 
1

marginal

0.15 (0.09) 0.62 (0.09) -0.16 (0.02) 20.28 (3.92) 0.57 (0.12)

0.17 (0.15) 0.60 (0.15) -0.16 (0.03) 1.83 (6.95) 0.55 (0.16)

aQuantities in parentheses are posterior standard derivations.

bThe conditional posterior means are equal to the non-Bayesian two-stage least-squares estimates as explained
in Section 2.3. •



TABLE 2: WAGE EQUATION OF KLEIN'S MODEL I: POSTERIOR EXPECTATIONS AND STANDARD DEVIATIONS 
,a PRIOR WITH ve 0

URFA with prior 2.17)

GILS

TSLS

RRFA with prior (2.32) or (3.6)

conditional on n

marginal

1 2 13 0

0.50 (0.15) 0.03 (0.13) 0.17 (0.19) -4.37 (15.18)

nix

0.44 (0.04) 0.15 (0.05) 0.13 (0.03) 1.52 (1.16) 0.00 (0.05)

0.44 (0.04) 0.15 (0.05) 0.13 (0.03) 1.50 (1.36) 0.00 (0.07)

0.44 (0.07) 0.15 (0.07) 0.13 (0.04) 1.47 (1.52) 0.00 (0.11)

aQuantities in parentheses are posterior standard deviations.



TABLE 3: CONSUMPTION EQUATION OF KLEIN'S MODEL I: POSTERIOR EXPECTATIONS AND STANDARD DEVIATIONSa

.ior with vor. 0:

URFA with prior (2.17)

GILS

TSLS

RRFA with prior (2.32) or (3.6)

conditional on Hi

marginal

.ior with vo= k:

URFA with prior (2.17)

GILS

TSLS

RRFA with prior (2.32) or (3.6)

a1 a2 a3 a niw

0.47 (0.34) 0.04 (0.24) 0.41 (0.25) 15.74 (10.73)

d.10 (0.14) 0.15 (0.12) 0.81 (0.04) 16.33 (1.36) 0.47 (0.22) -0.33 0.21)

0.02 (0.10) 0.22 (0.09) 0.81 (0.03) 16.55 (1.07) 0.69 (0.21) -0.45 (0.24)

-0.08 (0.16) 0.29 (0.17) 0.83 (0.05) 16.15 (2.09) 0.79 (0.17) -0.47 (0.11)

0.42 (0.32) 0.07 (0.21) 0.42 (0.23) 18.11 (9.77)

0.07 (0.11) 0.18 (0.10) 0.81 (0.03) 16.43 (1.07) 0.54 (0.19) -0.37 (0.18)

A
conditional on H i 0.02 (0.08) 0.22 (0.07) 0.81 (0.03) 16.55 (0.86) 0.69 (0.17) -0.45 (0.19)

marginal -0.08 (0.13) 0.33 (0.13) 0.80 (0.03) 16.62 (1.05) 0.79 (0.15) -0.44 (0.07)

aQuantities in parentheses are posterior standard deviations.



33
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Fig. 2 Univariate marginal posterior densities of Bi and TL inin the
investment equation of Klein's Model I.
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It is seen from the results on the investment equation in Table 1 that the

URF approach, in particular the GILS mapping, yields gross approximation

errors for several parameters. The posterior means and standard deviations

of the parameter of the included endogenous variable, of the constant term,

and of the exogeneity parameter differ substantially from the results of

the restricted reduced form approach. The results of the latter approach

are based on N = 20,000 drawings. We note that the marginal results differ

also from the conditional results in the RRF approach but less than from

the results given by the URF approach. The sensitivity with respect to the

particular choices of ve 0 and VD= k is as expected. A larger value of vo

implies smaller variances due to lighter tails. It is of interest that the

exogeneity of profits appears to be rejected while some preliminary results

on overidentifying restrictions (not reported) suggest that these restric-

tions are not to be rejected. More details will be reported in future

work. It is also of interest that conditional standard deviations are al-

ways smaller than the asymptotic TSLS standard deviations. The reason is

that in the conditional approach the values of s
2 

is smaller than in the
1

non-Bayesian approach. The results for the wage income equation given in

Table 2 produced by different methods are similar. The hypothesis that net

private product is exogenous is not rejected while from preliminary re-

sults, it appears that the overidentifying restrictions are rejected. The

consumption function was the most complex case to analyze. The posterior

means differ substantially for the different approaches. The posterior

standard deviations for the exogeneity parameters for profits and wage

income show a surprising result. The marginal standard deviations are
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smaller than the conditional ones. It appears that the effect of the

weight function f(n1) [see Subsection 2.31 is very nonlinear. This is a

topic of current research. Exogeneity and preliminary results on over-

identification, not reported here, suggest that both hypotheses are re-

jected. Figures 2 and 3 show the skewness of the marginal pdf's and

differences between the results of the URF, the conditional —RRF—and---the ---

marginal RRF approaches.

5. Concluding Remarks

In this paper, we have shown how Monte Carlo numerical methods can

be employed to compute exact posterior densities of the parameters of a

.structural equation using diffuse or informative prior distributions. In

addition, operational procedures for Bayesian diagnostic checking or speci-

fication analysis were described. For example, discrepancy parameter vec-

tors were introduced to represent departures from exact identifying re-

strictions and it was shown how to compute posterior densities for them and

interesting functions of their elements which we refer to as discrepancy

functions. In addition, a Bayesian procedure for evaluating exogeneity

hypotheses was described. That diagnostic checking or specification anal-

ysis be performed is quite important and the fact that operational Bayesian

procedures for diagnostic checking or specification analysis can be carried

through without much difficulty is fortunate.

Applications of our methods were presented and yielded useful re-

sults. In particular, it was found in several instances that certain

specifying assumptions, exogeneity hypotheses and identifying restrictions,

were of doubtful validity. Also, it was found that exact marginal poste-

_
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nor densities differed considerably from conditional posterior densities

based on conditioning assumptions which are often employed in non-Bayesian

procedures, for example in the 2SLS approach or other K-class estimation

approaches. Thus we consider it very important to use appropriate marginal

posterior densities for structural parameters rather than approximate con-

ditional posterior densities. That the former can be computed using Monte

Carlo techniques without much difficulty is indeed fortunate.

In future research, we plan to extend our consideration of diagnos-

tic checking procedures to consider checks for autocorrelation of error

terms, outliers and possible left out variables. Also, the single equation

analysis in this paper will be extended to provide results for sets of

structural equations and complete structural equation systems.
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Appendix: The Generation of Pseudo-Random Drawings from a
Matrix-Student Distribution

Because the matrix-Student (Mt) distribution is related to the ma-

trix-normal (MN) and to the inverted-Wishart (iW) distributions, we define

these three families of distributions through their density functions and

state a few properties that are useful to build an algorithm for generating

a pseudo-random drawing from an Mt distribution.

Definitions

Let It E Rkm be a kxm random matrix.

(i) n has an MN distribution if its density function is

p(n) fr(nri,n 0 m-1)

: = [(211)1°1101k1M1ml-lexp-itr[n-1(11-1-I) 'M(ii-ii) I (A.1)

where It E Rh" is a kxm constant matrix, n is an mxm PDS constant matrix and

M is a kxk PDS constant matrix.

From here on, let n be a random PDS matrix.

(ii) n has an iW distribution if its density function is

= iTw(nlw,v)

• -• [21vm114m(m-1) II r()]' ivInl-1(v+m+1)exp-itrn
-1

W
i=1

where W is an mxm constant matrix and the constant v>m-1.

(iii) n has an Mt distribution if its density function is

-
p(n) = f

kxm
Mt 

(11111,W,M,v)

[nikm n r(v+1-11/r (v444-1-i)1-1
2 2 "

i=1

iwi'vimi'miw+ (ii-T)tmcn-in14(v+k)
where n, w, m and v are defined as in (i) and (ii).

(A.2)

(A.3)



42

Some properties of these distributions

(1) If p(n10) 
= 0

m ) and p(n) - fmW 
((IW 

v)" 
then p(n) is given

i 

by formula (A.3). This property states that an Mt distribution is a margi-

nal distribution from an MN-1.14 one.

(2) Let II have the density (A.1).

(i) If A is an rxk matrix of rank r5k, and B is an mxs matrix of rank s5m,

then
Wp(AnB) = f(AnB11113,B'n13 • AM-/A'). (A.4)

-
(ii) In particular, if B'n13 = Im 

and AM
1 
A' = Ik' 

Z: = A(n-ii)B is a matrix

of independent standard normal variables.

(3) Let 0 have the density (A.2).

(i) If C is an mxs matrix of rank s5m, then

s
p(C'OC) = f(C'nCIC'WC,v-m+s). (A.5)

(ii) Partition a into a11(m1xm17PDS), g22
(m2xm2IPDS), n21(m2xm

1
)' n12= n21

-1 -1
and let n

22x1
= 0

22
- n

21
n
11
a
12
. Then a and (n11'11n12'n22x1) are in one-to-

one correspondence and

-1 -1
P(1211'11012'22x1) = P(011)P(n11a12In22x1)P(fl22x1)

with m
1

p(0
11
) = f

iW
(n11 IW11'v-m2)

m xm
p(2 12) 

f 1 2(in n n •w-1

11 12) MN . 11 
12IW W 

11 12' 22x1 
s 

11

P(1222x1) =
m2(
f

22x1
114
22xl'v)

(A.6)

(A.7)

(A.8)

(A.9)

where W
11' 

W
22 

and 
W22x1 

are defined from W as 211, a22 
and 2

22x1 
are de-

fined from 0.
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(iii) In particular, if C'WC = Im in (A.5), Y: = ClaC is in one-to-one cor-

respondence with m(m+1) independent random variables: m(m-1) standard

normal variables, plus m variables Xi, each of them having an inverted-

gamma density defined as

1
f
iW
(X
i
11
'

v-i+1), for i = 1,2,...,m.

This follows from the property 3-ii applied to Y m times: one starts e.g.

with m2=1 and m1=m-1 and noti
ces that 3-ii can be applied again to P(Y11)

which is an iW density with parameters Im and v-1.
1

Other properties of these distributions can be found in Zellner

(1971, Appendix B.4 and B.5), Dreze and Richard (1983, Appendix A) and

Bauwens (1984, Appendix A.I and A.II), who give separate algorithms for the

generation of random numbers from MN and iW distribution. These algorithms

can be combined to draw from an Mt distribution, with density given by

(A.3), by drawing firstly an iW matrix with density (A.2), and by drawing

subsequently an MN matrix, with density (A.1) where is the iW matrix

obtained at the iW step.

Mt Algorithm

To obtain a drawing II from the Mt distribution defined by (A.3):

1- Compute the lower triangular (LT) matrices Q' and P such that W = Q'Q

1and M- = PP'.

2- iW-Step:

(i) generate m(m-1) standard normal drawings and m inverted-gamma draw-

ings Xi, with p(Xi) = flw(X111,v-i+1);

(ii) compute the mxm LT matrix 0 such that 00' = :n is a drawing from the

iW distribution of n defined by (A.2) (but one does not need to compute 00').
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Let 0 = ((1): then 0ij 
= 0 for i<j. The lower triangle of 0 can be filled

by the following steps:

(1) i + 0; 1 + im(m+1) + 1, let 0 be a vector of 1-1 elements that will

finally contain the column expansion of the LT of 0, i.e., 6 6 6

(11m14)224)32' ,am-1m-14)=-14)mm)

(2) i + i + 1; if i>m, stop

(3) 1 . 1 - i 0(1) = ixi(xi obtained at 2-i)

(4) if i = 1 1 go to (2), or else go to (5)

(5) pick 1-1 standard normal drawings obtained at step 2-(i) and assign

them in a vector u. Compute y = where y is a vector of i-1 ele-

ments and 0i-1 
denotes the LT matrix whose column expansion of the lower

triangle is stored in the last 1/2i(i-1) elements of the vector 0 (but 01

Is the scalar Oram = /X11) 
Finally, g1+k) + y(k), k = 1,2,...,i-1 and go

to (2).

3- MN step:

(i) generate km standard normal drawings zij (i = 1,2,...,k and j =

1,2,...,m). Let Z = (zip;

(ii) compute n = U + Pzoiw where 0 is the LT matrix obtained at step 2-ii.

To draw standard normal variables, one can use the polar algorithm

--see e.g. Knuth (1971). To draw inverted gamma variables, one can use the

GRUB algorithm of Kinderman and Monahan (1980) that is efficient since the

computer time required to obtain one inverted gamma drawing is almost per-

fectly independent of the value of v (as is not the case if one generates

gamma drawings as sums of v independent squared normal drawings). To get

•
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one drawing ill one needs m(m-1) + mk univariate standard normal drawings,

plus the m inverted gamma drawings, all these drawings must be independent.

The proposed Mt algorithm has the advantage that the marginal cost

of .a drawing (steps 2 and 3) is not affected by the value of the degrees of

freedom parameter v.

Provided v is an integer, one could replace the implementation of

the iW step by (i) drawing a Wishart matrix n-1 as Z Z' where the mxl
j=1

independent vectors Zj have a multivariate normal density with zero ex-

pected value and covariance matrix given by W, (ii) inverting n-1 and (iii)

computing the LT matrix.0 such that n = W. This implementation requires vm

standard normal drawings at the iW step, instead of m(m-1) of these plus

the m inverted gamma drawings. So for very small values of v and m, this

implementation may be more efficient. Notice however that a Cholesky de-

composition of n, giving 0, has to be performed, whereas 0 is obtained

directly in the implementation we use.

Another method to generate from the Mt distribution (A.3) that is

expected to be less efficient, is to use the property that

p(n) = p(111 11121[3...nm)p(1121n3...um)...p(nm) (A.10)

where II (i = 1,2,...m) is the i'th column of II, and each of the densities

on the right of (A.10) is a multivariate Student density [see Zellner (1971,

p. 397), or Dreze and Richard (1983, p. 589)]. Formula (A.10) suggests a

sequential drawing procedure.
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