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ABSTRACT

Large scale mixed-integer 1inear programming (MILP) models
may easily prove extraordinarily difficult to solve, even with efficient
commercially-imptemented MILP solution codes. Drawing on experience
gained in solving and analyzing three intertemporal investment planning
MILP models for electric power supply, this note offers several practical
suggestions for reducing computer solution times for general production-
allocation MILP models. Solution time reduction stems from judicious use
of the powerful computational capabilities of existing commercial LP
codes in conjunction with information known or to be learned by the

practitioner about the model's structure.



Introduction

Mixed-integer Tinear programming (MILP) problems have been
formulated and solved for over two decades.1 As with all OR methods, MILP's
have increasingly been applied in diverse fields, due in part to the diffusion
of knowledge relating to their usefulness (see, for example, [5] [9] [10] [11]
[18]) and in part to the extension of commercial LP codes to solve MILP's
(see, for instace, (2] [4 [8]). A safe prognosis would seem to be for further
growth in their popularity. What seems to be a stark fact of life at present,
however, is that it is possible to formulate interesting and useful large MILP
models which can be solved to optimum only within a computing time limit
beyond the reach of most research budgets. Therefore, virtually any methods
that allow reduction of solution time for large problems are to be welcomed,
provided they do not force the practitioner to incur enormous costs in other
ways, such as requiring one to acquire expertise in algorithmic design and
implementation. Woolsey [16] [17] offers excellent advice on practical aspects
of formulating and solving integer programming models, and most manuals for
commercial LP packages likewise provide useful guidelines for formulating and
framing MILP models for computer processing. Typically, however, the most
efficient use of such systems requires substantial knowledge of the character
of the optimum before solution commences. This note complements the advice
offerred in these sources by making several common sense suggestions concerning
an MILP solution strategy, with the powerful computational capabilities of
existing commercial LP codes in mind. Though couched in terms of an intertemporal
investment planning model, these suggestions are intended to be fully general
for production-allocation type models, and are relevant whether the objective

of model formulation is outright optimization, suboptimization to explore
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the neighborhood of the optimum, or simulation of the model to ascertain its
properties. (See [10]). Further, they are intended for large-scale problems,
which minimizes their utility for MILP models solvable readily by existing

codes.

The Application Motivating the Suggestions

The experience gained in analyzing three MILP models constructed to
examine in depth the extent to which co-operation in power supply between two
neighboring electric utilities in Canada might potentially reduce joint costs
of supply, motivates the following suggestions. The two utilities involved,
Manitoba Hydro and the Saskatchewan Power Corporation, are natural candidates
for joint expansion, since their supply systems are highly complementary: the
former is almost totally hydro oriented, while the latter is predominantly
thermal oriented. MILP formed a natural analytical tool for pinpointing and
quantifying supply economies, in part because the approach was known and well
understood (see [1] [13] [14] [15]). In addition, the investment alternatives
considered were discrete and construction of certain of the prospects was
conditional upon construction of others, implying the need to model precedence
relationships. Such relationships were easily included in an MILP framework.
Three cost-minimizing models were formulated, one for each of the utility
systems planning for self-sufficiency in supply -- to be solved to provide
a reference standard for measuring supply economies -- and a third for joint
planning. The joint model allowed for three conceptually different sources of
economies: (1) staggering or sequencing of capacity additions between the
utilities; (2) one utility could draw upon surplus reserves of the other in

order to permit deferral of capacity installation; and (3) phasing of generation
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expansion whereby the joint system could first develop the most favorable
alternatives, then the next most attractive, and so on. Due to the complexity
of the problem, the third model possessed 393 constraints and 459 decision
variables (excluding slacks), of which 175 variables were discrete. Thus, the
joint model constituted a very large MILP model, and the initial expectation
was that it would prove exceedingly difficult if not impossible to solve. In
fact, even the much smaller self-sufficiency models proved difficult to

solve individually.

Suggestions for an MILP Solution Strategy

I Assemble the model in a manner facilitating easy model revision.

An integral part of this procedure should be the careful selection of
a naming convention for variables and constraints. The naming convention
should readily lend itself to expanding or contracting the number of decision
variables and constraints, and through its mnemonics be immediately compre-
hensibie to the analyst, since interface between the user and the solution
procedure lies at the heart of solution time reduction. The flexibility
option allows the analyst scope to change model structure and size -- such as
the number of demand and/or supply nodes, transshipment points, investment
alternatives, time periods, etc. -- as information is learned about the model
feasible point set (FPS). MILP model size and complexity are seldom engraved
in stone. Rather, they will normally vary with the questions to be answered,
the solution detail considered necessary, and in no small degree the extent of
research-budget funds earmarked for computing.

For the power supply application, circumstances suggested writing a



-4 -

flexible matrix generator program from the start. The wisdom of this step

was really appreciated, however, only when intensive computing was undertaken.
At the outset, model size was purposely considered elastic, because of expected
difficulties with computer solution. Quantification of economies demanded

a horizon distant enough to allow the joint system to evolve toward the most
attractive supply configuration for both utilities. The legacy of history in
the form of existing capacity meant that such movement could only occur
slowly, and thus a lengthy planning period appeared warranted. Another consid-
eration was that each utility plans generation installation to meet an

annual winter peak. Thus, economies deriving from the staggering of

generation capacity increments could not be accurately measured with a time
period in excess of one year. A model with a distant horizon embracing many
short time periods in sequence therefore appeared necessary. The needs of
solvability dictated a model as small as possible, which resulted in the
following compromise: a ten-year planning period, with individual one-year time
periods. Simultaneously, the FORTRAN matrix generator program was written to
allow easy model shrinkage or expansion when information on computer solution
time became available. For instance, such model elements as the number of time
periods, the number of investment alternatives considered during each time
period, and the load duration curve approximation were all taken to be
parameters for the matrix generator.

II Ezplore model FPS in detail before invoking the MILP solution algorithm
of a commercial LP system.

Under favorable conditions of model structure, it may be possible to
determine an optimal solution through FPS exploration alone, and to subsequently

allow the algorithm to merely verify optimality. Failing such a favorable



-5 -

outcome, there are still three major advantages to exploring the FPS and
jdentifying several feasible solutions: (1) useful information will be gained
concerning the setting of solution controls for the commercial MILP algorithm,
inc]uding selection of the best objective function value found as input for
an initial bound; (2) the character of the unknown optimum may be transformed
from “murky" to "dimly outlined," or even to "relatively clear"; and (3) the
analyst will doubtless gain much better understanding of the model's functioning
-- that is, how various components interact, or how certain right-hand-side
elements drive the model -- which will prove valuable in subsequent sensitivity
analysis pertaining to the assumed costs of construction, operation or
inventory policy, demand requirements, warehouse capacities, processing
capabilities, the discount rate, or the distance of the planning horizon.

Exploration of the FPS can be made easily with the use of the
bounds-setting facilities of commercial LP systems, combined with the restart
capabilities of these codes. Such features allow the user to perform several
of the unsophisticated steps of a branch-and-bound (B-B) algorithm by making
explicit decisions on branching at each iteration. While it may seem paradoxical
for the user to consider exercising intimate control of a sequence that can
easily be directed by a programmed set of instructions, the analyst will have
(or be able to acquire) knowledge of the model's structure, which will
immediately permit the elimination of particular decision strategies. Such
information may be impossible to communicate in detajl to the B-B algorithm,
and indeed may not even be consciously understood by the analyst prior to
FPS exploration.

For the application, the need for FPS exploration became apparent

shortly after solution of one of the self-sufficiency models was attempted.
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Although great care was taken in initially formulating the model, on first
try the MILP solution algorithm used up one hour of CPU time with only small
discernible progress. From the continuous optimum -- at which all integer
requirements for the discrete variables were relaxed -- the algorithm moved
rapidly toward a part of the decision tree that intuition, but not the
algorithm, would immediately recognize as far from optimal. With this finding,
future algorithmic performance was feared to be so poor that direct intervention
by the analyst was believed essential to secure even a "good" suboptimal
solution.

The method of FPS exploration followed several of the steps of
mechanized branching and bounding. First, the basis associated with the
continuous optimum was stored on a separate disk file (not on the problem
workfile, to prevent its loss during subsequent program manipulations), and
the optimal values of the discrete variables were examined. Nearly all of
these variables were binary (0-1) and many were fractional valued, such as
x: in Figure 1. The process of branching on the discrete variables, or
setting the integer variables sequentially to their upper or 10Qer Timits,
was then begun. The branching steps were easily performed using the Burroughs
commercial LP system TEMPO. During model assembly in industry-standard MPS
format, all discrete variables had been assigned upper bounds in the BOUNDS
section. At each branching step it was a simple matter to fix a particular
discrete variable at an integral value using an FX bound declaration in the
(revised) BOUNDS section. Reoptimization using the immediately precedﬁng
basis to restart then followed. Progress through the decision tree was
associated with an increasing number of FX declarations, and a diminishing

number of discrete variables allowed to vary continuously. Termination at



FIGURE 1

Hypothetical Graph of Optimal Objective Function Value as

a Function of Discrete Variable xk

Optimal
Objective
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Value
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Discrete Variable xk

NOTES TO ACCOMPANY FIGURE 1

1. The MILP objective is to minimize Z.

*
2. The continuous optimum yields Xk for discrete variable Xy
* *
and Z (xk) for Z.

*
3. The convex piecewise Tinear function Z (xk) graphs Min Z as
a function of Xk when all other decision variables are allowed
to adjust freely.

*
4. Kinks in the graph of Z (xk) correspond to basis changes.

5. The "simple down penalty" estimates tge degradation in Z*(xk)
when Xy is forcibly reduced from Xk to 0; the "simple
up penalty" estimites this degradation when X is forcibly
increased from X to 1.

6. For detailed discussion of the relationship of this figure to
branch-and-bound solution algorithms, see [6].



-7 -

a feasible solution occurred when all discrete variables took on integral
values.

Conventional wisdom of first branching on the most important
discrete variables was foHowed,2 with identification of key integer variables
proving straightforward: such variables were associated with prospective
generating stations having the greatest generation capabilities and cost.
Quite naturally, the model sought to defer for as long as possible the
construction of these stations. Branching on the discrete variables, and the
concomitant degradation of the objective function at each step (exemplified
by the rise of 7* in Figure 1 from Z*(x:) to either Z*(O) or Z*(l)
depending on the bound taken), were continued until a feasible solution was
obtained. Only hunch and economic intuition regarding the intertemporal evolution
of the power supply systems were used in making the branching decisions; no
effort was directed toward computing up or down penalties at each step. Such
effort might have speeded up FPS exploration. At each iteration the optimal
basis was updated, and when a feasible solution was found, the basis was
saved on disk for future sensitivity analysis.

Derivation of subsequent feasible solutions was usually started at
the continuous optimum, but occasionally it was started at some stage
intermediate between the continuous optimum and a previous integral feasible
solution. One method found particularly effective for rapidly identifying
feasible solutions was first to branch on the most important variables, then
to enforce integrality requirements moving forward in time: initially for
time t=1, next for t=2 and so on to the model horizon T=10. What this approach
amounted to was modified myopic capacity expansion on a year-by-year basis to

the horizon. When a feasible solution was identified, the values for the
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discrete variables of the Tast several time periods (say M through T) were
recorded, and return was made to the continuous optimum. These discrete
variables were then fixed according to the values recorded, and branching
decisions were once again made moving forward in time. Such an approach
yielded answers to the question: presuming all investments from periods M
through T are known, what investments and sequencing from periods 1 through
M-1 appear most attractive? The method allowed a reduction in problem size
(that is, the number of discrete variables allowed to vary freely at the
start of branching declined) and a better feasible solution than the initial
one was frequently obtained.

Standard algorithmic practice of using the objective function value
of the best feasible solution as a bound in pruning the decision tree also
was followed throughout the exploration phase.

IIT Use the information gained through FPS exploration to pare down the
FPS by eliminating as many variables and constraints as possible.

This measure should go a long way toward reducing solution time, or
transforming an unsolvable problem into one that is solvable. The ability to
easily alter the MILP model will prove highly useful for this purpose. For
instance, it may have been learned that investments A through D are best made
"early," and E through K best made "late." Consequently, it may be possible
to modify the model to delete choice of investments A through D late, and E
through K early, which would make model size more manageable for the actual
B-B algorithm. Paring of this precise nature was performed in the application;
the number of time periods was left unchanged but the number of alternatives
considered in any time period was reduced. This step was instrumental in

allowing the self-sufficiency models to be solved to optimum. There is, however,
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a real danger of eliminating optimal or near-optimal decision strategies if
paring is not performed judiciously, or if it is not made with an eye to
future sensitivity analyses that could make the solution strategies eliminated
more attractive.

IV Use the information gained through FPS exploration during subsequent
post-optimality analysis.

Since most MILP models are formulated to examine decision problems
in depth, and not merely to determine an optimum for a single set of given
conditions, the FPS scrutiny performed earlier should pay handsome djvidends
for testing model sensitivity to certain assumptions. For instance, changes
in costs of facility construction or operation will normally give rise to
ceftain qualitative expectations in terms of desired construction or
sequencing. These expectations may immediately be verified or refuted in part
by evaluating the (modified) objective functions of the group of feasible
solutions found earlier. During this evaluation process, strong hints may
also emerge as to the extent of the tilt of the optimum toward or away from
certain decision strategies by the changes made. In the application, major
importance was attached to the discount rate, since long-lived capital
intensive hydro alternatives were considered among the investment prospects.
Sensitivity analysis with respect to the discount rate altered only the
objective function coefficients and not the FPS, thereby leaving all previous
integral-feasible solutions feasible. The information extracted from these
feasible solutions proved centrally important in demonstrating that joint
supply economies were broadly insensitive to the discount rate. In a similar
manner, a glimpse at the consequences of changes in resource availabilities

or demand requirements will be possible if at least several of the feasible
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solutions retain their feasibility. Even if feasibility is lost in all
solutions, some Tearning may still prove possible, since the commercial LP
code will typically pinpoint the rows in which infeasibilities occur, and
implicitly suggest possible modifications to such solutions for feasibility
to be regained. In the application, the latter occurred when sensitivity
analysis of the time path of future power demands was undertaken.

Even if little learning about the new optimum is possible from
what has gone before, the fact that FPS exploration has been performed
previously will mean that subsequent model exploration proceeds much faster,

as the routine becomes more familiar to the analyst.

Conclusion

MILP models will doubtless continue to be applied, extended, and
solved. While generalized network formulations of such models (see [7]) may
help to reduce solution times, ever-larger models will be assembled for
solution, most Tikely in an environment where a commercially-implemented
MILP algorithm is the principal solution device. For such models the
suggestions set forth here should assist in shrinking solution times, and

thus Tighten the burden of computing on the research budget.

FOOTNOTES

1. See []21 for an early study of MILP formulation, [3] for a current
exposition of standard model formulations, and [6] for a discussion
and comparison of algorithmic solution procedures’

2. For discussion of the conventional wisdom on branching, including the use
of branching priorities, see [6] and [2] [4] [8].
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A Note on the Solution of Spatial Price and
Allocation Models

(Copyright transferred to Canadian Journal of Agricultural Economics.)




Models of spatial and temporal price and allocation have enjoyed
widespread acceptance in agricultural economics and continue to be employed,
refined and extended in the literature. In this journal, for instance,
contributions have been made by Yaron et al. (161, Ghosh [21, Baumes and
McCarl [1] and Jenson and Piedrahita [4]. It is the purpose of this note
to draw attention to a versatile and computationally efficient nonlinear
brogramming system called MINOS, as yet 1ittle known outside the oberations
research community, for the solution of nonlinear price and allocation
models -- including the widely anplied special class of quadratic proqram-
ming models. This software system has severa] features which very stronaly
commend its use to the practitioner and have already led to its adontion
for solving nonlinear models by Manne [7] and Rowse [101, among others.

A skeletal outline of several of the principal advantages of the MINOS
system follows and an example of its use in solving a small nonlinear
model is provided.

Since specific details on the nature and construction of MINOS are
readily available elsewhere (Murtagh and Saunders [8, 91 and Saunders [121),
only concise observations on technical requirements are necessary here.*
MINOS requires the user to spécify, in FORTRAN, all nonlinear entries in
the objective function and derivatives of these elements, and at present
accepts only Tinear constraints. Specific advantages of the solution
system for the user include (i) compatibility with scientific computers
of major manufacturers, allTowing widespread dissemination of the package
and in consequence the portability of computer-programmed nonlinear models;
(i1) comnatibility in input format requirements with major commercial Tinear

programming systems, allowing preparation and extensive debugging of the
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model constraint set by these efficient systems prior to actual solution
using MINOS; (ii1) convenient restart options facilitating intensive post-
optimality analysis; (iv) modularity in assembly of the package, allowing
the user with computing and operations research expertise to assemble his
own algorithmic package for the solution of problems not manageable within
the scope of MINOS presently by calling MINOS optimization subroutines as
part of a customized solution procedure; and (v) arguably most important
of all for the practitioner, detailed information and support documentation
on its use. An additional important advantage is the freedom to formulate
a spatial model as either a primal (flow) or a dual (pricing) program,
since the primal (or the dual) may prove easier to solve or simply more
tractable than its counterpart. Furthermore, from a computational stand-
point, for MINOS "“...the general algorithm comes close to being 'ideal' on
quadratic programs, without undue inefficiency or any specialized code."
(Murtagh and Saunders [9, p. 591). Given the number of quadratic spatial
models currently in use, this latter advantage is obviously a major one.
To illustrate the capabilities of MINOS, the following variant of
the generalized transportation problem (as defined by MacKinnon [6]) was
solved. Supply and demand functions for a single homogeneous commodity

are summarized as follows:

Supply Demand
S; = -200 + 120 P]]‘6 D, = 500 + 280 p~0-7
= - 0'9 — [ _].2
S, = =100 + 75 p, D, = 320 + 235 P
S. = -80 + 90 P D, = 230 + 190 p0-%
3 3 3
s,= -30+ 25p,08

4
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where subscripted P's denote supply prices and unsubscripted P's denote
demand prices.

Demand sinks and supply sources are separated spatially, and trans-
port costs must be incurred whenever commodity flows take place. Per-unit
transport costs tij of shipping the commodity from source i to sink j are

given by the matrix T:

0.32 **** (.80
0.72 0.52 0.24
0.20 0.48 0.78
0.10 0.40 0.60

The starred entry in this matrix is nonconstant and hence has been excluded.
Letting x denote the flow from source 1 to sink 2, per-unit transport costs
are represented by the increasing function 0.22 xo‘]. Such rising unit
costs may be thought of as the outcome of congestion on crowded transport
routes, for instance. This case of nonlinear transport cost has been
incTuded merely to exemplify the solution capability of MINOS; nonlinear
costs for all flows could have been included if desired. Incorporation of
declining unit transport costs would have presented no difficulty for solu-
tion by MINOS, but would have required a careful user search of the model
feasible point set to determine an optimum. In technical terms, the maxi-
mization problem to be solved would then no longer have been concave and
thus any local optimum determined by MINOS could not be guaranteed to con-
stitute a global optimum.

Following Takayama and Judge [14], the mathematical programming
problem formulated was to maximize net social payoff attaching to produc-

tion, transportation and consumption of the commodity; in algebraic terms

the problem was cast into a form similar to the primal program set forth



in Rowse [11].

the problem was formulated in the quantity domain as one with nineteen

= s =

Since demand and supply functions were invertible directly,

variables and seven constraints and the optimal solution was found to be:

OPTIMAL SUPPLIES, DEMANDS, AND PRICES

Supply Demand
Source/Sink Price Quantity Price Quantity
1 3.771665 803.7700 4.091660 604.4307
2 4.331660 180.5758 4.168243 362.3764
3 3.891667 270.2501 4.571700  333.4481
4 3.991661 45.6594 oo oo
OPTIMAL FLOWS AND DELIVERED PRICES
From\ To: .
Source Sink 1 Sink 2 Sink 3
1 288.5213 (4.091665) 362.3764 (4.168252) 152.8723 (4.571665)
2 0.0 ( - ) 0.0 ( -- ) 180.5758 (4.571660)
3 270.2501 (4.091667) 0.0 ( -- ) 0.0 ( - )
4 45.6594 (4.091661) 0.0 ( -- ) 0.0 ( - )

Both supply and demand quantities and prices appear to be accurate at
least to three decimal places.

Two characteristics of this solution deserve mention. First, sink 1
forms the principal demander, as a glance at its demand function suggests,
while supply sources 1 and 4 are the major and minor suppliers respectively,
again as intuition would suggest from a glance at their supply functions.
Second, an integral property of the solution is that if the flow X33 from

source 1 to sink j is positive, then the delivered price at sink j equals
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the supply price at source i plus the per-unit transport cost. Algebraic
statement of this equality is in fact none other than a dual constraint of
the generalized transportation problem represented as a nonlinear program,
and the solution property may be verified directly by calculating the sum
of supply price and unit transport cost for each nonzero transport flow.
These sums have been computed and included in the above table in parentheses
for comparison purposes. (Unit transportation cost for the flow between
source 1 and sink 2 was determined to be 0.396587144.) Delivered and
demand prices in the solution found by MINOS are thus seen to be identical
to at Teast three decimal places for all flows.

This particular type of spatial model is one of the simplest non-
Tinear programming problems solvable using MINOS. It is a very small
problem and has featured no processing of production inputs into commodity
outputs via a linear technoloay, no transshipment of commodities, and no
barriers to trade such as floors or ceilings on allowable flows or per-
unit taxes, all of which can be represented readily within the framework
acceptable to MINOS. Computer solution required 6.52 seconds of CPU time
on the Burroughs B6700 computer at Queen's University (including all central
processing time requirements for problem data input and solution output),
and only default settings for user-accessible tolerance parameters were
utilized. Judicious setting of these tolerances would have allowed greater
accuracy, had it been desired.

While no sing]é solution system such as MINOS can ever claim to be
most efficient for solving all conceivable types of nonlinear models, the
appeal of this package deriving from its strong user orientation is immense.

MINOS should facilitate empirical extensions of nonlinear models and its
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widespread dissemination should allow a degree of uniformity in nonlinear

solution methods across research institutions not heretofore possible,

leading to virtual portability of computer-programmed nonlinear models.

Moreover, the further development of MINOS to accept nonlinearities in :
the constraint set, which is already well advanced (see Lasdon and Meeraus

[5] and Waren and Lasdon [15, pp. 439-40, 445-61), will allow further

empirical extensions of nonlinear models and should encourage theoretical

extensions of such models as well. Finally, the solution system will

permit much greater flexibility in the imaginative use of mathematical

programming methods, exemplified by the forecasting analysis by Shumway

and Chang [13] and the joint-production analysis by Griffin [3].

*Information on the availability of the MINOS system for research
purposes can be obtained by contacting Dr. Michael A. Saunders, Department
of Operations Research, Stanford University.
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