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1. INTRODUCTION

Many important practical problems of optimization in

management, economics, and engineering can be posed as so-called

"zero-one mixed integer problems," i.e., as linear programming

problems in which a subset of the variables are constrained to

take on only the values zero or one. When indivisibilities,

economies of scale, or combinatoric constraints are present,

formulation in the mixed integer mode seems natural. Such

problems arise frequently in the contexts of industrial sched-

uling, investment planning, and regional location, but they are

by no means limited to these 'areas.

Unfortunately, at the present time the performance of most

comprehensive algorithms on this class of problems has been

disappointing. This study was undertaken in hopes of devising

a more satisfactory approach. In this effort we have drawn on.

the computational experience of, and the concepts employed in,

the Land'and Doig (1960), Healy (1964) and Driebeek (1966)

algorithms .2-/

Our approach is basically a branch and bound method of

enumeration. While this is not generally the most "glamorous"

type of an algorithm, our experience indicates that it works well

—
1/ 

This research has been supported in part by the National
Science Foundation under Grant GS1415 and in part by the Agency
for International Development *under a grant to the Project for
Quantitative Research in Economic Development of Harvard University.2/ The Land and Doig algorithm was programmed by Paul Roberts
and Bob Burns of Harvard University. The Healy algorithm was
programmed by two •of the auhors! Weitzman and Kendrick. The
algorithm described here was coded by Davis. See Davis (1967).
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in. solving practical problems. As with any branch and bound

algorithm, efficiency derives primarily from choosing branches

and bounds in a manner which is computationally effective.

We proceed with a, discussion of the algorithm, followed

by a presentation of our computational results.

2. DESCRIPTION OF THE ALGORITHM

2.1 General Theory

Let

be an n-vector of "zero-one" variables, each of which is

constrained to be zero or one. Let
/
11\

x 

=.

be an m-vector of continuous non-negative variables. The

standard form of the zero-one mixed integer programming

problem is the following:

(1) minimize z = sfly,x) = cy dx

subject to

A

(4)

b for
xJ

1

or 1 for = 1, ...,n

There are 2
n 
possible y vectors satisfying (4). Some

of these may admit of no x satisfying (2) and hence are

infeasible.



Consider the solution (7,50 to the problem (1), (2), 3)

(We call (7,75-c) the solution to the "unconstrained" problem

because the integerity constraints (4) are missing.) If y is

already a vector of zeros and ones, the problem is solved. Far

more likely, it is not. In that case, we seek more information

about the local properties of the unconstrained solution.

Consider the variable y Let z
11

) be the optimal value
1. 

of the objective function defined parametrically in terms of7
1

for the problem (1), (2), (3) with the additional constraint

y
1 

="3:i for yIc[0,]]. It can be shown that z
1
(S) is a piece-

wise linear convex function of Vi. (Cf. Dantzig (1963), p. 168.)

z =

Figure 1

To map out the entire function z1(S-11) would require, in

general, the solution of many linear programming problems. We

settle instead for the more easily attainable behavior of the

two linear segments to the direct right and left of TheThe

slopes of these two segments can be read out of the linear

programming tableau.

—
1/ 

Strictly speaking, the assertion is true only if the basis
is non-degenerate. If degeneracy is involved, we may be able
to obtain only a lower bound on the slope of each segment,
difficult to picture geometrically, but otherwise the results
are not altered.

.11
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The slopes are obtained as follows. Suppose, first of all,

that yl is in the optimal basis of the unconstrained problem

and that 0 < y- < I. Let w1,...,w
s 
be the nonbasic variables.

Then in the updated simplex tableau a relation of the form

Y1 4- il biwi =

obtains. If b. > 0, bringing w. into the basis will decrease y
1
.

If b. < 0, bringing- w. into thebasis will increase yl. If

bi = 0, bringing wi into the basis will have no effect on yl.

If z + c
i 
w. = is the reduced cost expressioni=1 

(c. 0 i=1,...,$), then the "cost gradient m
0 
of y toward

zero" (the absolute value of the left-hand slope) is

m
o 
= min

b. > 0
1

If b
i 

0 for all i = 1,...,s, m is defined to be infinite. .
0 (c.\

The "cost gradient m1 of y
1 

toward one is m
1 
= min 

1 ,
i 

1/ • 

1/--b.
i=1,...,s \,.

or is infinite if all b. 0. b. e.: 10
1 1

If 171 is not a basis variable, y1 = 0, and m
1 
is simply

the reduced cost of 171.

The cost gradients of yl provide an estimate of what would

happen to total costs if yl were forced to zero or one. From

the convexity of z1(37"1) it follows that

(5). z
1
(1) - zi (1-71)m1 =

Cf. Healy (1964), p. 125 and p. 129. Again, m
o 
and m are

lower bounds on the gradient in case of degeneracy.



_5_

Here m
1 

is the cost gradient of y
1 

toward one and (1,71)in
which we denote. as p1(1), is the "one penalty" of yl, i.e., a

lower bound on the increment in the objective function if y
11/

were forced to one. Similarly,

(6) z
1
(0) z (7) m p

0 
(1).

1 1 0 

The zero and one penalties can be computed for y
2'

y
3'
...,y

n
in an analogous fashion. These penalties turned out to be the

prime movers in the algorithm as it evolved. They are used

extensively and repeatedly for branching decisions and for

evaluating bounds. It has been our experience that they perform

effectively in these roles. In terms of computation time,

obtaining the zero and one penalties is practically costless,

since they are determined entirely from elements of the simplex

• tableau (which is automatically available as a result of having

just employed the simplex algorithm to achieve a linear program-

ming optimum).

2.2 Branch and Bound Search

The idea of structuring a search for an optimal mixed

integer solution to equations (1)-(4) as a sequential decision

problem represented by a tree in which the decision at each node

is whether to set some variables to zero or one is not new (see

Land and Doig (1960), Little et al. (1963), Balinski (1965), .

Lawler and Wood (1966)). Because it is being assumed that the

reader has had at least some exposure to branch and bound

procedures, we can be succinct here.

• Let I be the set of all integer variables. In our procedure

a node is simply a list of those integer variagles committed to

zero (the set I ) those integer variables committed to oneo

-/ Driebeek (1966) discusses the calculation and use of the
zero and one penalties in his article, p. 580.
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(the set ii). and those thus far uncommitted (the set I -

(1 U I )). A branch is a node that has not yet

been examined in detail, but which is a potential candidate

for detailed examination and about which some preliminary

information is known. Only branches are stored in the computer.

When a branch is evaluated it becomes a node, giving rise to

the death of some old branches (including the one leading to

this node) and the birth of some new ones.

A branch and bound search is defined by specifying a rule

for determining, at each decision node just examined:

(1) Which new branches to create and which old ones
to destroy.

(2) How to calculate relevant information, including
lower bounds on the objective function for each
new branch.

,(3) Which branch to evaluate next.

Along with each branch is stored node specification, basis

information, and conditional lower bounds on the objective

function if as yet uncommitted individual integer variables

were to be set to zero or one.

Let q(i) and q1(i) denote the minimum value of the

objective function if variable i were committed, respectively,

to zero and one. It is understood implicitly that go(i) and

q
1
(i) are functions alsO of the node (I

o
, I) under examination.

The efficiency of the search, that is, the number of nodes

in the tree which must be examined to find and verify an optimal

solution, depends upon the rules for ordering and bounding; the

efficiency of the. algorithm as a whole depends on the efficiency

of the search and on the amount of calculation required to

evaluate each node. Experimentation with various rules, based

primarily on the penalty information contained in the updated

simplex tableau as described in Section 2.1, has led us to adopt

the procedure described below.
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From any node, with current upper bound 0 on the true

minimum value of the objective function for the problem (1),

1/(2), (3), (4).

1. Evaluate the currently specified node. That is,

solve the linear programming problem (1), (2), (3) with (7)

and (8) determined by the current I
o 

and I
1 
sets. Let z' be

the optimal value of the objective function for this linear

program.

( 7)

(8)

Go to 11.

yi = number of elements inlei
1

2. If the node is infeasible, the branch is abandoned.

3. If the resulting objective function equals or

exceeds the current upper bound 0, abandon the branch. Go

to 11. Otherwise continue.

4. If the solution point satisfies the integerity

requirements (4), record the solution as the best yet found in

the search, 'set - the upper bound fiS equal to the current

objective function value, abandon branch- and go to 11, otherwise

5. Using the zero and one cost penalties, calculate

updated go(i) and q1(i) by (9), (10) for icIu, where I is the

set of currently uncommitted variables (I
u 
= I - I

o 
U I

1
)

(9)
o
(i) = max (p (i) + z', ca .(i))

(10) q
1 
(i) = max (p

1 
(i) + q

1 
(i)).

I
/ Various methods of obtaining an initial upper bound are
discussed later in the paper.



6. Calculate T(I
o 

I
1
) = max (min(q

o
(i)q

1
(i)))le'u

T(1o1) is a lower bound on the objective function obtained
on any branch continuing from

7. If T(I0,I1)

to 11.

the node (I
01)

0, abandon current branch and go

8. If any GI
o
(i) or q

1
(I) for iI 

u 
exceeds g:S, modify

equations (7) and/or (8) accordingly.

9. If no variables have q0(i) or q1(i) exceeding i2J,

or if those that do are currently at integer levels,

two branches to be added are determined by enlarging

(8) by setting to zero and one the fractional valued

i* with the largest accumulated zero or one penalty.

-(i*)0
(I0,I1)

(i*).1
relevant

the next

(7) and

variable

if

the lower bound on the branch with
i* 
=0 is

and the lower bound on the branch with y
i* 

= 1 is

Vice versa if ca
o
(i*) = a

1 
(i*). Carry forward all'

penalty information and go to 11. Otherwise continue.

10. If some variables with q (i) or q
1
(i) exceeding 0 are

fractional valued in the current solution, specify a new branch

with the enlarged (1
' 
I
1 
) and appropriate penalties and go to 1.o

• 11. Choose the next branch to evaluate according to one

of the following rules:

Option 1: If condition 2., 3., 4., or 7. has been

met, choose the next branch according to option 2. Otherwise,

continue along current branch by evaluating node obtained from

setting variable i* to the side with the smaller of clo(i*),

A lower bound on the branch not taken is max (q (

Option 2: Choose a new node by selecting the not-yet-

taken branch with the least lower bound.

less than 0, the search is complete.

If no lower bound is



-9-

• The notion of branching from the current node is

embodied in option 1. A disadvantage of this approach is that

many more nodes may be evaluated than are necessary to prove

convergence. One advantage is that storage requirements are

minimal. Another is that, since new upper bounds 0 are

continually being discovered, the branch and bound algorithm

can work more efficiently via the short cut of enlarging
o 

and

described in 8. above. Thus the desirable primal property

of generating ever better feasible solutions can be used.

Option 2 is the "flooding" strategy of always branching

from the lowest bound. The advantage of this procedure, and it

can be considerable, is that only those nodes are examined which

are necessary to prove convergence. A disadvantage is that large

storage capacity may be required. However, since the node and

basis information are stored on random access disk, computer

memory was not . a limiting factor for us, and this approach was

utilized most of the time.

' To obtain a good initial upper bound $, we experimented

with a variety of techniques. One of the most successful

approaches was simply to run the branch and bound algorithm with

option 1 and 0 set arbitrarily large at the very beginning. This

usually resulted very quickly in an all-integer solution which had

a relatively low value for the objective function. Then option 2

could be applied.

2.3 Discussion of the Algorithm

Several features of the algorithm should be noted.

First, each branching decision may enable several variables to

be set as a necessary consequence. Suppose, for example, that

there are seven integer variables, y1,...,y7, and that the node



-10-

just evaluated is given by Io Cy21 y41 and = [y1], or

2y4 
/y
1 
] for short, that the current upper bound is gP = 57.4,, 

and that the resulting go and cal values are as below:

o

YI 
forced variable

2 
forced variable

-3 
57.20

Y4 
forced variable

Y5 
57.30

Y6 
58.40

y
7 

57.10

57.50

57.35

57.20

57.30

Since q1(3) and q
o
(6) both exceed any optimal continuation

from the current node must satisfy y
3 
= 0 and y

6 
= 1. Thus I

o
and I

1 
are enlarged to I

o 
= Ey

2'
y
3
1y
4
I and I

1 
= [yy

6
] and the

resulting node evaluated. If the node is infeasible, then

branch Ey
2'

y
4
/y1I has been eliminated. If the mode is feasible

but the objective function value exceeds 0; the branch [172,y4/171]
is eliminated. If.max (min (c."0(i),q1(i))) exceeds g'(which would1=5,7
be the case if, for example, q0(5) = 57.45 and q1(5) = 57.5)

branch [y
2' 

y
4 
/y

1 
] has again been eliminated. If y

5 
and y

7 
assume

integral values, the resulting lattice point is the only possible

optimal one with y2 = y4 = 0 and yl = 1. If none of the above,

but go(i) or q1(i) exceeds O'for i = 5 or i = 7, then the asso-

ciated variable(s) may be set accordingly. For example, if the

following values result,

q1

Y5 
57.80 57.38

Y7 
57.36 57.32

then 5 would have to be set to one, the resulting node evaluated

and the above tests applied once again. If neither go(i) nor
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q (i) exceeds 'for i = 5,7 (in the above example, suppose

q0(5) = 57.37), then node [y21 y4/y1l is replaced by [1721y31y4/y1,y6]

and the bound on continuation down the branch is max (min(q0(i)

(i)), or in the present case 57.37. Thus the length of the

decision tree traced out by the algorithm may be considerably

shorter than the number of variables in the problem.

A. second feature to be noted is. the behavior of the algorithm

if some of the y variables are related by constraint equations.

A typical case is the requirement that the sum of a set of

variables is one. Forcing any of these variables to one implicitly

forces each of the other variables in the set to zero. The

restriction of branching decisions to noninteger valued variables

avoids insertion of entirely redundant or non-binding constraints

which result in no (or only degenerate) change in the optimal

solution. This feature is especially useful in combinatorial.

problems with multiple constraints on the y variables.

Finally, the order in which the variables are set may vary

from branch to branch in response to gradient information gener-

ated at various points on the. surface of the feasible region.

In the three variable case, for example, the decision tree might

be as below:

0

(0,1,0)

1

[17
2

Y 

/
[17,

(1,0,1)

In this way maximum bounds on branches not taken (subject to the

condition that tentative decisions are made only for fractional
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valued variables) are obtained.

3. EXPERIENCE WITH THE ALGORITHM

Table 1 gives a resume of our computational experience

with the algorithm and comparisons with the experience of

others where possible.

-/ A formal proof that such a search will produce an optimal
lattice point if one exists may be found in R. E. Davis,
B.A. thesis, Committee on Applied Mathematics, Harvard Univer-
sity, 1967.

—
2/ 

We are indebted to Jun Onaka for able programming assistance
in solving the problems referred to in Table 1.



TABLE 1

Computational Experience with the Algorithm

1./..VNumber of Total Total Solution Time 
Problem Problem Algo- Integer Number of Number of Matrix Number Number of PIVOT
Name Number rithm Variables Variables Constraints Entries Minutes of LP's Iterations STEPS

Kendrick 1 11 412 116 1767
11 I.V.

2/Healy 37. 58 8763/
59. -- 130 NA

DKW 10.3 36 433 653

Markowitz 2 21 . 51 33 285
-Manne DKW 5. 62 411

Davis 3 100 317 197 1261
100 I.V. DKW 5.5 16 189 277 .

1
Balas 1 4 5 16 14 •58 1--

w
DKW 0.1 3 8 8 1

Balas

Balas 2 5 10 29 22 119
DKW 0.2
Balas

3

Balas 3 6 9 25 19 99
DKW 0.1 3 11 NA

Balas 4 7 12 34 25 143

IBM Test 8
Problem 9

DKW
Balas

DKW
LIP1

. 15 68 56 253

(See next page for Footnotes and Notes)

0.4 15 82 96
39

128 657 805
69 952
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Footnotes and Notes for Table 1

1/
The time on an IBM 7094 that was required to obtain the

optimum mixed integer solution, including the solution to the
"unconstrained" problem.

—
2/ 

After 24 minutes all but 4 of the variables could have been
bounded off from an upper bound obtained from other solutions
of the problem.. Though such a bound is not available in the
Healy algorithm it is used here for comparative purposes. It
is assumed that enumeration of the remaining 16 lattice points
would have required 10 minutes. The same type of adjustment
is made for the number of LP's and iterations.

—
3/ 

Driebeek's program was halted after enumerating 100 of the
128 "unbounded" lattice points in 44 minutes. Enumeration of
the remaining 28 lattice points is assumed to have required
12 minutes. The same type of adjustment is made for the number
of LP's and iterations.

-41 The Davis-Kendrick-Weitzman algorithm.

5/
Option 2 was used for all the runs of the DKW algorithm

reported here.

Problem
Number

.Sources of Problems

Source

1 Kendrick (1967)

2 Markowitz and Manne (1957)

3 Ronald E. Davis, B.A. Thesis, Committee on Applied
Mathematics, Harvard University, 1967

4 thru 7 Balas, E., "An Additive Algorithm for Solving Linear
Programs with Zero-One Variables," 2perations Research,
Volume 13, #4, Problems 1 through 4

8 Haldi-, John, "Twenty-Five Integer Programming Test
Problems," Working Paper #43, Graduate School of
Business, Stanford University, December 1964, Test
Problem #9. The LIP1 algorithm is reported on in
Haldi, John and Leonard M. Isaacson, "A Computer Code
for Integer Solutions to Linear Programs," Operations
Research, Volume 13, #6, November 1965, p. 946.
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