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THE MISSPECIFICATION OF
DYNAMIC REGRESSION MODELS

D.S.G. POLLOCK AND EVANGELIA PITTA

1. INTRODUCTION

This paper investigates the consequences of using an inappropriate model
in estimating a dynamic regression relationship. We imagine that the model is
aimed at explaining the observable sequence y(t) in terms of another observable
sequence x(t) and an unobservable white-noise sequence e(t). Our object is
to examine the nature of the estimates which are derived when the model
is incapable of accommodating the relationship which actually exists between
these sequences.

Our approach will be to infer the properties of the misspecified estimators
from the expected value of the criterion function which they are designed to
minimise. The criterion function converges to its expected value as the sample
size increases; and the values which minimise the asymptotic form of the ex-
pected function are the probability limits of the estimators. Only a moderate
use of the computer is required in finding these values; and, in some simple
cases, they may be found directly by analytic methods.

In the first section of this paper, we derive the asymptotic form of the
expected value of the least-squares criterion function for a general class of dy-
namic regression models. In the remaining sections, we use this function to
make inferences about the asymptotic behaviour of the misspecified estimators
in a range of circumstances which are intended to resemble conditions encoun-
tered by econometricians in their empirical work. In these circumstances, the
dynamic relationships amongst the temporal sequences which are indicated by
the misspecified estimators can differ from the true relationships to an extent
which is startling. The problems are compounded by the fact that there is
sometimes more than one solution to the estimating equations.

The analysis of misspecified dynamic models has already received consider-
able attention in the econometric literature; and we should give a brief account
of some the important contributions to the topic.

First, we should mention Hendry [7] who proposed a methodology for de-
termining the behaviour of inconsistent instrumental-variables estimators ap-
plied to a dynamic system of simultaneous equations. In this system, the
jointly dependent variables reenter the structural equations after a one-period
lag, whilst the structural disturbances are subject to a first-order autoregressive
scheme.

Hendry's intention was to devise a method for determining the conse-
quences of selecting inappropriate instruments which are correlated with the
disturbances, as well as the- consequences of ignoring the dynamic structure
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of the disturbances. He also endeavoured to find the second moments of the

limiting normal distributions of the misspecified estimates.

Maasoumi and Phillips [13] have discovered flaws in Hendry's analysis of

the limiting distributions of the misspecified estimators. They have corrected

the analysis; but, in doing so, they have show that, when properly applied,

the recommended methodology can be very laborious, even when the estima-

tors have simple closed forms which generate unique values. In particular,

the correct formulae for the asymptotic variance, which will depend upon the

fourth-order moments of the processes which generate the input variables, will

generally entail many more terms than were included by Hendry.

There has also been some doubt as to whether the limiting distributions of

the misspecified estimators can provide adequate approximations to the distri-

butions of estimators calculated from small samples. Part of the problem here

is that the conditions of stationarity and invertibility, which must be obeyed by

the relevant parts of the time-series models, impose bounds or "truncations"on

the sampling distributions which are not reflected in the approximating distri-

butions.
Because of these difficulties, it does not seem too modest to concentrate on

the problem of analysing the probability limits of the misspecified estimators to

the exclusion of the other aspects of their distributions. Indeed, it seems more

important to reveal the grosser defects of the estimators that to concentrate

upon the finer points of their distributional properties.

Another notable contribution to the econometric literature is an article by

Cragg [4] which develops inferential procedures for dynamic regression models

which are valid even when the precise form of the serial correlation or the

heteroskedasticity which affects the disturbance process is unknown. Cragg's

procedures depend upon the instrumental-variables method of estimation which

has also been pursued, in the context of engineering studies, by Young [30],

Jakeman et al. [8] and Soderstrom and Stoica [22] amongst others.

Finally, we should mention the work by White [25], [26], [27], [28], and of

Domowitz and White [5] which provides a very general framework for analysing

the properties of the maximum-likelihood estimators and least-squares estima-

tors of misspecified models, and for constructing tests of misspecification. By

following their suggestions, it is possible to construct tests of the specification

of the systematic part of a dynamic regression model which are valid, asymp-

totically, even when the structure of the disturbance part is unknown or is

misspecified. Thus Domowitz and White provide a natural setting in which

to view the results of Cragg. However, only the limiting distributions of the

test statistics are available; and it is reasonable to doubt their adequacy as

approximations to small-sample distributions.

The contributions which we have mentioned have helped to establish a

sound theoretical framework for analysing the behaviour of the estimators of
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misspecified models and for developing tests of misspecification. However, there
remains a dearth of qualitative results concerning the practical effects of mis-
specifying the dynamic structure of a regression model; and such matters are
the primary concern of the present paper.

The results of this paper depend, partly, upon an analysis of the spectral
properties of the systematic and disturbance parts of the fitted regression mod-
els. To the extent that it deals with the frequency-domain aspects of dynamic
modelling, the paper has affinities with the work of Whittle [29], Walker [24],
Bloomfield [3] and Kabaila and Goodwin [9], all of which represent contribu-
tions to the general literature of time-series analysis.

2. THE MODELS

We shall use generating functions or z-transforms to represent our models.
The General Temporal Model or GTM is represented by

a(z)y(z) = f3(z)x(z) ,u(z)&(z), (1)

where y(z) and x(z) are the z-transforms of the observable sequences y(t) and
x(i), and E(z) relates to the disturbance sequence E(t). The polynomials a(z) =
ll-aiz+• • •-Faaza, 13(z)= flo+thz-F• • •-Ffibzb and it(z) = 1-Fitiz-F• • --Fpn,zrn,
whose degrees are a, b and m respectively, contain the parameters of the model.
The rational form of equation (1) is

13(z) p(z)
y(z) = —x(z) --e(z).

a(z) a(z)
(2)

For this model to be viable, the roots of the polynomial equations a(z) = 0
and p(z) = 0 must lie outside the unit circle. This is to ensure that the coeffi-
cients of the series expansions of a-1(z) and p-1(z) form convergent sequences.

, The Rational Transfer-Function Model or RTM is represented by

5(z) 0(z) c(z)_ x(z)y(z) — 
z

or, alternatively, by

(3)

7(z)0(z)y(z) = c(z)S(z)x(z) + 7(z)0(z)e(z). (4)

We shall denote the degrees of the polynomials -y(z), 5(z), 0(z) and 0(z) by y,
d, f and h respectively. The leading coefficients of 7(z), 0(z) and 0(z) are set
to unity. The roots of the equations 7(z) = 0, O(z) = 0 and 0(z) = 0 must lie
outside the unit circle.
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We shall assume that the signal x(t) is generated by an autoregressive
process so that

7r(z)x(z) = (z) (5)
with (t) as a white-noise process with a zero mean. We can accommodate
an autoregressive moving-average process in this specification by allowing the
order of the polynomial 7r(z) to be infinite. -

3. THE RESIDUAL SEQUENCE

Let us imagine that the true model is an RTM and that the fitted model is a
GTM. Then the generating function of the residual sequence of the fitted model,
which is the sequence of one-step-ahead prediction errors in the terminology of
Ljung [12], is given by

e(z) = -(1.
(2)

y(z) — 12--(21x(z).
p(z) p(z)

On substituting for y(z) from (3) and x(z) from (5), we get

et z\ = a(z) f 5(z) 13(z)1 (z) a(z)0(z) 

etk1

z\

k 1 p(z) 17(z) a(z) f 7r(z) ,u(z)q(z)z) 

= p(z)(z) q(z)e(z).

(6)

(7)

Notice that the leading coefficient of the expansion of the rational function
q(z) is unity on account of the normalisation of the leading coefficients of each
of its factors. If fl(z)/a(z) and p(z)/a(z) were to attain the values of 6(z)/7(z)
and 0(z)/0(z) respectively, then we should have e(z) =

In order to write an expression for the residual sequence e(t) instead of
one for its generating function e(z), we can use the lag operator L defined by
the equation Lx. (t) = x(t — 1). Then we have e(t) = p(L)(t) q(L)e(t).

On the assumption that the white-noise processes (t) and E (t) are mutu-
ally independent, the covariance generating function for e(t) is

C(z) = cqp(z)p(z-1) o-?q(z)q(z-1), (8)

where cl = V{O)} and cre2 = V{c(t)) are the variances of the processes. The
variance of the residual sequence e(t) is given by the function

S = sp + sq

= E + E (9)

where the elements pi and qj are coefficients from the series expansions of p(z)
and q(z) respectively, and where qo = 1.
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The spectral density function, or "spectrum", of the residual sequence,
which is a function of the frequency variable w over the interval [—r, 71, is
obtained by setting z = e-zw in C(z) and scaling the result by 1/27r. Since
C(z) = C(z-1), the spectrum can be characterised completely in terms of
its values over the interval [0, r]. The variance of the residual sequence is
expressible as the integral of its spectrum over its entire domain:

1

S = C(e-indw
27 (10)

We shall be able to gain some insight into the nature of the misspecified
estimates by examining the form of the function C (e- ) In particular, we
can assess the extent to which the estimates misrepresent the true relationship
by gauging the extent to which C (e- 127r differs from the spectrum of the
white-noise process e(t), which is given by the constant function (w) = o-c2/2r.

4. LEAST-SQUARES FITTING

Given a sample of T elements of x(t) and y(t) running from t = 0 to
= T — 1, the least-squares criterion for fitting the GTM is to minimise the

function
T-1

1
ST (p, q) =

t=0

In finite samples, the precise value of this function depends upon how we rep-
resent the presample elements e--.) • • • )e—m) Y-1)• • • )Y—a, and ,x-b•
It is reasonable to attribute to these elements their expected values which are
zeros.

In the appendix, we use the law of large numbers to show that, as T oo,
the function ST tends in probability, uniformly for all points in the parameter
set, to the function S which gives the variance of the residual sequence. It
follows from a fundamental theorem, which is proved by Amemiya [1, Theorem
4.1.1] and by Domowitz and White [5, Theorem 2.2] amongst others, that the
values which minimise ST will tend in probability to those which minimise S.
Thus we can find the probability limits of our estimators by finding the values
which minimise the asymptotic form of the criterion function. When the latter
are equal to the parameters of the true model, we can say that these parameters
are estimated consistently.

The convergence of ST to S is the same regardless of how we represent
the presample elements. Also, the normal maximum-likelihood estimators are
asymptotically equivalent to the least-squares estimators. This well-known
result relieves us of any need to make a separate analysis of the maximum-
likelihood estimators.
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For the fitting of the GTM by least squares to result in the consistent
estimation of the parameters of the true RTM, it must be possible for the
GTM polynomials of equation (1) to attain the values of the corresponding
RTM polynomials of equation (4). Therefore the degrees of a(z), [3(z) and
p(z) must be at least as great as those of 7(*(z), 0(z)6(z) and 7(z)0(z)
respectively; and so it is necessary that

a>g+f, b> f+d and rn>g-l-h. (12)

However, there must be at least one equality here; for, otherwise, there will be
a redundant factor common to a(z), f3(z) and p(z) which will prevent them
from being uniquely determined. To demonstrate the consistency of the least-
squares estimation when (12) holds and there are no redundant factors, we need
only confirm that S will achieve its absolute minimum whenever f3(z)/a(z) and
p(z)/a(z) attain the values of 5(z)/7(z) and 0(z)/0(z) respectively. In that
case, we will have p(z) = 0, q(z) = qo = 1 and hence S = .7E2.

In this paper, we are interested primarily in circumstances where the in-
equalities in (12) are not fulfilled and where, consequently, the parameters of
the GTM fitted by least squares cannot converge upon the parameters of the
true RTM. We can readily infer, from the form of the criterion function, that,
when any of the conditions of (12) are violated, the entire set of GTM esti-
mates will be affected. This is so even when it is only the degree p(z) which
is mistaken. However, if it is only the specification of the disturbance process
which is in doubt, then we may be able to estimate the remaining parameters
of the RTM consistently by using a robust instrumental-variables procedure of
the sort analysed by Cragg [4]. However, even with the enhancements proposed
by Cragg, the instrumental-variables estimator is liable to be inefficient.

The effects of misspecification are liable to be less serious if we fit an RTM
of too few parameters by least squares than if we fit a GTM of too few. Let
us imagine that, in place of the GTM of equation (2), our fitted model is an
RTM denoted by

13() ()
y(z) = 

z
-x(z) 

p

(

z
-e(z), (13)

a(z) pz)

where p(z) stands for a polynomial of degree r with Po = 1 as its leading
coefficient. For the consistent estimation of the parameters of the true model
of (3), we now require that a > g and b > d with at least one equality and that
r > f and m > h with at least one equality.

When we fit the RTM of (13), the expression for the residual sequence is

et z\ p(z) f b(z) fl(z)1 (z) p(z)0(z)  et z\
1 p(z) 17(z) a(z) f 7r(z) p(z)0(z) 1

= p(z)(z) q(z)e(z).

6
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From this, we can see that any misspecification which understates the degrees of
p(z) and p(z) in the disturbance part of the model will not affect the consistency
of the estimates of the parameters of the systematic part when the degrees of
a(z) and I3(z) are correctly specified. In that case, the value of the term
sp = o >2p? within the expression for S = Sp+ Sq will be zero in consequence
of a(z) and fi(z) assuming the values of -y(z) and 6(z) respectively, whilst the
value of the term Sq = E q? will be minimised independently.

This result is due to the fact that, in the RTM, the parameters of the two
parts of the model are distinct. A familiar instance of it is that, in a classical
linear regression model, a misspecification of the covariance properties of the
disturbance vector may affect the efficiency of the least-squares estimation but
will not affect its consistency.

The specification of the RTM, which uses separate rational functions to
model the transfer functions of the systematic and disturbance parts of the
system, accords well with the view, which is taken by Kabaila and Goodwin [9]
and by Walker [24] amongst others, that the estimation of time-series models
is essentially a matter of functional approximation.

In the ensuing sections of this paper, we shall concentrate on analysing
the effects of fitting a misspecified GTM. The GTM is used in econometrics far
more often than is the RTM. We shall use the RTM for our model of the true
relationship because it affords a more parsimonious parametrisation than does
the GTM. Also, if we should wish to assume that the true model is a GTM,
then we can easily represent it as a special case of the RTM.

5. A FITTED MODEL WITH A
LAGGED DEPENDENT VARIABLE

The dynamic regression model which is most commonly used in applied
econometrics has the form of

a(z)y(z) = 0(z)x(z) + e(z). (15)

This is a special case of the GTM where p(z) = 1 has a degree of zero. The
popularity of the model is explained by the fact that it can be estimated easily
using the method of ordinary least-squares regression. Its tractability is also
reflected in the relative ease with which we can analyse the consequences of
using it incorrectly in place of an RTM to estimate a relationship which exists
amongst the sequences y(t), x(t) and e(t).

We can gain some basic insights into the likely effects of what may be the
most common kinds of misspecification by examining some simple cases which
are directly amenable to an algebraic analysis.

To begin, let us consider the case where the true model is an RTM in the
form of

6 1 
y(z) = 

1+ -yz
x(z)+ 

1+

7

(16)



and let us imagine that the fitted model takes the form of

(1 + az)y(z) = 13x(z) + e(z). (17)

This can be regarded as a degenerate case of the GTM wherein f3(z) = # and
p(z) = 1 are both of zero degree.

On the assumption that x(t) = 4.(t) is a white-noise process, the generating
functions p(z) and q(z) of (7) become

p(z) =

q(z) =

b(1 + az)

1 + 7z
1 + az

1 + Oz •

13 and
(18)

The asymptotic form of the criterion function may be derived by finding
the variances of p(L)(t) and q(L)e(t) using the formula for the variance of an
ARMA(1, 1) process which is given, for example, by Pandit and Wu [15]. It
can also be found directly from the expressions for the sums of the squares of
the coefficients of the power series expansions of p(z) and q(z). Thus it may
be shown that

2 ,  0)2
S(a,13) = 2 a-- f (a — 7)2 b + (5 f3)21 + CT; t 

(a — 
 

17 
-I- 11 . (19)

z — 2 1 - 02

By setting the derivatives of the function to zero, we find that the min-
imising values, which are also the probability limits of the estimators of the
misspecified model, are given by

-id = 5 and

7_
a =  where

0.!,52 o.2
PC =   and \= 

1 — 72 1 — 02 •

(20)

The least-squares estimator of the parameters of equation (17) has a closed
form. Therefore it is possible to derive the probability limits directly from the
estimating equation as well as from the criterion function as we have done. The
advantage of the method which we have used is that is practicable even when
the estimating equations are of an intractable nonlinear form.

The value of the probability limit a is seen to be a convex combination
of the values of 7 and 0. The weights K and A of the combination are simply
the variances of the systematic part and the disturbance part of the RTM in
(16). This result becomes intelligible when we put the equation of the GTM
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in the same form as the equation of the RTM by dividing it throughout by
(1+ az); for then it can be seen that a single parameter a of the GTM is being
called upon to fulfil the functions of two parameters 7 and 0 of the RTM. If the
latter have similar values, then they might both be well approximated by a.
However, in many econometric contexts, there may be good reason to believe
that the properties of the systematic and disturbance parts of the model will
be dissimilar.

To illustrate some of the hazards of misspecification, let us assume that the
parameters of the true RTM under (16) take the values of 6 = 1, 7 = —0.85 and
0 = 0.85. According to these assumptions, the systematic part of the model
embodies a low-pass filter whilst the disturbance part embodies a high-pass
filter. If we wish to think of the RTM as a model of human behaviour, then
we may imagine a person in an environment beset by high-frequency noise who
reacts sluggishly to the information conveyed by the signal x(t). By varying
the relative sizes of oi and crE2, we may vary the signal-to-noise ratio.

8

6

4

2

0 7r/4 7c/2 3r,/4 n

Figure 1. The graph of the frequency response function of the low-pass filter
-- (1 — 0.85.0-1. The frequency response function of the high-pass

filter 0-1(L) = (1 -I- 0.85L)-1 is the mirror image of the graph above.

Figure 1 shows the frequency response function for the filter -y-1(L) =
(1-0.85.0-1 which is the transfer function of the systematic part of the model.
Thus the graph shows the value of the function 7-1(z)7-1(z-1)/27r for z = e'
when w is in the interval [0,7]. This gives us the spectrum of the systematic
part of the RTM for the case where V{x(t)} = 1. The frequency response
function of the filter 0-1(L) = (1 + 0.85L)-1 associated with the stochastic
part of the RTM is the mirror image of the graph. Thus the spectrum of y(t),
which is formed from the superposition of the spectra of the two parts of the

_

..

9 .



model, has a U-shaped appearance. The relative heights of the branches of the
U vary with the signal-to-noise ratio.

Table 1 shows the effect of fitting the misspecified GTM in circumstances
with differing signal-to-noise ratios. Its most notable feature is the wide vari-
ation in the value of ele; and it is clear that, in all the cases, this probability
limit conveys a very misleading impression of the dynamic properties of the
relationship between x(t) and y(t).

Table 1. The effects of fitting the model (1 + az)y(z) = flx(z) e(z) when
the true relationship is y(z) = (1 — 0.85z)-1x(z) + (1 + 0.85z)le(z) and x(t)
is white noise.

Case A Case B Case C

crz2 0.25 0.5 0.75
cre2 0.75 0.5 0.25
ei 0.425 0.0 —0.425

id 1.0 1.0 1.0
S 2.703 3.104 2.203

True Variances
Systematic 0.901 1.802 2.703
Disturbance 2.703 1.802 0.901

Sum 3.604 3.604 3.604

Estimated Variances
Systematic 0.305 0.5 0.915
Disturbance 3.298 3.104 2.688

The table .also shows how the variance of y(t) is attributed to the sys-
tematic and the disturbance parts of the model. For the true RTM, the two
components of the variance are given by

b20.2
V I  6  x(t)1 =   and

1 + 7L j 1 — 72

v1  1  e(01=  at2   ;0+0 k 1J 1 — 02

whereas, for the fitted GTM, they are given by

132(72

V  = r 
+13 aLx‘i'l 1—a2 

and

vfl -1-1aLe(t)1 = 1 —sa2.
10
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It can be shown algebraically that the sum of the variance components of
the fitted GTM in (22) must be identical to the sum of the variance components
of the true RTM in (21). The table shows that the variance of the systematic
component is liable to be underestimated significantly when a misspecified
model is fitted by ordinary least-squares regression.

The significant aspect of these results, from the point of view of their
econometric interpretation, is the extent to which the dynamic properties of
the transfer functions are misrepresented by the probability limits of the fitted
models. In all cases, the gain of the systematic transfer function (ie. the long-
term multiplier) and the median lag of its impulse response (ie. the time lags
of the adjustment process) are seriously underestimated.

6. THE MODEL WHEN THE SIGNAL IS
A SERIALLY CORRELATED SEQUENCE

The transparent nature of the results in Table 1 is due in part to our
assumption that x(t) is a white-noise sequence. It would be more realistic
to assume that x(t) is generated by a stationary stochastic process. There-
fore, let us imagine that it is generated by a first-order autoregressive process
represented by

(1 + rz)x(z) = (z). (23)

In that case, the generating function p(z) of (18) is replaced by

=
.5(1 + az) 

p(z) 24
(1 + -yz)(1 7r-z) (1 + z) 

( )
•

The asymptotic form of the expected criterion function is given by

D2
S(a, 

2(C — /3)D 1 4_ (a 0)2 4_ 1 1 ,
f3) = (c fi)2 + _ 7.2 1 _ 72 _ 

j 
1 1 — 

— 

.5(7r — a) 15(a — 7)where C=  and D=
7 - 7 - 7

(25)
Differentiating this with respect to 13 and setting the result to zero gives us the
condition from which we can deduce that the minimising value satisfies

13(a) =
(26)

When this is substituted into the criterion function, we obtain a concentrated
expression in the form -of

S(a) = u2  62(a — 7)2 
+ 2 (a — (A)2 + 1

1_2 1 •

11
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This is to be compared with the concentrated function which comes from setting
fl = .5 in (19). By differentiating S(a) with respect to a and setting the result
to zero, we obtain a condition from which we deduce that the probability limit
for the least-squares value of a is

_ K7 -I- AO
a =  where

(7262 cl
IC =  and A = 

1 - 02.

(28)

These results contain our previous results as special cases. Again, we see
that ii is a convex combination of 7 and 0. However, K no longer represents
the variance of the systematic part of the RTM which is given, in fact, by
tc(1 7r-y). It now transpires that, if the parameter r of the autoregressive
process generating x(t) has the same sign as the systematic parameter 7, then
additional weight will be given to the 7 in forming a. If the signs of 7 and
r are opposite, then the weight given to 7 will be reduced. These results are
illustrated in Table 2 which shows the effect that various values of 7r have upon
the probability limits 74 and a.

Table 2. The effects of fitting the model (1 az)y(t) = 13x(z)-1- e(z) when the
true relationship is y(z) = (1 - 0.85z)-1 x(z) + (1 + 0.85z) 1e(z) and x(t) =
(1 + rL)-1 (t) is a first-order autoregressive process.

Case D Case E Case F Case G

C'
2
x 0.75 0.75 0.75 0.75

cre2 0.6625 0.6625 0.48 0.1425
0.2 0.25 0.25 0.25 0.25
7r. 0.3 -0.3 -0.6 -0.9
a -0.228 -0.563
13 1.116 

-0.661 -0.700
0.851 1.231 1.575

S 1.901 2.414 2.564 2.624

True Variances
Systematic 1.604 4.553 8.329 20.299
Disturbance 0.901 0.901 0.901 0.901

Sum 2.505 5.454 9.230 21.200

Estimated Variances
Systematic 0.500 1.921 4.675 16.058
Disturbance 2.005 3.533 4.554 5.142
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In our examples, the positive autocorrelation of x(t) mitigates the distor-
tion of the estimate of the systematic part of the model which is caused by
the misspecification. Nevertheless, the distortion is considerable even in Case
G where the coefficient of the AR(1) process generating x(t) is as large as
7r = —0.9. For, in that case, the probability limit ei = —0.70 implies a median
lag in the impulse response of the systematic part of only 0.94 periods, whilst
the true parameter 7 = —0.85 implies a median lag of 3.265 periods

7. A MODEL WITH A MOVING-AVERAGE DISTURBANCE

The two misspecified models which we have already investigated both em-
body the assumption that the disturbance part is a white-noise sequence. Such
models, which can be estimated easily by ordinary least-squares regression, are
predominant in applied econometrics. Nevertheless it is fairly common nowa-
days to encounter models with moving-average disturbances. Examples are to
be found in the papers by Pagan and Nicholls [14], Trivedi [23] and Zellner
and Palm [31]. The monograph by Pesaran and Slater [16] gives details of a
method by which such models may be estimated; and it includes a listing of a
FORTRAN computer programme which implements the method.

It seems appropriate, therefore, to investigate the effect of fitting a model
in the form of

(1 + az)y(z) = (,do thz)x(z) + (1 + pz)e(z) (29)

when the true model is the RTM of (16) and x(t) = (t) is white noise. The
generating functions p(z) and q(z) in this case are given by

p(z) =
(1 +7z)(1 + pz) 1 + pz

1 + az
q(z) =  •

(1 + pz)(1 +z)'

6(1 + az) Igo + fliz
and

and the asymptotic form of the criterion function becomes

(30)

p J272 211 Jsy  1
51(a, fib, flu, p) = cr! f(G H 1302 + 1 _ /12 4- 1 - 72 +l-7  I

2 (1 + p0)(1 + a2) 2a(p + 0)
cr,

(1 — p2)(1 — 02)(1 — p0) '

where G— 602— a) H = b(a — 7) and J = (G — flo)p + •
/1-7 —

(31)
We should recognise that, in so far as the factor 1/(1 — p2) stands for a

convergent series, our expression for S is admissible only for values of p which
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lie in the open interval (-1,1) and which, thereby, satisfy the condition of
invertibility. In the event of Ipl > 1, the expression remains meaningful only if
p is replaced by 1/p.

By differentiating S with respect to fib and fi and setting the results to
zero, we get conditions from which we can deduce that the minimising values
obey the equations

fio=S and

5(a 7) (32)
)31 (a, it) =

When these are substituted back into the criterion function, we obtain a con-
centrated function in the form of

5272(a - 7)2 + 0.2 (1 -I- p0)(1 a2) 2a(p 0) (33)S(a, p) =
x (1- 72)(1 - P7)2 e (1 - P2)(1 - 02)(1 -

The value of this function is undefined at the points p = -1 and p =
1 which represent the boundaries of the admissible region for p. It is also
undefined at the points p = 7-1 and p = 0-1 which lie outside the admissible
region on the assumption that the parameters of the RTM are bounded by the
conditions 171, < 1 •

By differentiating the function with respect to a and setting the result to
zero, we obtain a condition from which we find that, for a given value of p, the
minimising value of a is

c(01) =  
+ where

ic+\(l+pç5)'
0.25272

rc =   and (34)(1- 72)(1 - P7)2
2

A =  
Cr,

(1 P2)(1 02)(1 PO) •

We can see that a 1 as p 1 and that a -1 as p -1. It follows
from equation (32) that -+Sasp->1 and that ,81 as Thus,
when ipl is close to unity, the factors in z within the transfer functions of the
fitted model y(z) = {(f30 -1- thz)I(1+ az)}x(z) {(1 pz)I (1 + az)}e(z) tend
to cancel leaving an equation, y(z) = (5x(z) e(z), from which the dynamic
properties have vanished.

On differentiating the function S (a , p) with respect to p and setting the
result to zero, we obtain a condition from which, for a given value of a, we
might attempt to find the minimising value of p. However, since the equation
which determines this value of p is exceedingly nonlinear, the task of minimising
S(a, p) is more easily accomplished by numerical methods.
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By substituting the expression for a = a(p) into the concentrated function
under (33), we obtain a function S(p) = S{a(p), p} which has p as its sole
argument. Thus the minimand of S(p) can be found simply by searching the
interval (-1 < p < 1) in small steps; and values of a, and /30, 131 which are
associated with this minimand can then be recovered from equations (34) and
(32) respectively.

We shall assume, as before, that the RTM of (16) which describes the true
relationship between y(t), x(t) and e(t) has the parameters .5 = 1, = —0.85
and q = 0.85. Figure 2 gives the graph of the function S(p) for the case where
2 2 0.5.

4  

3

2

1

0  
—2 —1 1 2

Figure 2. The graph of the function S(p) for the case where ce2 = c.„2 = 0.5.

The fact that the function S(p) is undefined at the points p = 1 and p =
7-1 is not perceptible from its graph. However, there are evident discontinuities
in the regions of the values p = —1 and p = 0-1. The most notable feature of
the graph is the fact that the function has two minima within the admissible
interval (-1 <p < 1). Table 3 gives the values of these minima together with
the associated values of Ct, fib and Pi which are the probability limits of the
least-squares estimates. It also gives values for the case where cr,2 = 0.25 and
= 0.75.
The nature of the estimates in the case L(i), which corresponds to a global

minimum of the criterion function, is best revealed by writing the fitted GTM
in the form of an RTM:

- 1 + 0.07z
y(z) = 

1— 0.84z 
x(z) + 

1 

1 — 0.96z 
e(z).

— 0.84z
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Table 3. The effects of fitting the model (1 + az)y(z) = (13o fliz)x(z)
(1 + pz)e(z) when the true relationship is y(z) = (1 - 0.85z)-1x(z) -1- (1 +
0.854'4z) and x(t) = (t) is white noise.

Case L(i) Case L(ii) Case M(i) Case M(ii)

oi 0.5 0.5 0.75 0.75
0.5 0.5 0.25 0.25

it -0.964 0.693 -0.966 0.815
a -0.837 0.904 -0.846 0.903

1.0 1.0 1.0 1.0

/31 0.073 1.103 0.024 1.035
S 1.636 2.412 0.820 2.671

True Variances
Systematic 1.802 1.802 2.703 2.703
Disturbance 1.802 1.802 0.901 0.901

Sum 3.604 3.604 3.604 3.604

Estimated Variances
Systematic 1.880 0.609 2.742 0.822
Disturbance 1.723 2.995 0.862 2.782

Sum 3.604 . 3.604 3.604 3.604

This shows that the systematic part of the GTM is a reasonable estimate of
the systematic part of the true RTM. However, small movements of p in the
neighbourhood of the minimising value are accompanied by large movements
in the values of the other arguments of the function. Therefore, we would
expect the actual estimates of these values, which would be obtained from
finite statistical samples, to have large sampling variances.

The major deficiency of the fitted model of L(i) is its representation of
the disturbance part. Here the operator 1 + pz in the numerator is virtually
cancelled by the operator 1 + äz in the denominator; which suggests, quite
wrongly, that the disturbance process resembles white noise.

The estimates in the case L(ii), which correspond to the other minimum
of the criterion function, give rise to a very different model:

\ 1 + 1.10z 1 + 0.69z

Yz) = 1 + 0.90z x‘ z) + 1 + 0.90z e‘zi.
(36)

Here the numerators and the denominators have a tendency to offset each other
in both the systematic part and the disturbance part of the model; and so the
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estimated filters bear little resemblance to the corresponding filters of the true
RTM. It could be said, however, that the disturbance part of this model is
more sucessful in approximating the true RTM than is the systematic part.

The clearest indication of the misspecification is provided by the sequence
of residuals. Their generating function is

ecz) = 1 + az f 1+ Sz 1+ Az} 
x(z)-F 

(1+ az)(1 + 0z)  
E(z); (37)1+ pz t 1+ 7z 1+ az (I + pz)(1+ Oz)

and this is just a specialisation of equation (7) with r(z) = 1 and e(z) = x(z).
We are reminded by this equation that, if the values of the fitted parameters
were to coincide with those of the true parameters, so as to make a = 7 = 0,
0 = 6 and p = 0, then the residual sequence e(t) would coincide with the
white-noise sequence e(1).

3

2

1

0 Tr/4 7r12 37E/4 It

Figure 3. The spectrum of the residual sequence from fitting the GTM under
L(i).

The residual sequence, which is the sum of two independent ARMA pro-
cesses, is an ARMA process in its own right. In the case of the model L(i) it
can be represented by

1 — 1.67z + 0.69z2 ti \e(z) =
1— 0.96z — 0.72z2 + 0.69z3`'‘zh

(38)

where ((t) is a white-noise process with 1/{((t)} = 0.511. The corresponding
spectral distribution is shown in Figure 3. When this is compared with the U-
shaped spectrum of y(t), we recognise that the fitted model L(i) has successfully
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accounted for the low-frequency components which are due to the systematic
part of the RTM. Its failure to account for the high-frequency components,
which are due to the disturbance part of the RTM, is evident from their presence
in the residual spectrum.

In the case of the model L(ii), the residual sequence follows a process which

can be represented by

1 + 0.81z — 0.085z2
e(z) = (39)

1+ 0.69z — 0.72z2 — 
0503((z),

where ((t) is a white-noise process with V{((i)} = 1.468. The spectral distri-
bution is shown in Figure 4. Here the failure of the model is manifest; for the
residual spectrum contains much of the power of the systematic and the distur-
bance parts of the RTM which ought to have been captured by model. It has
clearly inherited some of the U shape of the spectrum of y(t). However, there is
more power in the low-frequency components than in the high-frequency com-
ponents. This confirms our assertion that the disturbance part of the model
L(ii) is more successful in approximating the true RTM than is the systematic
part.

An attempt at fitting the GTM of (29) when the true relationship is de-
scribed by the RTM of (16) can lead to either of two quite different failures. It
not too fanciful to say that, on this occasion, the tension which exists between
the two parts of the RTM in their struggle to preempt the operator a(z) has
resulted in a rupture instead of a compromise.

3

2

1

it/4 37t/4

Figure 4. The spectrum of the residual sequence from fitting the GTM under
L(ii).

The spectra in Figures 3 and 4 are quite different from that of a white-
noise process. Therefore we might be sanguine about our ability to detect
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misspecification through diagnostic tests based on the least-squares residuals
from fitting the models to finite sets of data.

The empirical counterpart of the spectrum is the periodogram. However,
unless it is smoothed, the periodogram has a highly volatile appearance which
makes it difficult to interpret visually. A better way of presenting the informa-
tion is to plot the cumulated periodogram.

The cumulated spectrum of a white-noise process rises in a straight line;
and, when the cumulated periodogram of an empirical sequence diverges sig-
nificantly from this line, we may suspect that there is serial correlation. Sig-
nificance limits, which are based on the Kolmogorov—Smirnoff statistic, have
been given by Bartlett [2, p. 318]. These limits can also be used in an approx-
imate way for assessing the significance of the correlation in the least-squares
regression residuals.

Durbin [6] has developed significance bounds which are appropriate to the
cumulated periodogram of the residuals of a classical regression model; but
their validity for finite samples does not extend to the case of a model with
lagged dependent variables.

The advantage of tests based on the cumulated periodogram is that they
may provide a useful indication of the nature of the misspecification as well as
a rough indication of its extent.

It is straightforward to derive tests for particular kinds of misspecification
by following the Lagrange multiplier procedure of Ra,o [20] and Silvey [21].
Details of such tests for the RTM and the GTM have been given by Poskitt
and rRemayne [19]. In particular, a statistic is readily accessible for testing the
hypothesis that -y(z) = 0(z).

The significance levels for such statistics are derived from their asymptotic
distributions; and, as Kiviet [10,11] has show, they are often unreliable when
data samples are of a size which is typical in applied econometrics. In fact, the
probability of a Type I error in these tests may vary substantially for different
parameter values of the process generating the data; and this finding conflicts
with the asymptotic theory which suggests that the probabilities are invariant.

8. CONCLUSIONS

Our experiments have revealed some of the dangers of fitting a GTM with
too few parameters when the true model is an RTM. The problems stem from
the fact that the GTM uses a common set of parameters in its attempt to
capture the dynamic properties of the systematic part and the disturbance
part of the regression relationship. If the properties of these two parts differ,
then they are bound to be. misrepresented in the fitted model which can be
grossly misleading.

It might be argued that the problem could be overcome by increasing the
number of the parameters in the fitted GTM. Thus we have only to replace the
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model in (29) by the model

(1 + aiz a2z2)Y(z) = (fib +thz)x(z) (1 pz)e(z), (40)

which incorporates an extra parameter in a(z), and we will succeed in consis-
tently estimating the RTM of (16) which becomes a special case of the extended
model.

To argue in this way would be to misunderstand the real problems of
econometrics where any model which is practical is bound to give a simplified
account of the data-generating process in terms of a limited number of param-
eters. Therefore, if we are to avoid the danger of confounding the properties of
the two parts of a dynamic regression relationship, we must attribute a distinct
set of parameters to each part; and this means using a rational transfer-function
model. We should use the alternative general temporal model only if we can
show that none of the dangers which we have illustrated in this paper can arise;
and we are rarely in a position to do so.

Finally we may say that, if one adopts a model, such as the RTM, which is
capable making adequate approximations to a wide range of the data-generating
processes, then one need not be too worried about the unreliability in small
samples of the usual diagnostic tests which are intended to reveal the inade-
quacy of a model.
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APPENDIX: THE LEAST-SQUARES CRITERION FUNCTION

Realisations of the Relationship

A set of T realisations of the relationship in (1) running from t = 0 to

t = T — 1 can be represented by the equation

Ya=Xfl-i-ep. (A.1)

Here Y = [yi_j] is a TxT Toeplitz matrix in which each diagonal band contains
repetitions of a single element of y(t). Thus, the principal diagonal contains
the initial sample element yo whilst successive subdiagonal bands contain the

elements yi , , yT_i. The supradiagonal bands contain the presample ele-
ments y_i, , yi_T. The matrices X = [xi_j] and E = [ei_j], which are based
on the elements of x(t) and e(t) respectively, have structures which are similar
to that of Y. The equation (A.1) also comprises a = [1, a1,..., aa, 0, ,

= fli, • • • , 13t, 0, , OY and p = [1, pi,. , am, 0, , O]'. These are vec-

tors of order T containing the parameters of the model in the leading positions

followed by zeros.
The corresponding T realisations of the equation (5), which indicates how

the sequence x(t) is generated, can be written as

Xr = (A.2)

where = Lreo,E,1,...,&....1y, which is the leading vector of the matrix 'E. =
contains elements from the white-noise process (t).

We shall simplify our analysis by assuming that the presample elements

of e(t) and (t) are all zeros, which implies that the presample elements of y(t)

and x(t) are also zeros. A more elegant assumption would be to regard E
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and (-t) as stationary stochastic processes defined over the entire set of pos-
itive and negative integers. In that case, we would need to demonstrate that
the presample elements play a role within the criterion function which becomes
negligible as the sample size T increases. Such a demonstration has been pro-
vided by Pollock [18] in a companion paper for the case of the autoregressive
moving-average model. Pierce [17] has also dealt with the matter in a paper
on the subject of the estimation of the RTM. By assuming that the presample
elements are zeros, we can avoid having to repeat the arguments, and we can
remove some otiose complications from our analysis.

When all the presample elements are zeros, the matrices X, Y, E and E
assume a lower-triangular form. In this form, they are completely characterised
by their leading vectors which are given by x = Xei, y = Yei, c = Eel and
e = Eel, where el is the leading vector of the identity matrix of order T.
To express the fact that the matrix "E, for example, is completely determined
by the vector we may write a' = .,.We shall define a set of analogous
triangular matrices based on the parameter vectors; and we shall write these
as A = A(a), B= B(/3), M= M (p) and II =

Since banded lower-triangular matrices commute in multiplication, we find
that Ya = (YA)ei = (AY)ei = Ay, and, likewise, that X13 = Bx, Ep = Mc
and X7r = IIx. It follows that we can rewrite equation (A.1) in the equivalent
form of

Ay= Bx Mc.

Equation (A.2) can be rewritten likewise as

IIx =

(A.3)

(44.4)

The Expected Criterion Function

Now let us imagine that the true model is an RTM. If this model is to be
represented by equation (A.3), then the matrices must factorise to give A= Di),
B = (1),(1 and M = FO, where r = = (NO, z = A(5) and 0 = 0(0)
are all banded lower-triangular matrices. It follows that

y = 21-1Bx A-lMe
= (A.5)

Imagine that the fitted model is a GTM of the form Ay = Bx+ Me. Then
the residual vector e is given, in terms of the parameters of both the fitted
model and the true model, by
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e=

= A4---1A1(r-lA - - cv-ieE} (A.6)

= -1)-F(26,

where P = m--1A(r-1A-A-1B)11-1 and Q= —M-1A(1)-10 are both banded
lower-triangular matrices. The sum of squares .of the residuals, which consti-
tutes the criterion function of least-squares estimation, is given by

eie = e1Q1Qe+ 2e PI Qe

= q1E'eq +21)1E3'4,
(A.7)

where p = Pei and q = Qei•
If we assume that (.t) is a white-noise process which is independent of

e(t), then we have

= ac2/ , E(W) = aV and E(ce) = 0; (A.8)

and it follows that the expected value of the criterion function is

E(e' e) = oPace{PP} 41Race{qQ}. (A.9)

The Convergence of the Criterion Function

It can be shown easily that, if it is scaled by the factor T-1, the expected
criterion function converges to a limiting form as T increases. The scaled
function can be written as

T-1 

2 

p 4 T--1 T
cr

2 —
—
1 
E(e1e) = a2 E + 2 E

• T e Pi T ' gij=o j=O
(A.10)

As T oo, the terms on the RHS of this expression, which are the
Cesaro sums of the convergent sequences {q , q, q,.. .} and 114, 74, ...},
must themselves converge to the values of Sq/ce2 = lim(T oo) q.? and
Splq = lim(T oo) Epj respectively. These are the components of the
expression S = sip +Sq of (9) which gives the variance of the residual sequence.

It is also straightforward to show that, as T increases, the criterion func-
tion in (A.7), scaled by T-1, converges to the same limiting value as does its
expectation. Thus, by invoking the law of large numbers, we can establish that
the probability limit of the jth diagonal element of E'EF,/71 is

T-j

plim(T oo) ET-la =
t=o
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and that the probability limit of an element in an off-diagonal position is zero. It

follows that plim(piarEp/T) = Sp. Likewise, we find that plim(q' e' eq IT) = Sq

and that plim(p'E'Sq/T) = 0.
Given that the criterion function and its expected value converge to the

same limiting form, it follows—according to a fundamental result which is

proved by Amemiya [1, Theorem 4.1.1] and by Domowitz and White [5, Theo-

rem 2.2] amongst others—that the values which minimise the asymptotic form

of the expected criterion function must also be the probability limits of the

estimates.
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