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1. Introduction

In mathematical psychology (among other disciplines) matrix

calculus has become an important tool. Several definitions are in use

for the derivative of a matrix function F(X) with respect to its matrix

argument X. (See Dwyer and MacPhail (1948), Dwyer (1967), Neudecker

(1969), McDonald and Swaminathan (1973), MacRae (1974), Balestra (1976),

Nel (1980), Rogers (1980), and Polasek (1984). We shall see that only one

of these definitions is appropriate. Also, several prodecures exist for a

calculus of functions of matrices. We shall argue that the procedure based

on differentials is superior over other methods of differentiation.

These, then are the two purposes of this paper. We have been

inspired to write this paper by Bentler and Lee's (1978) note.

Although they use the right type of matrix derivative (which is

similar but not the same as our definition), Bentler and Lee present

a very confused chain rule based on "mathematically independent

variables", and their procedure to obtain Jacobian matrices for matrix

functions is unsatisfactory. (We note in passing their unusual

definition of a differentiable function, as one whose partial

derivatives exist.) In the present paper we give a completely

satisfactory chain rule for matrix functions, and show that the approach

via differentials is elegant, short, and easy.

Keeping within the limited space of a journal article we restrict

ourselves to first-order differentials and thus to first derivatives.

The presentation will culminate in the so-called First Identification

Theorem. This will be the basic theorem from which the results

on derivatives will follow.



The following notation is used. An mxn matrix is one having

m rows and n columns; A' denotes the transpose of A, trA denotes

its trace (if A is square), and A
-1 

its inverse (if A is nonsingular).

mxn
MR is the class of real mxn matrices and IRn the class of real nxl

vectors, so that 1Rn IR
nxl

The nxn identity matrix is denoted

I
n
. Let A be an mxn matrix. Then vecA is the mnxl vector that

stacks the columns of A one underneath the other, and A is the-

mnxmn diagonal matrix displaying the elements of vecA along its

diagonal. The commutation matrix K
mn 

(Magnus and Neudecker (1979))

is the mnxmn matrix which transforms vecA into vecA':

K vecA = vec A'. (1)mn

A * B denotes the Hadamard product (a..b. ), and A 0 B denotes the
13 1j

Kronecker product. (a, .B). It is easy to see that
13

vec ab' = bea (2)

for any two vectors a and b. We shall use (2) in section 10.

•••

,
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2. Bad notation

Let us start with some remarks on notation. If F is a

differentiable mxp matrix function of an nxq matrix of variables X,

then the question arises how to display the mnpq partial derivatives

of F with respect to X. Obviously, this can be done in many ways.

One possible ordering of the partial derivatives, very popular but

unsuitable for theoretical work as we shall see shortly, is contained

in the following two definitions.

Definition 1. Let (1). be a differentiable real-valued function of an

nxq matrix of real variables X = (x..). Then the symbol 34)(X)/3X

denotes the nxq matrix

Definition 2.

a(p(x) 
ax

racp/axii •

,w'xni •

• •

• •

34)/3xici

34)/axnci,

(1)

Let F = (f
st
) be a differentiable mxp real matrix

function of an nxq matrix of real variables X. Then the symbol

• 3F(X)/3X denotes the mnxpq matrix

3F (X) =

ax

'3 3X 3f
lp
/ax'f11/

afml/ax Df /3X
mp '

(2)

Before we criticise Definition 2, let us list some of its good

(notational) points. Two very pleasant properties are: (i) if F is

a matrix function of just one variable then am)/a has the same

order as F(E); and (ii) if 4) is a scalar function of a matrix of

variables X, then 34P(X)/3X has the same order as X. In particular,
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if (I) is a scalar function of a column-vector x, then Wax is a

column-vector and agb/ax' a row-vector. Another consequence of the

definition is that it allows us to display the mn partial derivatives

of an mxl vector function f(x), where x is an nxl vector of variables,

in four ways, namely as a.f/ax' (an mxn matrix), aft/ax (an nxm

matrix), af/ax (an mnxl vector), or as aft/ax' (an lxmn vector).

These are undoubtedly strong notational virtues of Definition 2.

To see what is wrong with the definition from a theoretical pointof

view (see also Pollock (1984) on this point) let us consider the

identity function F(X) = X, where X is an nxq matrix of real

variables. We obtain from Definition 2

aF(X) 
= (vec I

n
)(vec I )t,ax (3)

a matrix of rank one. The Jacobian matrix of the identity function

is, of course, I
nq
, the nqxnq identity matrix. Hence Definition 2

does not give us the Jacobian matrix of the function F, and, indeed,

the rank of the Jacobian matrix is not given by the rank of aF(x)/ax.

This implies -- and this cannot be stressed enough -- that the matrix

(2) displays the partial derivatives, but nothing more. In particular,

the determinant of 3F(X)/X has no interpretation, and (very important

for practical work also) a useful chain rule does not exist.

There exists another definition, equally unsuitable, which is

based not on aci5(X)/3X,_but on

aF(X)
ax..

af11(xuax.. af
lp
(X)/ax..

3.3

.afml(x)/axii 
af (X)/x..
mp

(4)
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Definition 3. Let F be a differentiable mxp matrix function of an

nxq matrix of real variables X = (x.). Then the symbol 3F(X) /MC
i.j

denotes the mnxpq matrix

3F (X) 
ax

BF(X)/3x
1q

. .

. . (5). .

nl 
3F(X)/3x

nq'
3F(X)/ax

From a theoretical viewpoint Definitions 2 and 3 are equally bad.

Definition 3 has, however, one practical advantage over. Definition 2

inthattheexpressions3F00/3x..are much easierto evaluate than
a.)

3f
st
(X)/x.

After these critical remarks, let us turn quickly to the only

natural and viable generalization of the notion of a Jacobian matrix

of a vector function to a Jacobian matrix of a matrix function.



3. Good notation

We recommend to proceed in the following way. Let gb be a

scalar function of an nxl vector x. Then the lxn vector

a(1)(x) 
V(1) (x) = (1)

3x 1
S

is called the gradient of 4). If f is an mxl vector function of x,

then the mxn matrix

Vf(x) .= •

Vf (x)m

Dx'
(2)

is called the Jacobian matrix of f. Since (1) is just a special

case of (2), the double use of the V-symbol is permitted. General-

izing these concepts to matrix functions of matrices, we arrive at

Definition 4. Let F be a differentiable mxp real matrix function

of an nxq matrix of real variables X. The Jacobian matrix of F at

X (the gradient vector, if m=p=1) is the mpxnq matrix

3 vec F (X)• VF(X) = (vec X)
(3)

Thus VF, Vf, and V4) are all defined. We refer to VF and Vf as

Jacobian matrices, and to Vcb as a gradient vector.

It is important to notice that VF(X) and 3F(X)/3X contain the

same mnpq partial derivatives, but in a different pattern. Indeed,

the orders of the two matrices are different (VF(X) is of the order

mpxnq, while 3F(X)/3X is of the order mnxpq), and, more important,

their ranks are in general different.

Since VF(X) is a straightforward matrix generalization of the

traditional definition of the Jacobian matrix 3f(x)/3x', all properties
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of Jacobian matrices are preserved. In particular, questions

relating to functions with non-zero Jacobian determinant at certain

points remain meaningful, as does the chain rule.

Definition 4 reduces the study of matrix functions of matrices

to the study of vector functions of vectors, since it allows F(X) and

X only in their vectorized forms vec F and vec X. As a result, the

unattractive expressions

ap(x) aF(x) 
ax ' 3x 

an
d 3f(X) 

3X (5)

are not needed. The same holds, in principle, for the expressions

34)(X) 3F(E) 
and (6)@X

since these can be replaced by

34)(X) 3 vec F VOX) = and VF() = • (7)3(vec  X)' 3E

However, the idea of arranging the partial derivatives of (1)(X) and

F(E) into a matrix (rather than a vector) is rather appealing and

sometimes useful, do we retain the expressions in (6).
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4. The differential

Fundamental to our approach is the concept of a differential.

In the one-dimensional case, the equation

Lim 
cP(c+u) — gb(c)

= 40 1(c) (1)

defining the derivative at c is equivalent to the equation

cp(c+u) = cp(c) + W(c) + rc(u), (2)

where the remainder r
- 
(u) is of smaller order than u as u o, that

is,

r
c
(u)

kim= 0 (3)
U-+0

Equation (2) is called the first-order Taylor formula. If for the

moment we think of the point c as fixed and the increment u as

variable, then the increment of the function, that is the quantity

cl)(c+u) 4)(c), consists of two terms, namely a part u' (c) which

is proportional to u and an "error" which can be made as small as we

please relative to u by making u itself small enough. Thus the

smaller the interval about the point c which we consider, the more

accurately is the function (1)(c+u) -- which is a function of u --

represented by its affine linear part 4)(c) + ucl)'(c). We now define

dcP(c;u) = u(P'(c) (4)

as the (first) differential of cl) at c with increment u.

The notation d(1)(c;u) rather than dcP(c,u) emphasizes the different

roles of c and u. The first point, c, must be a point where c' (c)

exists, whereas the second point, u, is an arbitrary point in M.
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Although the concept of differential is as a rule only used when

u is small, there is in principle no need to restrict u in any way.

In particular, the differential d4)(c;u) is a number which has nothing 

to do with .infinitely small quantities.

Conversely, if there exists a quantity a, depending on c but

not on u, such that

4(c+u) = cl)(c) + ua + r (u) , (5)

where r(u)/u tends to o with u, that is if we can approximate cP(c+u)

by an affine linear function (in u) such that the difference between

the function and the approximation function vanishes to a higher

order than the increment u, then (I) is differentiable at c. The

quantity a must then be taken as the derivative 4)'(c). We see this

immediately if we rewrite condition (5) in the form

(c+u) - .4) (c) . 4. r (u)a (6)

and then let u tend to o. Differentiability of a function with

respect to a variable and the possibility of approximating a function

by means of an affine linear function in this way are therefore

equivalent properties.

These ideas can be extended in a perfectly natural way to vector

functions of two or more variables.

Definition 5. Let f:S Me 
-
be a function defined on a set S in

1R . Let c be an interior point of S, and let B(c;r) be an n-ball

lying in S. Let u be a point in IRI1 with I I u II < r, so that

c + u G B(c;r). If there exists a real mxn matrix A, depending on

c but not on u, such that
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f(c+u) = f(c) + A(c)u + r(u)

for all u Ee with

Zim
u-4.0

IluII
r(u)
Hull

< r, and

(7)

0 (8)

then the function f is said to be differentiable at c; the mxl

vector

df(c;u) = A(c)u (9)

is then called the (first) differential of f at c with increment u.

If f is differentiable at every point of an open subset E of S, we

say f is differentiable on E. II

In other words, f is differentiable at the point c if f(c+u)

can be approximated by an affine linear function of u. Note that a

function f can only be differentiated at an interior point or on an

open set.
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5. Uniqueness and Existence of the differential

The uniqueness of the differential (if it exists) is contained

in the following theorem which it easily established from Definition 5.

Theorem 1 (uniqueness). Let f: S S C Mil, be differentiable'

at a point c E S with differential df(c;u) = A(c)u. Suppose a second,

matrix A* (c) exists such that df(c;u) = A*(c)u. Then A(c) = A* (c).

Now consider the limit

f Ac+te.) - f. (c)
1 3 •1 Zim 

t 
. (1)

to

When this limit exists, it is caned the partial derivative of f. with.

.th .th
respect to the 3 coordinate (or the 3 partial derivative of f.)

and is denoted by D.f.(c). If f is differentiable at c, then all
3 1

partial derivatives D.f.(c) exist. But the existence of all partial
3 1

derivatives at c does not imply the existence of the differential at

d. Indeed, neither the continuity of all partial derivatives at a

. Point c nor the existence of all partial derivatives in some n-ball

B(c) is, in general, a sufficient condition for differentiability.

141ith this knowledge the reader can now appreciate the following

'theorem.

Theorem 2 (existence). Let f: S Min be a function defined on a

'set S in Mil, and let c be an interior point of S. If each of the

partial derivatives D.f exists in some n-ball B(c) and is continuous

fAt c, then f is differentiable at c (and hence the differential

'df(c;u) exists) .
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6. The First Identification Theorem

If f is differentiable at c, then a matrix A(c) exists such

that for all Mull < r,

f (c+u) = f (c) + A (c) u + r( u) (1)

where r
c
(u)/ -4- 0 as u 0. It turns out that the elements

a..(c) of the matrix A(c) are, in fact, precisely the partial13

derivatives D.f.(c). This, in conjunction with the uniqueness theorem1

(Theorem 1) establishes the following central result.

Theorem 3 (First Identification Theorem). Let f: S le be a vector

function defined on a set S in Me/ ,. and differentiable at an interior

point c'of S. Let u be a real nxl vector. Then

df(c;u) = (Vf(c))u , (2) .

where Vf(c) is an mxn matrix whose elements D.f.(c) are the partial
7 1

derivatives of f evaluated at c (the Jacobian matrix). Conversely,

if A(c) is a matrix such that

df(c;u) = A(c)u

for all real nxi vectors u, then A(c) = Vf(c).

(3)

The great practical value of Theorem 3 lies in the fact that if

f is differentiable at c and we have found a differential df at c,

then the Jacobian matrix Vf(c) can be immediately determined.

Some caution is required when interpreting equation (2).

Although the right side of (2) exists if all the partial derivatives

D.f.(c) exist, the left side of (2) exists only if the differential

of f at c exists, i.e., if f is differentiable at c.
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7. The chain rule and Cauchy-invariance

An important result of multivariaplecalculus, which we present

without proof is

Theorem 4 (Chain Rule). Let S be a subset of Pel, and assume that

f:S 3R131 is differentiable at an interior point c of S. Let T be

a subset of lea such that f(x) E T for all x E S, and assume that

g : T JRP is differentiable at an interior point b = f(c) of T.

Then the composite function h: S MRIP defined by

h(x) = g(f(x))

is differentiable at c, and

Vh(c) = (Vg(b)1(Vf(c)] .

(1)

(2)

The chain rule relates the partial derivatives of a composite

functionh=gofto the partial derivatives ofgand f. We shall

now discuss an immediate consequence of the chain rule, which relates

the differential of b to the differentials of g and f. This result

(known as Cauchy's rule of invariance is particularly useful in performing

computations with differentials.

Leth=gofbeacomposite function, as before, such that

h(x) = g(f(x)), x e s . (3)

If f is differentiable at c and g is differentiable at b = f(c), then

h is differentiable at c with

dh(c;u) = (Vh(c))u .

Using the chain rule, (4) becomes

(4)

••••
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dh(c;ii) = (Vg(b))(Vf(c))u

= (Vg(b)df(c;u) = dg(b;df(c;u)). (5)

We have thus proved

Theorem 5 (Cauchy's Rule of Invariance). If f is differentiable at c

and g is differentiable at b = f(c), then the differential of the

composite functionh=gof is

dh(c7u) = dg(b;df(c;u)) (6)

for every u in IRE.

Cauchy's rule of invariance justifies the use of a simpler notation

for differentials in practical applications, which adds greatly to

the ease and elegance of performing computations with differentials.

We shall explain and apply this simpler notation in sections 9 and

10.



•
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8. Matrix functions

To extend the calculus of vector functions to matrix functions

is straightforward. mxoLet us consider a matrix function F:S IR '

defined on a set S in 
lfl
exq That is, F maps an nxq matrix X into

an mxp matrix F(X).

Definition 6. Let F:S Meixlp be a matrix function defined on a

set S in Let C be an interior point of S, and let B(C;r) C S

be a ball with centre C and radius r. Let U be a point in Mil"'

with Hum < r, so that C + U e B(C;r). If there exists a real

mpxnq matrix A, depending on C but not on U, such that

vec F(C+U) = vec F(C) + A(C) vec U + vec R (U)

for all U E IRrIxq with HUH < r, and

(1)

R (U)
tim   = 0 (2)
U-+0

then the function F is said to be differentiable at C; the mxp matrix

dF(C;U) defined by

vec dF(C;U) = A(C) vec U (3)

is then called the (first) differential of F at C with increment U.

Note. Recall that the norm of a real matrix X is defined by

ihm = (tr X i X)1/2

and a ball in Mil"! by

(4)

B(C;r) = X : X E 3Rnxcl II, X-C (5)

•

•
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In view of Definition 6 all calculus properties of matrix

functions follow immediately from the corresponding properties of

vector functions, because, instead of the matrix function F, we can

mp
consider the vector function f : vec S MR defined by

f (vec X) = vec F (X) . (6)

It is easy to see that the differentials of F and f are related by

vec dF(C;U) = df(vec C;vec U). (7)

This justifies Definition 4, according to which the Jacobian matrix

of F at C is

VF(C) = Vf(vec C). (8)

th
This is an mpxnq matrix, whose ij element is the partial derivative

th thof the i component of vec F(X) with respect to the j element

of vec X, evaluated at X = C.

The following three theorems are now straightforward generali-

zations of Theorems 3-5.

Theorem 6 (First Identification Theorem for matrix functions).

mx
Let F: S P be a matrix function defined on a set S in IR

nxq

and differentiable at an interior point C of S. Then

vec dF(C;U) = A(C) vec U (9)

for all U e aznx(1, if and only if

VF(C) = A(C) . (10)

Theorem 7 (Chain Rule for matrix functions). Let S be a subset of MR/Ixcl

'and assume that F: S IR is differentiable at an interior point C
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•mxp
of S. Let T be a subset of 31Z such that F(X) e T for all X E S,

rxsand assume that G: T IR is differentiable at an interior point

xsB = F(C) of T. Then the composite function H: S 1R:r defined

by

H (X) = F (X))

is differentiable at C, and

VH (C) = ( VG (B)) (VF (C)) . (12)

Theorem 8 (Caudfty's ilule of Invariance for matrix functions). If F is

differentiable at C and G is differentiable at B = F(C) , then the

differential of the composite function H = GoF is

dH(C;U) = dG(B;dF(C;U)) (13)

for every U in leg.



- 18 -

9. Fundamental rules

We shall now discuss rules for finding differentials, so that we

can apply the First Identification Theorem in its two variants. The

rules for real-valued (scalar) functions are well-known. We have

.for real-valued functions u and v, and a real constant a:

da = 0

d(au) = adu

d(u+v) = du + dv

d(uv) = '(du)v + udv

d(l/u) = -(1/u
2
)du (u 0)

du
a 

= au du(under obvious restrictions
on a and u)

d log u = u
-l
du

de
u 

= e
u
du

da
u 

= a
u 
log a du

(u > 0)

(a > 0).

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

As the reader can see we have simplified the notation. Confusion is

not possible because of Cauchy's Rule of Invariance. For example, letting

(p(x) = u(x) + v(x), the unsimplified version of (3) would be

dcP(c;h) = du(c;h) + dv(c;h).

Similar results hold if U and V are matrix functions, and A is

a matrix of real constants:

dA = 0 (10)

d(aU) = adU (11)

d(U+V) = dU + dV (12)

d(UV) = (dU)V + UdV . (13)
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For the Kronecker product and Hadamard product the analogue of (13)

holds:

d(U 0 V) = (dU) OV+UO dV (14)

d(U * V) = (dU) * V + U * dV . (15)

Finally we have

dU' = (du)' (16)

d vec U = vec dU (17)

d tr U = •tr dU (18)

We shall prove some of these results. For example, to prove (4),

let (1)(x) = u(x) + v(x). Then

d(1) (x;h) / 11.1)4 = 11. 
3 

[D. 
3

1100 + 13.17(x)]j ii 3 

= h.D.u(x) + hily(x) = d.u(x;h) + dv(x;h).j 3 3

As a second example, let us prove (13). Using only (3) and

(4), we have

{d(UV)}.. . d(UV)..13 13

. d 1 u
ik vk3 

. . 1 d(u v .)ik k3k k

= 
{(duik 

)v
k3 
. + u.

ik dvk3 .}

= (du- )v
kj 

+ u
ik dvk3 

.ik 

= {(dU)V}.. + {UdV}.. .13 13

Hence (13) follows. The Kronecker and Hadamard analogues (14) and

(15) follow in a similar way.

•••
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10. Applications to simple, Hadamard, and Kronecker products

Let us now apply the theory developed in this paper to obtain

the Jacobian matrices of the simple, Hadamard, and Kronecker product,

respectively. These results correspond to Theorems 2-4 of Bentler

and Lee (1978). The reader will see that the approach via

differentials and the First Identification Theorem is elegant, simple,

and straightforward.

Before stating Theorem 9 we offer a simple proof of the following

well-known result.

Lemma 1. [Roth (1934), Neudecker (1969)]. For any three matrices

A, B and C such that the matrix product ABC is defined,

vec ABC = (C' 0 A)vec 13.

Proof. Assume that B has s columns denoted bl,b2,...,b
s

(1)

Similarly,

let the columns of the sxs identity matrix I
s 
be denoted u

1
1u21...,u

s
.

Then we can write B = y b.1.1!, so that
j----11 3 3

vec ABC =
j=1 3 D j=1 3

AID.) = (C' 0 A) X (u. 0 b.)
3 j=1 3 j=1 3 3

= (C' 0 A) vec b.u! = (C' A) vec B. II (2)
3 3j=1

mxr rxp
Theorem 9 (Simple product). Let U:S ± 3R and V: S 1R be two

matrix functions defined and differentiable on an open set S in Mrixci

Then the simple product UV is differentiable on S and the Jacobian

matrix is the mpxnq matrix

3 vec UV 3 vecU vec v
- (V' I )

(I U) 
3 

(vec m (vec X)' a(vec XP • (3)-
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d(UV) = (dU)V + U(dV) . (4)

Vectorizing. (4) we obtain, using Lemma 1,

vec d(UV) = vec (dU)V + vec U(dV)

= (V' Q I
m
) vec dU (I Q U) vec dV

vec u a vec V 
vec dX= (V' 0 I

m
) 

(vec X)' 
vec dX + (I 0 U)

(vec X) '

3 vecU 3 vec V = {(V' Im)
3(vec 

+ (I 0 U) 
3(vec X) '

)vecdX. (5)

The result now follows from the First Identification Theorem.

To prove the corresponding result for the Hadamard product we need

the following useful, if simple, result.

Lemma 2. For any two matrices A and B of the same order,

vec (A * B) = R vec B = B vec A, (6)

where A denotes the diagonal matrix displaying the elements of vecA

along its diagonal.

Proof. Obvious. II

mxp mxp
Theorem 10 (Hadamard product) . Let U: S IR and V: S 3R

be two matrix functions defined and differentiable on an open set S

in M1371x4a Then the Hadamard product UV is differentiable on S

and the Jacobian matrix is the mpxnq matrix

3 vec (U*V)
3(vec

^ 3 vec U avecV 
V + U

(vec X) (vec X)
(7)
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Proof. We take differentials,

d(U * V) = (du) * V + U * (dV)

and, vectorize, using Lemma 2,

,vec d(U*V) = vec ((dU) *V) + vec (U* (dV))

A A
= V vec dU + U vec dV

.  a vecU vec V • V vec dX + U vec dXD(vec X)' a(vec

(8)

3 vecU  -  3 vec V 
(vec (9)• {V + U 

(vec X) 
vec dX.3 

Again-, the result now follows from the First Identification Theorem.
H

The result for the Kronecker product is more difficult, but not

as :difficult as Bentler and Lee (1978) appear to think when they

precede their Theorem 4 with six lemmas. For us one lemma suffices.

Lemma 3. [Maudecker and Wansbeek (1983)]. For any mxp matrix A

anci rxs matrix B,

vec (A & B) = K
sm

fa I
r
)(vec A Ca vec B). (10)

Let, a_ (i :and b. (j = 1,...,$) denote the columns
7

of A and B, respectively.

0: 7= denote the columns of I and I
s
, respectively. Then

we can write A and B as-

A

and we obtain

Also, let, e. (i = 1,...,p) and u

i=1
a.e! , B 

= j1 
b.uta.

= 3 3
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s
vec (A 0 8) = vec (a.e` b.u1)

ii 3i=1 j=1

y vec (a. 0 b.)(e. e u.)i = / (ei 0 u. 0 a. e3 3 3 1 3ij ij

• 1 (I 0 K 0 I )(e. a. 0 u. ta b.)p sm r 1 1 3ij

= (I 2 K 0 I
r 1){ (1 vec a.e!) 0 (X vec buti!)}sm 1 J

= (1 0 K I ) (vec A vec B). (12)p sm r

mxp rxsTheorem 11. (Kronecker product). Let U: S 31Z and V: S IR

be two matrix functions defined and differentiable on an open set S

in Milx(1. Then the Kronecker product U Q V is differentiable on S

and the Jacobian matrix is the mprsxnq matrix

a vec (U V) 3 vec u a vec v 
3 (vec X) ' 

= (I
p 
2 G) 

(vec X) ' 
(H 0 I

r
) 

9.(vec X) '

with

(13)

G = (K 0 I ) (I vec V) , H = (I 0 K ) (vec U 0 I). (14)sm r m p sm s

Proof. We take differentials,

d(U 0 V) = (du) 0 V + U 0 (dV), (15)

and vectorize, using Lemma 3,

vec d(U 0 V) = vec ((du) 0 V) + vec (U 0 dV)

• (I &K I ) (vec dU 0 vec V + vec U 0 vec dV)p sm r

• (I &K 0 I ) ((I 0 vec V) vec dU + (vec U 0 I )vec dV}p sm r mp rs

• (I 0 G) vec dU + CH 0 I
r
) vec dV

• {(I G)G) 
3 vecU 

(H 0 
9 vec V 

(vec X) ' 
Ir) 

(vec X) 
} vec dX. (16)

The result then follows from the First Identification Theorem. 11
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11. Applications to functions of complicated matrix products

The number of applications is, of course, boundless. Let us

consider one final example, the function of five matrices

tr [(A 0 B) c (D *
-1
. Bentler and Lee (1978) claim that functions

-such as these arise in various disciplines including biometrics and

mathematical psychology. We wish to differentiate this function with

respect to each of the elements of the various matrices. Bentler

and Lee mention this problem, but they do not solve it.

We first prove Theorem 12.

mxr rxp xmTheorem 12. Let U : S IR , V : S 111 , and W : S IRP be

three matrix functions defined and differentiable on an open set S

in Meg 
mxm

• Let F: S MR be defined by F(X) = U(X)V(X)W(X).

Then, at every point X in S where the mxm matrix F(X) is nonsingular,

-
3 tr 

F1

a(vec  X)'

Proof. We have

• (- vec (Fs ) -2W 11/9 vecu/a(vec X) 1)

(- vec U 1(F 1)-214 1) i( vecV/3(vec x)')

(- vec V IIP (FI) -2) (.; vec W/3 (vec X) ' ) . (1)

- - - -d tr F
1 

= tr dF
1 

= - tr F
1 
(dF)F

1
 = tr F

-2
dF, (2)

and further

dF = d(UVW) = (dU)VW + U(dVIW+ UV(dW). (3)

Inserting (3) in (2) and rearranging gives
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-
d tr F

1
 = tr VWF

-2
dU - tr WF

-2
UdV - tr F

-2
UVdW

-• - (vec (F ) 
-2

W'V' )1 vec dU (vec U' (F 
2 
VP ) vec dV

- (vec V'U' (F')-2) vec dW, (4)

making use of the well-known relationship tr A'B = (vec A) ' vec B.

Now, since vec dU = (3 vec U/3 (vec X) ' ) vec dX and similarly for

vec dV and vec dW, the result follows from the First Identification

Theorem.

We now have all the ingredients to prove Theorem 13.

Theorem 13. Let A: S ±IR
tx r 

B: S IR
mxs 

, C : S 
rsxp 

, D: S IR 
pxim 

,

pxtm
and E: S be five matrix functions defined and differentiable on

.mxZman open set S in liZ
nxq 

Let F: S 
3R2

be defined by

F(x) = (Ax ) e B(x)) c(x) (D(x) * E(x)) . (5)

Then, at every point X in S where the 2,mx2,m matrix F(X) is nonsingular,

-
3 tr 

F1
 - 

3 (vec x)' = 
-2

- (vec (F')WC')(I G) (3 vec A/3 (vec X)

- (vec (F' )-2W'C') ' (H CI I
m
) vec B/3 (vec X)

- (vec U' (F1) 
-2

W' ' (3 vec C/3 (vec X) ' )

- (vec C' U 1 (F' ) -2) 'E (3 vec Dia (vec X) ' )

)

- (vec C' U 1 (F' ) -2) '6(3 vec E/3 (vec X) ') , (6)

where U = A ta B, W = D * E, and

G = (K
s2,
0 I

m
) (12,0 vec B) , H = (I

r 
K
si
) (vec A Ca I). (7)

Proof. Immediate from Theorems 10-12. II
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In fact, Theorem 13 answers a more general question than the

one posed in the beginning of this section. As a special case,

suppose that the matrices B, C, D, and E are functionally independent

from A, i.e. 3 vecB/3(vec A)' = 0 and similarly for C, D, and E.

Then we obtain from (6) the gradient vector

3 tr F
-1

-
= - (vec (F')

2 
W'C')'(I

r 
G) .

3(vec A)' (8)

The other four gradients are, of course, determined in the same way.
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Appendix A conversion table

The reader who wishes to compare our results with those of

Bentler and Lee (1978) will notice the difference in notation of the

two papers. The following conversion table may thus prove useful.

Bentler-Lee Magnus-Neudecker

I
n

I
n

(vec

DR X

E
mn

K
mn

BY [  3 vec Y' j'
3Z D(vec Z')'
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