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Maximum likelihood estimation of the GLS model with

unknown parameters in the disturbance covariance matrix.

Jan R. Magnus
0

University of Amsterdam, Amsterdam, The Netherlands

1. Introduction

In this paper we consider the regression model y = X$ + e with all the classical
assumptions (including normality) but one, viz we assume that the covariance

matrix of the disturbances depends upon a finite number of unknown parameters

01...0m. If the parameters 01...0m were known, the Aitken estimator would be

the BLU and maximum likelihood estimator. Since we assume that the els are

unknown, we are faced with the problem to estimate the O's and the Ots simul-

taneously. In sections three and four we derive the first and second order

conditions and the information matrix for the ML estimators of $ and O. These

appear to be surprisingly simple. The next two sections are devoted to the

properties of the ML estimators and to an algorithm that leads, under

general conditions, to a solution of the ML equations. In section seven we

apply these formulae to a general case, which facilitates the derivation of

the ML estimators and the information matrix in the last two sections which

are devoted to the autocorrelated errors model and to Zellner-type regressions.

It is known from the literature that iterative Zellner and iterative .

Cochrane-Orcutt are equivalent with the ML estimates. In the present paper

these iterative estimators appear as corollaries of muCh more general cases.

I wish to express my gratitude to prof H. Neudecker, who advised and

encouraged me in this research. I am also indebted to R.D.H. Heijmans

for stimulating discussions on the statistical .part of this paper.
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2. The "vec"-function and the Kronecker roduct

Let A 
]

[a.
i 

be an (m,n) matrix
j 

vec A is the (mn) column vector

vec A =
A
.1

•
A

•

and A , the jth column of A, then
.j

Let further Q be an (s,t) matrix, then the Kronecker product A 0 Q is

defined as the (ms,nt) matrix

A 0 Q = [aiiQ] •

An important connection between the vec-function and the Kronecker product
2)

is

vec ABC = (C' 0 A) vec B, (1)

where A is (m,n), B is (n,p) and C is (p,q).

Special cases of (1) are

vec AB = (I 0 A) vec B = (B' 0 I
m
) vec A = (B' 0 A) vec I

n 
(2)

The basic connection between the vec-function and the trace is

tr AZ = (vec A')'(vec Z), (3)

where Z is an (n,m) matrix.

From (3) we derive the more complicated expressions

tr ABCD = (vec B')1(A' 0 C)vec D = (vec C')1(B' 0 D)vec A

= (vec D')'(C' 0 A)vec B = (vec Al)'(D1 0 B)vec C, (4)

where D is a (q,m) matrix.

We now use (4) to establish the most general formula

tr ABCEF = (vec E')1(C' 0 FA)vec B = (vec E)'(FA 0 C')vec B',

where E and F are matrices of orders (q,r) and (r,m) respectively.

1)
A matrix of order (m,n) is one having m rows and n columns.

(5)

2)
A collection of theorems on Kronecker products and matrix differentiation

has been given by Neudecker (1969).



For easy reference we state the following special case of (4):

tr GVHV = (vec G)I(V 0 V)vec H,

where G,H and V are symmetric matrices.

Finally,

xtAB= (vec A)'(B 9 x)=(vec A') '(x 0 13),

where x is an (m,1) vector.

3. The maximum likelihood equations

Consider the linear regression model

y = X13. + c,

where y is an(n,l) vector of observations on the dependent variable,

X is an(n,k) matrix of the values of the regressors, 0 is a (k,1) vector

of the regression coefficients , and e is an (n,l) disturbance vector.

We shall make the following assumptions:

(6)

7)

ASSUMPTION 1: e is normally distributed .

ASSUMPTION 2: Ee=0, Eeet=fi, where 0 is a positive definite (hence nonsingular)

matrix whose elements are twice differentiable functions of a finite

and constant number of parameters 81,82,... ,em, i.e. 0=0(8), ee o .

ASSUMPTION 3: X is a fixed matrix of full rank and n > k.

ASSUMPTION 4: The parameters in $ are independent from those in

Theorem 1

The linear regression model (8) under the assumptions (1)-(4) has the

following first-order ML conditions

(±) =

tr  
(as1-1 no-1

= e'('"" ) , where e=y-X0 .
ae
h )8=8 6h e=o (h=1...m)

Further he jth equation
3

in (10) reduces to
(ao 1 )

e e 0 .
ae
j e=e

3) Assumption 4 can be relaxed. See Magnus (1977a)



•

proof

The probability density of y takes the form

-n/21 -1 i -1
(270 101 exp c

-1
Let V=0 , then the loglikelihood is

A = y + ilogIVI - ie'Ve, (11)

where y= - 1,1 log 27r is a constant.

Differentiating A we have
4)

dA = ltrV-idV - e'V(de) - le'WV)e

= e'VX(da) + itr(V-1-ee')(dV).

Necessary for a maximum is that dA=0 for all dO 0 and de 0. Thus:

(i) e'VX = 0

3V
(ii) tr(V 1-ee')---- = 0 (h=1...m),

DO
h

which proves the first part of the theorem.

Now suppose that IVI does not depend upon e then

0 = 
DlogIVI 

= trV
-1 3V

, which proves the second part.
De. 30.
3 3

(12)

It will be convenient to write (12) explicitly as a function of df3 and de.
-1

tr(V 1-ce')(dV) = Evec(V -ee')3 'vecdV

- 0)1, Ia. 9vecV 
= Evec(V 1-e

30

It follows that
ecV 

dA = (da)'X'Ve + 1(d0)'[ Dvae ) vec
(v-1...ect)

Remark

We shall refer to equation (10) as the 0-equation(s).

SIMINIMMINI1111101 

(13)

4)
In what follows we shall use the definition of a matbix derivative as in

Neudecker (1969). For instance the expression 3vecV/90 describes an

(m,n
2
) matrix.



4. Derivation of the Hessian matrix and the information matrix 
.

We recall from (11) and (13) that

A = y + A logIVI - e'Ve and

(avzcV) vec(V -ee').dA = (d0)'X'Ve + (dOP - 

Now, = [(c10)1 ,(de),1 H
de

The structure of H is given by the following theorem.

Theorem 2

Define the symmetric (m,m) matrices

M'3-   
ao-lij

m = (i,j=1...n)
300'

and let la = [w..], then the Hessian matrix of the loglikelihood
1j 

function (11) is

[H
11

H
12 

H
22

-1
-X'0 X

H11

12 (
3vec0

H = 
30

, with

-1

22
mij _ 'real

-1
) (avec0 )'

lj 1 j 2H = 1 (w. -c.c (fl 0 0
2. . De 9 e
1,]

proof

Starting from (13) we have
2 ,d(avecVpc(v-1_e0)
d A = (dOPM(d.c) + (dOPM(dV)e + i(de) 

 
v=

+ i(do)' (aNarrld vec(V-1-ee')

,d   
36

(avecV)vec k,..-1_= -(dPOXWX(d0) + (da)'X'(dV)e + (de) v cc' )

lavecV)36
vecV

(14)

lawiecV 
ae ju vec(c0). (15)i(dep

The second term in (15) can be written as follows:

(d)W(dV)c = (d0)'vec[ki(dV)e] = (da)'(e' 0 X')vec dV

= (d0),(00 v .
' 
, rear ,e.

ae 



From the definition of Mij in (14) it follows that

drocV) = 411do,m12d0,...,mnnj
au , so that30

d
recV) 

vec(V
1
-cc') [14

1
d ...,Mnnau]vec(n-c0)

- 
=

36

[ E (do) .3

- -
Further, since dV

1 
= -V 1(dV)V

1 
, it follows that

d vec V
-1 

= -(V
-1 

V
-1 

vec dV = -(V
-1 

0 V
-1
) 

(3(vecV
ae

Also, dvec ee' = vec(de)e' + vec e(de)'

- -vecX(d0)0 vec c(df3)'X'

de

= -(e 0 X) vec(d0) - (X 0 e) vec(d0)1 = (c 0 X + X 0 c)(d8) .

Collecting terms and inserting into (15) we find

av
d
2
A=-(de.)'X'VX(da) + (da)'(E' 0 X') 

ecT 
dO

36

i(deprecV
)Miji (de)3.3 3 30

+ i(d6P 
real

3e
0 X + X 0 c)(0).

-1 -1
0 V )

We finally observe that, since dV is symmetric, it follows from

(7) that

el(dV)X = (vec dV)'(X 0 c) = (vec dV)' (c 0 X).

avecV
ae de)



This implies that

(de,,(3vecV) (9vecV )) 
(c 0 X),(X 0 e) = (do)' ae ae

so that

d
2
A = -(da)'X'VX(da) + 

2(d6)1(3vecV 
ae 
)(x 0 c)(d0)

+
(vecV) 

(V
-1 

0 V)i(d6)'
13 2. ae

This concludes the proof.

OvecV 
ae ) 

Ade). (16)

Of particular interest is the information matrix T, defined as minus the
51

expectation of the Hessian matrix.

Theorem 3

The information matrix of the loglikelihood function (11) is

T =
x'c2 1x 0

0 2 .01

where T is a symmetric (m,m) matrix with typical element0
-1

= tr 
„ (3Q )0

0 13 ae. " 36.
1

proof

Since Ec=0 and Ec.e.=w , it follows that
1 3 ij

= 

-
EH
11 

EH12 I X'2
1 
X

T 

12 
EH
22

3vecV),
of 
-1

Let 'F 0e = ae 0 V 1)-

whose ij-th element is

(9vecV)'
96

(17)

(i,j=1...m) . (18)

0

3vecV)(V 0 V ) 
-1 -1 recV)

DO ae

, then T is a symmetric (m,m) matrix
6

-1 3V 301, ,-1 3V ,-1
—3-Vt (V-1ec 0 V ) (vec tr
. 

v ae.

el a 2. 3

according to (6)

9A 9A '5) Sometimes the information matrix is defined as E6) 6) , where

C' = (a':0'). We shall see in lemma (5) that this leads to the same

expressions.



Now we have to ensure that Y is a nonsingular matrix. We therefore need the
0

following assumption:

DO
-1

ASSUMPTION 5: The m vectors vec
De
1

lemma 1

,• • • vec
90
-1

30
m

are linearly independent.

Under the assumptions (1) - (5), the matrix T as defined in (17)

is positive definite.

Remark

Assumption five is also important for identification of the parameters.

Suppose for example that a = (01+02)1, then 01
and e

2 
are unidentified.

Such a parametrization is made impossible by assumption five.

5. Finite properties of the two-step Aitken estimator and the ML estimator

In section three we defined the loglikelihood function

1 -11 1 . -1
A = y + 2logIQ -

and we found that A is maximized when

(ii) 
(a2 -1)

= e' (asl le (h=1...m)
90
h 

90
h

(19)

(20)

Only in trivial cases, however, the system in (20) can be solved algebraically

for the ML values of 13 and 0. We therefore consider the following

iterative procedure
6)

(i) Choose 0 = 0
0 
e 0 , the class of admissible values of 0.

(ii) Calculate Q-1 = Q-1(0 ) ,
0

- - -
b
o 

= (VO
o
1 
X)

1 
X'Q

o
1 
y ,

6)
This is by no means the only numerical method to find the roots of (20)

The Newton-Raphson iteration, for example, does the same job. It involves,

however, inversion of the Hessian matrix at each step of the algorithm. On the

other hand, it does not need a solution of the 6-equation, as the procedure in



y

(iii) Substitute e
0 

into the 6-equation. This gives m (nonlinear)

equations in m unknowns (the 61s). When it is possible to

write the 6-equation explicitly as 6 = 6(e), we put

6
1 
= 0(e0). When an explicit solution of the 6-equation does

not exist, we may find more than one solution. In that case

we select the solution with the highest likelihood. This is 01.

(iv) Calculate 0-1
1

1 -
b
1 

= 
- 
1 
X)

and so forth, until convergence.

Oberhofer and Kmenta (1974) prove that, under very general conditions (their

assumption 6), the above procedure converges to a solution of the first-order

maximizing conditions.

The uniqueness of the ML solution is contained in the following

lemma 2

Suppose that the estimators obtained for a and 6 are consistent at each step
of the above iterative procedure. Then we have formed, upon convergence, a

consistent root of the ML equations. This root is the unique ML estimator.

proof

See e.g. Cramer (1946) or Dhrymes (1970, Chapter three)

The consistency of the estimators of 0 and 0 is studied in the next section.

Definition 1

The two-step Aitken estimator b1(60) is the estimator b defined by the above

algorithm, based on the initial value 60.

Definition 2

The pure Aitken estimator b* is (X'ClX)-1)011-ly ,.where 12 (or a2P) is the true

covariance matrix of the disturbances.
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Loma 3

Thr! two-step Aitken estimator 1)1(00) is distributed symmetrically around

0; it is unbiased if its mean exists.

2roof

Since e is symmetrically distributed, it follows from a line of thought

applied by Kakwani (1967) that it is sufficient to show that is an
1

even function of e. Now, according to the algorithm, e
1 
is a solution of

• 

tr(Oh
a2

- 
e0 

Deh
t ----)e0

D - 

where e0 = y - Xb0 = [I-X(Xt0-0 )

(h=1...m),

-11 _ _
iy = D-X(X12 ) /Xt2

o0
If e changes sign, e

0 
will change sign, but the expressions

eot H
-1

90
a° e0

will not be affected. Thus e
1 
is an even function of e, which implies that

Q
1 
is an even function of e.

Lemma 4

In so far as iteration leads to the ML estimator 0, it is unbiased, if its

mean exists.

proof

In the proof of leMma.(3) it was shown that 2
1 
is an even function of c.

This implies that e
1 
= [I-X(X'011X)-1X10-1"le also is an even function qf e.1

But, since 02 is an even function of el, it follows that 02 is an even function

of e. Therefore b
2
(0
0
) is unbiased if its mean exists. It is now clear that

iteration does not affect the unbiasedness of the estimator of 0. 0

The existence of expectations is investigated in Swamy and Mehta (1969),

Fuller and Battese (1973) and Mehta and Swamy (1976)..



Lemma 5

The multivariate normal density of c (with parameters a and 6) is regular
with respect to its first and second derivatives, i.e.

E DA/9c = 0 (21)

-E 9
2
Anc3C1 = E(aA/9C)(9A/DC)' ,

where

2roof

[:1
From (13) we have

3A/90 = XI0
-1

c and aivae = l(aveco 
2 ae vec(a-cc').

Since Ec = 0 and Ecc' = Q, it follows that

EDA/913 = 0 and EA/0 = 0, which proves (21).

(22)

In order to establish (22) we note that -E 3
2A/acac, is the information

matrix T. According to (17) and (18) we then have to prove the following

equalities:

Now,

(i) E(9A/D0)(3A/3)' = Xt0
-1

X

E(A/aa)(aivae)' = o

no-1
(iii) E[(DA/36)(9A/ ac36)1].. = ltr 2  (i,j=1...m)

1] 2 ae. 90

= X10
-1

E0A/913)(9A/30' = E X'cee'c2 1X

This proves (i). Further,

E(DA/30)(3A/96P = 11E [vec(0-cci)ji

-1
= c{vec(0-ect)}1

Consider the (n,n
2
)matrix

(DvecO
-1y

96

(Dvecfl
-1)

96
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s[vec(Q-c0)1' ,

with typical element c cis 1.
i jk k

Since Ec.w = 0 and Es s.s = 0 for all i,j,k, it follows thatjk i 3 k

Ee[yec(O-c0)]! = 0,

which proves (ii).

Finally,

Now,

(DA/a0)(DA/30)1

DA/a0)0A/DOP

javec0 
-11

vec(Q sel)[7.rec(R eel)P4 De
(Dvec0 

96

nn-1 as2-1
= 4-(vec vec(Q-cs1)[vec(Q-scl)P (vec TT-)"i

50-1 . 50-1
= '[tr tt-- (a-cet)][tr(R-c0)]

1 j

DO
-1 ft-̂1

cf i'....-e][tr -a- 0
1 1 3 3

-1
DO
-1

DO 
Es' c = E tr s'D6, DO.

1 1

acz
= E tr

86.

DO
-1 -1

80
= tr E = tr

36.

cc'

so that the above expression can be written as

aR q = ke- t aR 1r t DR aa
-1 

(aA/ae)(aA/ae),]ij , -c-ae -Lac ae. DO. ae.
3

Taking expectations we find

DO 3Q
-1

= 2 tr Q
30. 30.
1

DO
coy (c' c, c' aoae

Q.

The last equality follows from Magnus and Neudecker (1977, p.16).

This concludes the proof.
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6. Asymptotic properties of the two-step Aitken estimator and the ML estimator 

The asymptotic properties of estimators are almost without exception based on

random sampling, that is on the statistical independence of the yi (or ei). In

that case the central limit theorems apply. Our problem, however, consists in

estimating e, from a single (vector) Observation on y.

A related complication is that n increases in size when n increases. We shall

need the following assumptions.

32
-1

ASSUMPTION 6: The elements of Z
h 
= 30

h 
(h=1...m) are continuous functions of

e in an open sphere S of e
0' 

the true value of the parameter

vector e.
1 -

ASSUMPTION 7: lim X'2 1 
X exists as a positive definite matrix of fixed constants

n400
for all 0 in S.

1
ASSUMPTION 8: lim --XyZ X exists as a matrix whose elements are continous functions

n h
n4.0
of 6 (h=1...m).

These assumptions enable us to formulate the following theorem due to

Fuller and Battese (1973).

Theorem 4

Suppose there exists an estimator W for 6 such that Q-1(W) exists for
_

all n, and W = e0 + 0(n 6), 6 > 0, then the assumptions (2) - (8) imply

that

- b
n 
= 0(n 

26 
), where

W
- - 

-n = (X I Q
1 
(8)X)

1 
X'

1
CI (0)Y 5

(.(
and 

b4 
n 
is the pure Aitken estimator based on the true value 60'

proof

See Fuller and Battese (1973, p. 629)



Corollary

Under the same assumptions as in theorem 4 we have

plim W
n 
= plim b4c , and

#W
n 
has the same asymptotic distribution as b

n
,

that is

plim Wn = 13. ,and

vtin has asymptotic distribution N[0, lim n(00-1X)-1]
n-Y.0

We now turn to the ML estimators p, and e. In the standard case of random sampling
the value of the ML method lies in the fact that it generates estimators with

desirable asymptotic properties. Let O)e such a ML estimator. Then 
7) 
, under very

4.16

general conditions, is consistent, asymptotically unbiased and asymptotically

efficient. Further /7(c-c) has asymptotic distribution N(0, lim nT-1),

where T is the information matrix.

To deal with the more difficult non-standard case we need the following

assumptions:

-1ASSUMPTION 9: Every element of 
1 
--X!Q X converges as n4.00 to a finite function

of e, uniformly for 6 in any compact set.
-1 -1

3Q 3Q ASSUMPTION 10: Every diagonal element of 
1 
—T X' X converges as n-*00ae. ae.

to zero, uniformly for 0 in any compact set (i=1...m).

aQ-1 3Q
-1

1
ASSUMPTION 11: Tc-tr 767- converges as n÷co to a finite function of 6,

3

uniformly for 8 in any compact set (i,j=1...m).

1 4. (3
2
Q
-1

012ASSUMPTION 12:
n
2 'r ̀ ae.ae. converges as n-±00 to zero, uniformly for e

in any compact set (i,j=1...m).

7) 
See Kendall and Stuart (1967,_ Chapter 18.



8)Theorem 5

The ML estimates a and 0 from the regression model (8) under the assumptions
(1) - (5) and (9) - (12) are weakly consistent, asymptotically normally
distributed, and asymptotically efficient in the maximum probability sense
of Weiss and Wolfowitz (1967).

proof

It suffices to prove that the assumptions (2.1) and (2.2) of Weiss (1973)
reduce to our assumptions (9) - (12). This is greatly facilitated by applying
three theorems in Vickers(1977, section 1.4).

Let H = (h..) be the Hessian matrix from theorem 2 and T = (ipii) the13

information matrix from theorem 3. The implication of Vickers' theorems
is that and § are weakly consistent, asymptotically normally distributed
and assymptotically efficient in the maximum probability sense, if

1
(a) -- IP.

j 
converges as n+co to a finite function of 0 and 0, uniformlyn i 

for values 0 and 8 in any compact set (i,j=1...k+m),

1
(b) 

n
2 13 

---var(h..) converges as n400 to zero, uniformly for values a and 0 -

in any compact set (i,j=1...k+m).

We shall now show that the assumption (a) and (b) reduce to (9)-(12).
Partition

then

3
2
A  _ -1

_ c2 x.3f3i3aj 3

30
_12

A 
=X 6ae.ae.. 3 ae.1 ] 1

(i=

-3
2
A 90

-1
3
2
0
-1

38.38. - 
[:t 30

1

2 38. 38. 
0 + c'

38.30.1 1 3 1 3

3
2
0
-1 1

ae.ae.1 3
(i,j=1...m).

8) 
I am grateful to professor Lionel Weiss and Dr. Kathleen Vickers for calling
my attention to their work. Theorem five is a direct application of
Dr. Vickers' Ph.D. thesis.
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Thus,

Er  32A i_ -1
- x.2 x. ,L Da.K3. 1 31 3

22A

j

var[
1 

- = 0
n.36 9

EE a2A  ]r- 0 5

1 j

-1 -1Ai 1 aovarE 
8 

j = x! m o x.3.30. 3 38. 
1 

38
i 

3 'a. 3 

2 
32
-1 -1

[ 
3A /ao.ao.j = 1 

tr• 

2 30 
ae. DO. 

2 2
1 3 1 3

2
= 4 varEE I  3

2
2
-1

1 D
2
2
-1

2var E  ' A ] e] = 2 0ae.ae. ae.ae. tr (ae.ae.1 ‘3 1 3 1 3

It is now clear that (a) reduces to the assumptions (9) and (11), and that
(8) reduces to (10) and (12). This concludes the proof.

7. A general case

We shall apply the above theory to the autocorrelated errors model and to
Zellner-type regressions, but befpre doing so we first study a more general
case which will simplify the discussion in the next two sections.

Consder a covariance matrix of the following form

.1.11.111•1111111.1111

a Q rQ'11 1

a l Q rQ'p p 1

. . .

• . .

= Q(E 0 r)QT (23)

9) 
Ppplications to the heteroskedastic model and to error component analysis

Ere studied in Magnus (1977 a,b).
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where E and r are symmetric positive definite matrices of order p and
10)T resnectively, D< T , p fixed. The number of observations is n=pT.

Further,

Q= Q2 5

where the Q. (i=1.. .p) are nonaingular matrices of order T.

The covariance matrix (23) is clearly a generalization of-Zellner's case

of seemingly unrelated regressions. It is also an extension of 0 itself,

as can be seen by putting p=1. The matrix then reduces to

0 = a
2 
QrQ' ,

where r is positive definite and Q is nonsingular.
In the next section, where we study the autocorrelated errors model, we

shall work with 0=QQ', which simplifies matters greatly.

We suppose that E is completely unknown, thus containing p(p+1)

parameters, Q=Q(0, and r=r(E), where and E are parameter

vectors containing q and r components respectively.

Thus e consists of the elements of and E and of the 11)(1)+1) distinct'

elements ahk of E.

a

, where

= [all'a12"'"a1p'a22"."a2p"."app]

10)

•

- This is necessary to ensure the nonsingularity of the estimator of E.
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To derive the 0-conditions we proceed as follows:

-1
=

-1
PCE

-1

- -1-1 
= (dQ )'(E 0 )Q + P(E 0 r 1 

)(1Q )

- r -
+ (Q

1 
1.(dE 0 r-l]Q-1 + (Q-1)1[E-1 0 (dr-1)]

-1

From this it follows that

(1)  
0 + 

, -1, -1 
r
-1
)
9Q 1 ,.E r )Q 
aci ki=

aCi [aCi

DO
-1 

(ii)
-1)

= 0
-1PE-1 e ar 

aE. 3E. (j=1...

3SZ :=-0-1 r - -(iii) LS1E Y
hk1 

) 0 r-11 Q-1 (1 h k
3a

h

• •

hk .
where Y is a square matrix of order p with zeros everywhere except in the

hk-th and kh-th position where it has unity (24)
and (iii) follows from the fact that

-
dE
-1 

= -
1

E (dE)E 1 ,

so that

-1
az

-E
-1

Y
hk

E
-1=

Da
hk

•

Now define the following matrices:

i 
1 [

) '90
-

3Q
-1 -1

(i) G = 
i 
Q = 

ac. Q' + 0
-1 

E
-1 

0 r
-1
)
,N 

Q(E 0 r)Q, (i=1...q)C aC. 3c.
i 1

(ii) 0 = 
1
Q = (Q

-1)(
I 0 

ar  
ricp (j=1...r)

E aE. 9E.
J 3

hk ad-
(iii) G = .7._(Q-1)1(E-1Y

hk 
0 I)Qt (1 h k p) .a

Da
hk

The traces of these matrices are:

3Q
-1

(i) tr G = 2 tr ----Q
3c.

-1
ar 

(ii) tr = p tr aE. r

3

• - hk(iii) tr G
hk
= -T tr(E

1 
Y )

a



Lt e' = [e' el e']
2"." p

3Q
-1

-1
z
h 

= Q
h 
e
h zhi = 3ci

  e
h

Z
1'
z
2
,...,z

i
= 

1.111 
. 

21 pi (i=1...q).' 

aQ
-1

Then Q
-1
e = vec Z and e = vec 

'

so that

0-1 nn-1
(i)   e = 2et(" )'( -1 r )Q ie = 2(vec Z.)t(E @ r vec Z3 1

= 2trr-1ZE-1 ! (1=1..

-1 -1 -1eX ar ar -(ii) e = (vec Z)'(E-1 )vec Z = tr-ZE
1 
Zi (j=1. ..r)3 i 3&i 3

_E-hkE(iii) e''-  e =-(vec 
Z)'Rly -1) 0 

vec Z - -tr X
-1
zir

-1
ZY
-1

Y
hk

aa
hk

The 0-conditions (10) •are in the present case:

-1 -
(1) trr-1ZE-1 ! (1=1...q)aci

-1 -1
ar ar(ii) p tr---- r = tr---- ZE 

-1
Z' (j=1...r). 3 .E3 E3

1 -
(iii) E = ztr

where (i) and (ii) are obvious and (iii) follows from

or

-T trE
-1

Y
hk 

= -trE
-1
zir

-1
ZE
-1

Y
hk

tr(TE
-1 

- E
-1
z'r

-1
ZE
-1

)Y
hk 

= 0

This is equivalent with

TE
-1 

= E
-1
Vr

-1
ZE
-1

which in turn is equivalent with (iii).

(1 h k p).

(1 < h < k < p)

(1 < h < k < p).

(25)



,n-1 -1arNow define K = "'Q (i=1....q) and C = r (j=1...r), and leti aC j aE3.

eh ,k) = k + (11-1)(p-ih) h k p),

e
g(h,k)+q+r 

a
hk

=  ,

and the symmetric matrix from the information matrix (17) takes

then

the form
_

q T T T
CC CE Ca

= Te r T
EE 

T
Ea

ip(p+1) • . T
au_

11
where

(26)

(i)

(iv)

v)

(vi)

0116

(T ).
j 

= trG G = 2trK.K. + 2trK!(E
-1 0 r-1m(E o r) (i,j=1...q)cc i c c 3 3

). = trGiGi = 2trW.(I 0 C.)ij c E (1=1...q,j=1...r)

• •
3

trG G = ptrC.C. (i,j= )ij E 3

). = trGicG/c/yk =,-.2trK!(
1

E Y 6 I) (i=1...q;g(h,k)= ...ip(p+1))
- hk

ca 1,g(h,k) 1

(T ). ,
EG 3,g0,k

= trG
j
G
hk 

=--(trE 
Yk 

)trC.=
-1 h 

E 3

-2ahk 
trC.

3
if •

htrC. if h=k
3

(j=1...r;01,k)=1...ip(p+1))

ij hk -1 ij -1 hk(T
aa
)
ei,j),g(h,k) = 

trG
a 
G
a 

= Ttr(E Y )(E Y )

ih jk ik jh . .2T(a a ia a ) f and hA

ih jh
2T a a

ih ik
2T a a

T(aih)2

if ij and h=k

if i=j and flifk

if i=j and h=k

(g(i,j),g(h,k) = 1...ip(p+1))

-111) a
hk 

denotes the typical element of E .
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Finally, we give the expressions for the case p=1:

0 = a
2QrQ,

.(271

where 1'=r() is positive definite and Q=Q(C) is nonsingular, both of order n.

0, = [sf,cf,a2]

The -conditions are

and

3Q
-2

(1) a trK. = e'
( 1

)' r-1 
Q
-1 
e3c.

-1
(ii) a

2
trC. = e'(Q

-1
)' 

ar 
Q
-1
e

' acj

(iii) a
2 
= et(Q

-1
)'Q

-1
e ,

-q_ 
T T

s 
T„ 

00.
7. r. T

CE 
T
Ea

Te

1. . T
GO- -

where

CT ).. = 2trK.K. + 2trK!r-1K.r (i,j=1...q)c 13 1 • 3

(T ).. = 2trK!C.13 1

(T ).. = trC.C.13 13

(T ) = 2a-2trK.tai  1

(T ). = a-2trC ,
Ea J

= 
-'4

na .
GG

(i= ...q;j=1...r)

(i,j=

(28)

(29)

(3Q).



8. The autocorrelated errors model

Let y=XO + c, 
et="t-.14-C

1 
' Er-:° ' E"'=° n$ Il < 1. (31)

These conditions donot specify the standard first-order autocorrelated

errors model completely; one more assumption is needed as to the initial

value of the disturbances.

For the moment we shall only assume that

- pc
cl 0 oci

where (I) may depend on p; > 0

This implies that =Oci , so that we can write

= Ac where A = 1

00

Now a
2
I = EtA' = EAcciA' = A(Ecct)A' , so

= Ecc' =

According to (28) the 6-conditions are

(i) a2trK = e' aA 'Ae
ap

2 1
= —
n 

e'A'Ae

DA -
where K = — A'. Let 

ap

-403A
then =

Dp -1 0

Since

•

-1 0
ire

- -1
(I) !0_ r.

P 11

• 1 .
. e-. .-• .•
-1 n-1 n-2 .- ..

,.(i) P r .... "p 1

• • • 0

41.11. 01/10 .1111111 Amor

•

0

(32)



We find that
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• • •

./M.//••• .1.1111M, =MO

0

0

0

-1•
Clearly, trK = (1)'4)

n.
,2 22

Further e'A'Ae = E e. ) + e = E (e.-pe.
1-1 1 

i=1 
1-1

i=2

where
1-

n-1 n-1
_ 2 2TrT Re - cpcp e + pLe. 

_ 
E e.e. .

1 1+1

The 6-conditions (32) boil down to

-n-1 n-1
- -2 -1 2 2

e.e.
1 1 1 1+1

1 1

-2 1
(ii) a = E (e - pe

i-1
)2

1

In order to compute the information matrix we need

,
trK

2 
= 

((104)-1 )2

trK'K = the sum of the squared elements of K

n-3 k
-1 2 -2n-2 2i 2i

= 4'4) ) +4, Ep+EEp
i=0 k=0 i=0

2(n-1) n-3 
1-p

2(k+1)

= (404)
-1
)
2 
+4, 

-2 1-p  
+ E

1-p
2

k=0 1-p
2

9



(41 
-1 1

= )4)
1-p

-2 2(n-1_p

= (fo-1)2 1  [1.1_(1._

1-p2

According to

where

2
+ (n-2) - p 

2 

(1_p2(n-2)

1-p 

-2
)(1-p

2(n-1)
)-

29) and (30) the matrix T is

PP pa
Cla
-

5

1

• 1-p
2

2 -n- 1= 2tr, + 2trK'K = 4('q 1)2
 
+ n-(1-0

2 )(1-p2(1)
PP

= 2a
-2
tr = a

-2
0'0

-1
Pa

-4
it)= na .
GU

Two cases are of particular interest:

Case (i): iterative Cochrane-Orcutt

When 0=15 the ML condition th are simply

p=

n-1
E e.e

1 i+1
1
n-1

2
E e.

1
1

- -1
13= (X'A'AX) X'A'Ay

-2 
in

= — (e.-pe. )
2 

5 e =0n .1 1-1 01
1

1-p

(33)

1-p

(34)

_p

Applcation of the algorithm of section five gives the unique ML estimators
2of 0, p and a.



The information matrix reduces to

Case (ii)

1
---X'A'AX 0
a2 1

n 
1-p
:

n

0 ) 0
1-p 1-p

4
213

Kadiyala (1968) suggested cp = which thereafter appeared in the

textbooks (e.g. Theil (1971), p.253).

The condition for p is then

n-1 2 n-1
p E e. = E e.e.   a

2

2 1 1-p
1 1+1 2 •

-2
n-1

2 -2
n-1

Define a = E e.
' 

c = a E e.e. and f(p) = ap + P 0
2 1 1 1+1 '

1-p- '
1 

then (36) reduces to f(p) = c.

On the interval (-1,1) f(p) is a monotonically increasing function

of p. Moreover lim f(p) = co and lim f(p)
P+-1

(35)

(36)

'Thus for every c there is one unique solution of f(p) = c in the interval (-1,1).
The algorithm of section five thus leads to the unique ML estimators of $, p and
a
2
. The information matrix is

jJ =

1
-
2 
X'A'AX 0 0

a
1 2p

2
-0 (n-1+ ) P 

22 2 21-p 1-p a (1-p )

0
-p

2
(1-p

2
)a 2a

4

Of course, asymptotically the two cases are equivalent.

(37)
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9. Zellner-type regressions .

The formulae (25) and (26) are readily applied to the following two

well-known cases:

Case (i): iterated Zellner

In Zellner's (1962) case of seemingly unrelated regressions we have
12)

We therefore put r = I and Q = I in (25) and find

- 1

where

(34)

(39)

This shows again13)that continuing Zellner's estimation procedure until

convergence yields the ML estimator.

The information matrix is

ak'Q-1X
T =

where T is defined in (26.vi).GO

Case (ii): iterated Parks

Parks (1967) investigated a system of regression equations where the disturbances

are both serially and contemporaneously correlated, and he proposed a three-step

estimator for 0, which he proved to be consistent and asymptotically efficient.
14.The covariance matrix in this case 
) 
is

0 = Q(E 0 I)Q' , (41)

12)
In some applications we have R.= I 0 E or R = r 0 E. The formulae for these

cases may be derived in a similar fashion.

13) See Dhrymes (1971).

14)
Our model differs slightly from Parks', viz, in the specification of the

initial value of the disturbances. See the discussion in the previous section.
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0
where Q and 

Q71 
=
I

1 -p.
1

.
(1= ...p) .

Clearly, IQ' does not depend upon the pi, which implies that
3Q
-1

tr Q = 0 (i=1...p) .3p
i

aQ-.1A , if i=j

Further,  
3p. 5

0 if

where •
-1 •

•

•-1 0

It then follows from (25) that the 0-conditions are

tr ZE Lat = 0 (1=1...p)

5
1(ii) E = Z'Z

-- - /where Z = DQ 1
1 
e
1'
...,Q

1 
e
P 
j • and

P 

0, Ae.,0 0] (i=1...

Let ai be the typical element of E , then the condition

•••

(42)

4,

(43)

(43.1) reduces to
p
E a

1]
e!,/^0Q.1e. = 0 (i=1.. .p) . (44)3 j=1 3

P. -1
3

Now A' Q.(23

0

= p.R - R. 1 2 9
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j=1

where R
1

1

1

0

and R
2 
=

Then e!A'Qe. = p.e!R e - e!R e
1 3 3 3 1 j i2 j '

so that (44) can be written as

P
E (ae!R e.)p

1 3 j

or in matrix notation

0- 1

1

0

p
E a

1]
e!R

2 
e. (i=1...p),
3

j=1

-
(E

-1 
0 EiR E)p = (

1
E 0 E'R

2 
E)s
'

where p' = (p ..p ),
1. p

is the Schur product.

The 0-conditions (43)

is a vector consisting of p l's and C.D:Ecjidji

may now be written as

- -- - --
(i) p= (E

1 
0 

'R1 
1 

E) (E
1 
0 'R

2 
E)s

- 1 - -
(ii) E= —

T 
Z'Z .

(45)

We have to make sure that the expressions in (45) exist, i.e. that E and
--1
E 0 E'R

1
E have rank p. Since the Schur product of two positive definite

matrices is also positive definite (see Bellman (1970, p.95)), sufficient
--1

for E 0 E'R
1
E to be positive definite is that E is positive definite and

E'R
1
E is nonsingular. Let E be the (T-1,p) matrix that is derived from E by

--1
deleting its last row, then sufficient for E and E ° E'R1E to be positive

definite is that

rank (Z)= rank () = p .

When we now add the condition for $ to the 0-conditions (45) , it is clear

that we have formed three well-defined functions:



(1) = 

(

;,

E

) = [x,(61),(i."4 0 i)iilTlx1(Q71),(i...1 0 i) -ly

aaft

(ii) p = p(0,E) = (i-1 0 EIR
1 
E) l(E--1•E'R

2
E)s

1 - -(iii) E = E(p,O) = TZ'Z.

(46)

One iterative scheme to find the solution of (46) would be as follows:

(5.) Choose the initial values p(0) and E(0)

(ii)  (0) = 0(p(0),E(0))
and e(°) = y-X;(°)

-(1) _ -(0) (0)
(iii) P - ,E )

-(1) _ (1) -(0)) and (1) _ -(1)(iv) - gp ,E e - yXB

(7)

(vi) ;(2) = 0(;(1),i(1)) and e(2) = y-X;(2)

etcetera until convergence.

(0)Another scheme, equally feasible, would be to choose p
(0) 

and E and then
-(0) -(1) -(1) -(1) -(2) -(2) -(2)calculate 13 ,p,E,O,p,E, , etcetera.

There are several other possibilities.

Parks' procedure can be completely described in terms of the first scheme,

based on the initial values p
(0) 

=0 and

In that case

-(0) _
e -(0)- (X'X)

-1
X'y and ( = y-X$

Pj-(1) = Tile. e. 1 
/T-1 

(1)E e.
2

(j=1...p) and Q= Q(p )
-

[
k=i 3k 3,k1 

k=1 3k

;(1) [x,07i-lpi5-1x]-1x,
(
5-1),(5-ly e(1) = y-x;(1); 

Z(6,e(1))

-(1) 1 -,-
E = Z Z

( )-1

;(2) = 0 I)Q-7]-1)0(;- )'(i(1)-1 0 I)(-i-1.3r.
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-(2)a is Parks' so-called 'three-step' estimator. .However, continuing
the procedure until convergence yields the ML estimator.

To construct the information matrix we proceed as follows:

DQ K. = 
-1 

= Y 0 AQ.Dp (1=1...p),

where Y
ii 

is defined in (24) and A in (42).

K.K. =
3

AQi =

0 if

Y 0 (AQi)
2

1 •
• •

• •

• •

• •

-1 0

It is clear that

if i=j .

'1.

'n-1
Pi 

. . . • p. • 1

tr(AQi) = tr(AQi)2 = trKiKi = 0

and
n-2 k

,tr(AQ )'AQ. = E E (P.P.)'i 
k=0 h=0

Now let A = p.p. , then

0
1
•

•

•

'n-2 • . .
P • p 1 0

n-2 k n k+1 n-1
E E

h 
= E 

1-A = 1 [n 1 AU-A
k0 h0 k=0 

1
-
A 1-A 1-x==

1-A 
1-A

(1-A)
2

From this it follows that

tr10.(E-1 JI)KE 0 I)

= 0 (Tily)(E-1 0 r,1041- 0 AQ .)(E 0 I)3

= tr(YilE-10jE) 0 (011AQ.)
J

.4
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= tr(YilE-1YjjE) 0 (QIA'Ay

1-(p.p.)1J n 3 
]aij [1-p .P

1 j (1-P.P.)
2

j

Further

tr(E-lyhk
ig i) = tr(Yii 0 Q1A1)(E

-1
Y
hk 

0 I)

tr(YliElyhk) trmAl) = 0
= -

Using the formulae in (26) we have

0
PA

0
aa

where (T ).-
pp 1.]

„ ij
= La

a. 3

PiPj (1-P.P )
2

1]

and T is defined in (26.vi).
aa

(i,j=1. ),

(47)
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