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Introduction

In this paper we consider the regression model y = X8 + € with all. the classical
assumptlons (including normality) but one, viz. we assume that the covarlance'

matrix of the disturbances depends upon a flnlte number of unknown parameters
91...em. If the parameters e ...9 Wwere known, the Altken estimator would be
the BLU and maximum llkellhood estlmator. Since we assume that the e's are
unknown, we are faced with the problem to estimate the B's and the 6's simul-
taneously. In sections three and four we derive the first and second order
conditions and the information matrix for the ML estimators of B and 6. These
appear to be surpriéingly simple. The next two sections are devoted to the
properties of the ML estimators and to an algorithm that leads, under

general conditions, to a solution of the ML equations,.In section sevén we
apply these formulae to a general case, which facilitates the dgrivation of
the ML estimators and the informétion matrix in the last two sectionsvwhiéh
are devoted to the autocorrelated errors model and to Zellner-type negrgssions.
It is known from the literature that iterative Zellner and iterative
Cochrane-Orcutt are equivalent with the ML estimates. In the present paper

these iterative estimators appear as corollaries of much more general cases.

%)

I wish to express my gratitude to prof H. Neudecker, who advised and
encouraged me in this research. I am also indebted to R.D.H. Heijmans

for stimulating discussions on the statistical part of this paper.




2. The "vec"-function and the Kronecker product

Let A = Eaij] be an (m,n) matrixl) and A 5 the jth column of A, then

vec A is the (mn) column vector

A
vec A = :l

A
.n

Let further Q be an (s,t) matrix, then the Kronecker product A ® Q is

defined as the (ms,nt) matrix
A0 Q= [a;0q].

An important connection between the vec-function and the Kronecker product
..2)
is

vec ABC = (C' 8 A) vec B, ' (1)

where A is (m,n), B is (n,p) and C is (p,q).

Special cases of (1) are

vec AB = (Ip ® A) vec B = (B' 8 Im)‘vec A = (B' ® A) vec In'

The basic connection between the vec-function and the trace is
tr AZ = (vec A')'(vec 2),

where Z isan (n,m) matrix.

From (3) we derive the more complicated'expressions

tr ABCD = (vec B')'(A' @ C)vec D = (vec C')'(B' ® D)vec A
(vec D')'(C* ® A)vec B = (vec A')'(D' 8 B)vec C,

where D is a (q,m) matrix.

He now use (4) to establish the most general formula
tr ABCEF = (vec E')'(C' ® FA)vec B = (vec E)'(FA 8 C')vec B',

where E and F are matrices of orders (q,r) and (r,m) respectively.

1 . . .
) A matrix of order (m,n) is one having m rows and n columns.

2) A collection of theorems on Kronecker products and matrix differentiation

has been given by Neudecker (1969),




For easy reference we state the following special case of (4):

tr GVHV = (vec G)'(V @ V)vec H,

where G,H and V are symmetric matrices.

Finally,

x'AB= (vec A)f(B 8 x)=(vec A')'(x © B),

where X is an (m,1) vector.

. The maximum likelihood equations

Consider the linear regression model

y = XB + €,

where y is an(n,1) vector of observations on the dependent variable,
X is an(n,k) matrix of the values of the regressors, B is a (k,1) vector
of the regression coefficients, and € is an(n,1) disturbance vector.

We shall make the following assumptions:

ASSUMPTION 1: ¢ is normally distributed . '
ASSUMPTION 2: Ee=0, Eee'=Q, where Q is a positive definite (hence nonsingular)

matrix whose elements are twice differentiable functions of a finite
and constant number of parameters SR D PRE i.e. 9=0Q(0), 6€0 .
ASSUMPTION 3: X is a fixed matrix of full rank and n > k.

3
ASSUMPTION 4: The parameters in B are independent from those in 6. )

Theorem 1

The linear regression model (8) under the assumptions (1)-(4) has the

following first-order ML conditions

(i) 8= xa ) kgl : (9)

"l -~ —l - ;
(ii) tr[ag ] Q= e'[-‘?-‘?—-} - e, where ezy-X8 . (10)

a6

h 90y,

6=6 6=6

(h=1...m)

Further if IQI, the determinant of Q, does not depend upon ej, the jth equation

in (10) reduces to

3) Assumption 4 can be relaxed. See Magnus (1977a)




proof

The probability density of y takes the form
(2ﬂ)—n/2|9|_% exp -%e'Q-le

Let V=Q-l, then the loglikelihood is
A=y + Ylog|V] - Ze'Ve,

where y= - E-log 27 is a constant.

2
Differentiating A we haveu)

dA = %trv_ldv - €'V(de) - 2e'(aV)e
e'VX(dB) + %tr(V-l-ee')(dV).

Necessary for a maximum is that dA=0 for all dB # O and d8 # 0. Thus:

(i) e'vXx = 0

(i5) tr(V Tee' )0t = 0 (h=l...m),
h

which proves the first part of the theorem.
Now suppose that |V] does not depend upbn ej, then
0 = 910 |V| = 1:1"V--l —8-2-! , which proves the second part. a

90,
J

It will be convenient to write (12) explicitly as a function of dB and de.
tr(v oee)(aV) = [vec(V t-ee")] 'vecdv

- -1 ovecV

= [vec(V -ee')]'[—sa——J'de.
It follows that

dA = (dB)'X'Ve + %(de)'[ gvecV

.-1 '
=5 } vec(V “-ee') .

Remark

We shall refer to equation (10) as the 6-equation(s).

4) In what follows we shall use the definition of a matrix derivative as in

Neudecker (1969). For instance the expression 9vecV/36 describes an

2 .
(m,n") matrix.




4. Derivation of the Hessian matrix and the information matrix .

We recall from (11) and (13) that

A=y + 3 log|V] - 3 e'Ve , and

dh = (dB)'x'Ve + 1 (a8)' |V} vec(vloeet).
26

, , a6
Now,  d“A = [(dB)',(de)'] H
de

The structure of H is given by the following theorem.

Theorem 2

Define the symmetric (m,m) matrices

.. a1,
ij . ij -
LTI (i,j=1...n)

and let Q = [mij]’ then the Hessian matrix of the loglikelihood'

function (11) is

H'
12 , with

sy

proof
Starting from (13) we have

d2A = (dB)'X'V(de) + (dB)'X'(dV)e + %(de)'d[gggsvaec(V-l-ee')

BvecV]d

+ %(de)'[ 7% vec(V-l—ee')

= —(dg)'X'VX(dB) + (dB)'X'(dV)e + %(de)'d[gggﬁvaec(v'l-se')

dvecV

+ %(de)'FbEEﬂqd 'vecV_l - %(da)'[ 56

) )d vec(ee'). (15)

The second term in (15) can be written as follows:

(dB)'X'(dV)e = (dB)'vec[X'(dV)e] = (dB)'(e' & X')vec dV

= (dB)'(e' & X') (3;§°V]'de.




From the definition of M'J in (14) it follows that

dvecV
d[ 90

] = ''a0,4"%a0,...,u"d6] , so that

d[agchJ vec(V loget) = [Mllde,...,Mnnderec(Q~ee')

- - 131 (a0
[ifj(wij eges M ] (do) .

1

Further, since dV_ -V_l(dV)V~1, it follows that

1 -1

d vec V_ ~vtevilvec av = -(v'1 e v'l) {—-——-

Also, dvec ee' = vec(de)e' + vece(de)!
-vecX(dB)e' - vec e(dB)'X!

-(e 8 X) vec(dB) - (X 8 €) vec(dB)' = - (¢ 8 X + X © €)(dB) .

Collecting terms and inserting into (15) we find

_d2A=-(dB)'x'vx(ds) + (dB)'(e' ® x;)(agzcv]'dé

98 96

1ae)' [ Z.(wij-eiej)Mij](de) - %(de)'{@5§3Q(v’1 8 v’l)[avecv]'(de>

1,3

%(de)'{QZEEY](s X + X 8 e)d).
906

We finally observe that, since dV is symmetric, it follows from
(7) that

e'(dV)X = (vec dV)'(X © €) = (vec dV)' (e ® X).




This implies that

(de)'[a—‘ggc—‘i] (x ec)s= (de)'[a‘a";""] (e © X)),

so that

a%A = -(dB)'X'VX(dB) + 2(de)'{3§%9!] (x & €)(dB)

. > o - - ' N “ .
+ 3(de)'| = (wij-eiej)mlJ -{3%%92) wvlev 1){2%%22],-(d6). (16)
' i,] '

This concludes the proof.

Of particular interest is the information matrix ¥, defined as minus the

expectation of the Hessian matrix.

Theorem 3
The information matrix of the loglikelihood function (11) is

X1 X 0

0

(i,j=1...m) .

(¥g)y

proof

Since Ee=0 and Ee.e.=w.,. , it follows that
13 1]
1

' 10 +y .
EHll EH12 ) X'qQ X 0

| 1 [dvecV -1 -1,|9vecV|!
Ejp By ’[ 56 < &V T .

is a symmetric (m,m) matrix

- - 1
Let ¥ Fﬁﬁfﬂq(v levh Ffﬁfﬂq , then ¥

6 90 a0 6

whose ij-th element is

P\AR -1 _ -1 oV _ Vv
[vec _GT-] (v eV ™) {vec —éT-] = tr [86.
i j i

according to (6) 0

ew 2 . JA| [oA|!
5) Sometimes the information matrix is defined as E{gEJ [52] » Where
T' = (B':6'), We shall see in lemma (5) that this leads to the same

expressions.




Now we have to ensure that we is a nonsingular matrix. We therefore need the

following assumption: :

an”t an™t

ASSUMPTION 5: The m vectors vec 39 > Vec zg— are linearly independent.
1

lemma 1

Under the assumptions (1) - (5), the matrix ¥ as defined in (17)

is positive definite.

Remark

Assumption five is also important for identification of the parameters.
Suppose for example that Q = (91+62)I, then 6, and 6, are unidentified.

Such a parametrization is made impossible by assumption five.

. Finite properties of the two-step Aitken estimator and the ML estimator

In section three we defined the loglikelihood function

A=y + %loglﬂ-ll - %E'Q_le . (19)

and we found that A is maximized when

(1) 8= xa ko xaly

-1 Lo -1
(ii) tr[gg ]Q=e'[gg ]e (h=1...m) ..

h h

Only in trivial cases, however, the system in (20) can be solved algebraically
for the ML values of B and 6. We therefore consider the following

6)

iterative procedure

(i) Choose 6 = eo € 0 , the class of admissible valuesof 6.

(ii) Calculate Qal Q-l(eo) s

1 1 "1
- ] ?

This is by no means the only numerical method to find the roots of (20)
The Newton-Raphson iteration, for example, does the same job. It involves,
however, inversion of the Hessian matrix at each step of the algorithm. On the

other hand, it does not need a solution of the 6-equation, as the procedure in

2.1 o 1 .




ey =y - Xbo .

(iii) Substitute e, into the 6-equation. This gives m (nonlinear)
equations in m unknowns (the 8's). When it is possible to
write the 6-equation explicitly as 6 = 6(e), we put
8, = G(eo). When an explicit solution of the 6-equation does
not exist, we may find more than one solution. In that case

we select the solution with the highest likelihood. This is 61.

-1
Calculate Q, Q (61) ’

-1,.-1,, -1
] 1
b, = (X'a,7X) X ?1 Y s

and so forth, until convergence.

Oberhofer and Kmenta (1974) prove that, under very general conditions (their

assumption 6), the above procedure converges to a solution of the first-order

maximizing conditions.

The uniqueness of the ML solution is contained in the following

Suppose that the estimators obtained for B and 6 are consistent at each step
of the above iterative procedure. Then we have formed, upon convergence, a

- consistent root of the ML equations. This root is the unique ML estimator.

proof

See e.g. Cramér (1946) or Dhrymes (1970, Chapter three)

The consistency of the estimators of B and @ is studied in the next section.

Definition 1

1(60) is the estimator bl defined by the above

algorithm, based on the initial value 60.

Definition 2

covariance matrix of the disturbances.




Lemma_3

The two-step Aitken estimator bl(Bo) is distributed symmetrically around

By it is unbiased if its mean exists.

proof

Since € is symmetrically distributed, it follows from a line of thought
applied by Kakwani (1967) that it is sufficient to show that 2 is an
even function of e. Now, according to the algorithm, 61 is a solution of

-1
oQ
tr[ae }Q

..l
a9
= Ve =
N = eo[ae ]eo (h=1...m),

h

-1,,-1,, -1 -1,,-1,, -1
= - = - ' ' = - 1 U
where e) =y - Xby = [I-X(X'a ") 7"X'a "]y = [I-X(X'Q "X)"x'Q “e.

If € changes sign, e

e'[ag-l]e
0 aeh 0

0 will change sign, but the expressions

will not be affected. Thus el is an even function of €, which implies that

Ql is an even function of €.

Lemma 4

-

In so far as iteration leads to the ML estimator B, it is unbiased, if its

mean exists.

proof

In the proof of lemma.(3) it was shown that ﬂl is an even function of =.

This implies that e, = [I—X(X'Qllx)-lX'Ql%]e also is an even function of e.
But, since 92 is an even function of ers it follows that 92 is an even function
of €. Therefore b2(60) is unbiased if its mean exists. It is now clear that

iteration does not affect the unbiasedness of the estimator of B. 0

The existence of expectations is investigated in Swamy and Mehta (1969),
Fuller and Battese (1973) and Mehta and Swamy (1976).




The multivariate normal density of € (with parameters B and 6) is

with respect to its first and second derivatives, i.e.

E 3A/3C = O
-E a2A/3§8c' = E(3A/3t)(3A/3g) !

where B
C = 0

Eroof

From (13) we have

-1 dve Q_l
9A/3B = X'Q "¢ and 23A/36 = %L—sas——-] vec(R-ec').

Since Ee = 0 and Eee' = Q, it follows that
E3A/3B = 0 and E3A/36 = 0, which proves (21).

In order to establish (22) we note that -E 52A/3c8;' is the information
matrix ¥. According to (17) and (18) we then have to prove the following
equalities:

(1) E(3A/38)(30/38)" = X'@ X

(ii) E(3A/3B)(3A/038)" =

-1 -1

a0 of . s

-3—6—,.— Q —a—é——— Q (1,]-1. ..m)
1 J

(115 E[(_aA/ae)(aA/ae)']ij = Itr

Now,

E(3A/3B)(3A/3B)' = E e teeraIx = xre etk = xta X,

This proves (i). Further,

, L
E(3A/3B)(3A/38)' = 3E x'e e [vec(-ec)]! [ngcﬂ ]

- 1
dvech 1]

=3 X'Q-l[E e{vec(R-ec')}'] [ T

Consider the (n,nz)matrix




e[vec(-ee")]" ,

with typical element ei[mjk - Ejek]‘

Since Ee,w., = 0 and Ee.e.e, = 0 for all i,j,k, it follows that
i3k i737k

Ee[vec(Q-ee')]' =0,
which proves (ii).

Finally,

a0 a6

-1 -1

[(aA/ae)(aA/ae)']ij = &(vec ggi )! vec(Q-ee')[vec(Q-ee')]{ (vec ggj

- avecﬂ—l BVecQ-l '
(30/30)(3A/30)1 = | ———]|vec(Q-ee') [vec(R-ee)]"' || .

)

1
a0 \
865' (Q-€¢ )]

-1 .
aQ '
36;—'(9'86')][tr

-1 - -1 -1
32 L, an 0 LTt
%6 R-e 96, [tr %, Q- e a?i e].

= E tr €' 3

. 0 '
tr E 36 C€
i
so that the above expression can be written as
ag'l -1 -1 -1

N N of
— - 1 1 - ]
aei € - Ee 33;_€)(€ € - Ee!' —<).

u[(an/a0)(an/30) "] ;5 = (e’ 2. 38

Taking expectations we find

uE[(aA/ae)(aA/ae)']ij = cov (¢! B

an L
36.
3

st

= 2 tr 367— Q
1

Q.

The last equality follows from Magnus and Neudecker (1977, p.16).

This concludes the proof.




6. Asymptotic properties of the two-step Aitken estimator and the ML estimator

The asymptotic properties of estimators are almost without exception based on

random sampling, that is on the statistical independence of the A (or ei). In
that case the central limit theorems apply. Our problem, however, consists in

estimating B from a single (vector). observation on Y.

A related complication is that Q increases in size when n increases, We shall

need the following assumptions.

an~1

ASSUMPTION 6: The elements of Zh = 59 (h=1...m) are continuous functions of

6 in an open sphere S of 90, the true value of the paramete#
vector 0. -

ASSUMPTION 7: li:-% X'Q-lX exists as a.positive definite matrix of fixed constants
;or'all 6 in S.

ASSUMPTION 8: lim %-X'th exists as a‘métrix whose elements are coﬁtinous functions

n>e®

of 8 (h=1...m).

These assumptions enable us to formulate the following theorem due to .
Fuller and Battese (13973).

Theorem 4

Suppose there exists an estlmator § for e such that Q_l(g) exists for
all n, and ] by + o(n~ ), § > 0, then the assumptions (2) - (8) imply
that

%n - bi = O(n-%-a), where
= ke Y EHx e E

and bﬁ is the pure Aitken estimator based on the true value 90.

proof

See Fuller and Battese (1973, p. 629)-




Under the same assumptions as in theorem U we have
. _ U
plim gn = plim bn , and

. . . . #*
gn has the same asymptotic distribution as bn’

that is
V)
Plim Bn = B8 , and

/;(gn—s) has asymptotic distribution'N[O, lim n(X'Q-lX)—lj .

n-r-o

- -

We now turn to the ML estimators B and 6. In the standard case of random sampling
the value of the ML method lies in the fact that it generates estimators with
desirable asymptotic‘properties. Let £ be such a ML estimator. Then,7), under very
general conditions, ¢ is consistent, asymptotically unbiased and asymptotically
efficient. Further /E(E-;) has asymptotic distribution N(0, lim nW_l),

. . . . n->-o
where ¥ is the information matrix.

To deal with the more difficult non-standard case we need the following

assumptions:

ASSUMPTION - 9: Every element of %-X'Q_lx convefges as n»» to a finite function

of 6, uniformly for 6 in any compact set.

_ . -1 -1
ASSUMPTION 10: Every diagonal element of la-X' %%—— Q %%—— X converges as n»>«
n i i

to zero, uniformly for 6 in any compact set (i=1...m).

-1 -1 .
ASSUMPTION 11: %-tr %%—- Q %%—— Q2 converges as n»» to a finite function of 6,
i 3

uniformly for 6 in any compact set (i,j=1...m).

2.-1 '
ASSUMPTION 12: iL§~tr (%EQSE~ 9)2 converges as n»» to zero, uniformly for @
n i 73

in any compact set (i,j=1...m).

7) See Kendall and Stuart (1967), Chapter 18.




Theorem 5 8)

The ML estimates g8 and § from the regression model (8) under the assumptions
(1) - (5) and (9) - (12) are weakly consistent, asymptotically normally
distributed, and asymptotically efficient in the maximum probability sense
of Weiss and Wolfowitz (1967).

proof

It suffices to prove that the assumptions (2.1) and (2.2) of Weiss (1973)

reduce to our assumptions (9) - (12). This is greatly facilitated by applying
three theorems in Vickers (1977, section 1 u).

Let H = (h ) be the Hessian matrix from theorem 2 and ¥ = (w ) the
1nformat10n matrix from theorem 3. The 1mpllcat10n of Vickers' theorems
is that B and § are weakly consistent, asymptotically normally distributed

and assymptotlcally efficient in the maximum probablllty sense, if

(a) —fw 3 converges as n* to a finite function of B and 6, uniformly

for values B and 6 in any compact set (i,j=1...k+m),

(b) li-var(hij) converges as n*® to zero, uniformly for values B and 6
n , g

in any compact set (i,j=1...k+m).

We shall now show that the assumption (a) and (b) reduce to (9)-(12).

Partition

(i,3=1...%),

(i=1...m,j=1...k),

(i,j=1...m).

8) I am grateful to professor Lionel Weiss and Dr. Kathleen Vickers for calling

my attention to their work. Theorem five is a direct application of
Dr. Vickers' Ph.D. thesis.




sl a7t

J-aTQ X.

aei ]
-1 _
E[— 32A 9 _1 EIY) Q 3§ 1 Q
90,00, 98, 08, ?
i3 1 J

2. -1 2.-1

524 920 5%q

36,90,
13

2

vér[r % var[e! Q).

_9 & =1 9§
5596 €] = 3 tr (36 50-
i%%3 1%3

It is now clear that (a) reduces to the assumptions (9) and (11), and that
(8) reduces to (10) and (12). This concludes the proof.

A general case

We shall apply the above theory to the autocorrelated errors model and to
Zellner-type regressionsg), but before doing so we first study a more general

case which will simplify the discussion in the next two sections.

Consider a covariance matrix of the following form
- , )
1% e 9 YT
= oz eme' ,

o rqQ! .. g rqQ’
plQp Q1 prp Qp

9)

fpplications to the heteroskedastic model and to error component analysis

ére studied in Magnus (1977 a,b).




where I and I' are symmetric positive definite matrices of order p and

T respectively, D ¢ Tloz p fixed. The number of observations is n=pT.

Further,

where the Q; (i=1...p) are nénéingular matrices of order T.
The covariance matrix (23) is clearly a generalization of -Zellner's case
of seemingly unrelated regressions. It is also an extension of Q itself,

as can be seen by putting p=1. The matrix then reduces to
2 = o’qre' ,

where T is positive definite and Q is nbnsingular.

In the next'sectioﬁ, where we study the autocorfelated.errors model, we
shall work with §=QQ', which simplifies matters greatly.

We suppose that I is completely unknown, thus containing ip(p+1)
parameters, Q=Q(z), and TI=I({), where ¢ and £ are parameter

vectors containing q and r components respectively.

Thus 6 consistsof the elements of £ and £ and of the Zp(p+1) distinct’

elements Ohk of Z.

8’ [g',g',g'] , Where
J
gr= e 8],

tt= g et

[011’012"'"olp’°22"'°’°2p""’cpp]'

10) This is necessary to ensure the nonsingularity of the estimator of I.




To derive the 6-conditions we proceed as follows:

el z @ N te gl

det = @ hHrater oty @yt e rhyae™h

+ (Q 1ty [ar™) e it + @bz te (arhj ¢t

From this it follows that

-.l -
(1) 2. [3Q -
Bci Bci

J'(z'l er 1Qt+ (Q'l)'(z’;

-1 .
-1,9Q .
er )EZ;- (i=1...q)

(ii) . (()"1)'(5:”l )

(iii) =—@Hr e e r et gngk g,

where th is a square matrix of order p with zeros everywhere except in the

hk-th and kh-th position where it has unity (24)
and (iii) follows from the fact that o
-1 - -
s = -rtant

so that
-1
or - -Z—thkZ—l.

achk

Now define the following matrices:

. -1
(1) ¢t = 39__9 = [
T 9zC.

i

aQ'l
oz

-1 -1 .
= 22_—Q = (Q-l)'(l ® EI__T]Q' (3=1...r)
ag ., 9E.

] J

aq” L “1y,, -1
= —0 =-(Q )'(z Y

3th

Pk g 1) (Lshgkg<p).

The traces of these matrices are:

. -1
(1) tr G- = 2 tr %%——Q (i=1l...q)
g i |

. -1
(ii) tr Gg = p tr gg——r ' (§=1...r)
3

(iii) +tr szz -T tf(x"lyhk)' (1

-1
)'Q' r@bHrite r‘1>§§7—Q(z @ r)Q' (i=l...q)
1

3




so that

-1 -1y, _ _ _ " T _
(1) e'gg. ————J (z 1 3T l)Q le = 2(vec Zi)'(Z 1 BT l)vec Z
i i

2trr'lzz'l%£ © (i=1...q)

, -1 -1
(i) o128 = (vec z)'(z 1 g AL
) agj . 3£j

ar’l -1
Jvec Z = trsg-—ZZ A (j=1...r)
j

-1
(111) e e =_(vec 2)'[(x

achk

1 .-1_hk

Lovp~lsly

~lyhkg=ly 8 r 1] vec 7 = ~tr ¥

(1 $hs<kgp

AN

The 6-conditions (10) are in the present case:

-1 - . B
(1) tr%%—— Q= trP-lzz-lai (i=l...q)

_.l -
(i1) p tedi—r = 20—
3Ej 3§j

(iii) £ = %-z'r'lz,

where (i) and (ii) are obvious and (iii) follows from

T trr YK o izl lyhk (1<hgk

1 hk

1 W = g

to(Ts ™t - g TigipTigsmt

This is equivalent with

-1 1 1

etz 5T 1

Z'T Tz,

which in turn is equivalent with (iii).




3Q | ar~?
Now define K, = -=— Q (i=l...q) and C, = ——T (j=1...r), and let
i 9, J agj

glhsk) =k + (h-1)(p-3h) (1 <h<k<p),

eg(h,k)+q+r " %

and the symmetric matrix We from the information matrix (17) takes
the form

y y v
Y% g o
y = r

0 . Yo Yo

1
zp(p+1)]. 5o

where 11)

. p- i j "1 "1 LI
b4 .. = trG. G 2trK,K, + 2 (Z . =1...
(1) |( CE)IJ rG G, trK, 3 trKl( er )K](Z & r) (i,j 1» q)

. aind : o _
(ii) (ch)ij trGCGE. 2trKi(I ] Cj) (i=1l...q,j=1...r)

.. R S I | .
(iii) (‘i’gg)ij trGEGE ptrCiCj (i,j=1...r)

) = traighk =r2trK£(2-thk

V) 1Y )5 (L) Lo

Yo
4zohktrcj if hik

) = trGJth =—(tr2—thk2trC.

(v) |( 5,g(h,k) 8o

WEG
- ohhter if h=k

(j=1...r;g(h,k)=1...3p(p+1))

(vi) [(¥ ) = Ter(x TyH) (27 lyPK

i3 4hk
oo’g(i,j),g(h,k) o

= trG1
a

)

.2T(clhojk + olkojh) i#3

clhcjh

2T i#y

21 1Ptk if i=3

T(*™hH? if iz§

(g(i,i),glh,k) = 1...%p(p+l))

11) 0hk 1

denotes the typical element of £ -,

8 I) (i=l...q3g(h,k)=1...3p(p+1))



Finally, we give the expressions for the case p=1:
- 2 ] v . . ':-
Q= o°QrQ' , , (27)
where T'=T(£) is positive definite and Q=Q(z) is nonsingular, both of order n.
2
o' = [z',£',07]
The 6-conditionsg apre

- -1 " -1 -

1 aCi
-1

l)v ar -13 (j=1...r)
aij

(1) o’teg; = er(Q”

(iii) o2 = %-e'(Q-l) Q te

b

-1 .
— ' 1 : e 0o 0
2trKin + 2trKiT xjr (i,j=1...q)
= 2trKiCj (i=1...q3j=1...r)
= trC.C, (i,j=1...r)

J

2

20~ trK, (i=1...q)

U-QtPCj (jﬁl...r)

-y
no .




8. The autocorrelated errors modei

2 _
Let y=XB + €, et=pet_1+gt , Eg=0 , Etg'=o In, |p| < lf (3%}

These conditions donot specify the standard first-order autocorrclated

errors model completely; one more assumption is needed as to the initial

value of the disturbances.

For the moment we shall only assume that

€1 7 P&y T 95y

where ¢ may depend on p; ¢ > O .

This implies that g, =¢e; 5 SO that we can write

¢ = Ae , where A =

Now o°I = Egg' = EAee'A' = A(Eee')A' , so

o2a )y .

According to (28) the 6-conditions are

. 2. _ . [a4)
(i) o'trK = e [ap) Ae

(ii) o2 = %-e'A'Ae

where K = %%—A-l. Let ¢' =

then 2—& =
9p




We find that

_1.
. n’
1A A, = -
Further e'A'Ae 'E (ei pes 1
. ;—2 i=1

Clearly, trK = ¢'¢
‘ 2 22 _ 1D

where e

1-¢
0 p e

1

. n-1
e'[%%} Ae ¢¢'ei +p 2

The 0-conditions (32) boil down to

- an-1 n-1 -
+p L ei -

(1) o%'e L = gore?
' 1

1

In order to compute the information matrix we need
2 -1,2
wk? = (616 D)7,

trK'K = the sum of the squared elements of K

-2 n-3 k
TSP GRS A B 02t

i=0 k=0 i=0

,2(n1) =3, 2(k+1)

1-p k=0 1-p2

= (o9 H2 + ¢ l:——fg——— + I

)T+ ¢Te] = .E (ei-pei_l)2

b




V ' 2 .."
[¢‘2<1-p2‘“‘1)) + (n-2) - £ (1-92‘“‘2’)]7;
. l-p

[n-(1-¢'2)(1-p2(“'1’)- - .
-

According to (29) and (30) the matrix ¥y is

‘wpb lppo

v

go

1

1-p

[n-(1-¢'2)(1-p2(“'1’)-

2tri? + 2trK'K = u(¢'¢'l)2 y 2 3
20_2trK = 20-2¢’¢-1

_ -
= no .

Two cases are of particular interest:

Case (i): iterative Cochrane-Orcutt

Wher: ¢=1, the ML conditions are simply

n-1
z e.ei+l

-

B= (x'A'AX) 'x'A'Ay

~5 -

-1 -
M

Application of the algorithm of section five gives the unique ML estimators

of B, p and 02.




The information matrix reduces to

(
lﬁ X'A'AX
g

0

Case (ii)

. _ S 2 . .
Kadiyala (1968) suggested ¢ = Y1-p“, which thereafter appeared in the
textbooks (e.g. Theil (1971), p.253).

The condition for p is then
n-1 n-1
p

p e, = I e.e. - —_—
2 i 1 1 i+1

P
1-p

. 2 -
Define a . z ei€iq > and f(p) = ap +

then (36) reduces to f(p) = c.
On the interval (-1,1) f(p) is a monotonically increasing function

of p. Moreover lim f(p) = » and 1lim f(p) = -e,
p+l p¥-1

Thus for every c there is one unique solution of £(p) = ¢ in the interval (-1,1).
The algorithm of section five thus leads to the unique ML estimators of B, p and
02. The information matrix is
1

—§-X'A'AX

o

2p2

1-p

N
02(1-92)

Of course, asymptotically the two cases are equivalent.




. Zellner-type regressions

The formulae (25) and (26) are readily applied to the followihg two

well-known cases:

Case (i): iterated Zellner

In Zellner's (1962) case of seemingly unrelated regressions we havelz)-

Q=xeI. O (a)

We therefore put T = I and Q = I in (25) and find

D=2 EE,

CHCRR |

This shows againla)

that continuing Zellner's estimation procedure until
convergence yields the ML estimator.
The information matrix is

X1 lx 0

Y
oo

where woo is defined in (26.vi).

Case (ii): iterated Parks

Parks (1967) investigated a system of regression equations where the disturbances
are both serially and contemporaneously correlated, and he proposed a three-step
estimator for B, which he proved to be consistent and asymptotically efficient.

).,

The covariance matrix in this case is

Q= Q(z e 1)Q , ' (41)

12) In some applications we have = I 8 5L or R =T ® £. The formulae for these

cases may be derived in a similar fashion.

13) See Dhrymes (1971).

) Our model differs slightly from Parks', viz. in the specification of the

initial value of the disturbances. See the discussion in the previous section.




Clearly, ,Q'vdoes not depend upon the Ps» which implies'that

3Q
Bpi

tr Q=0 (i=1...p) .
A, if i=j

if i#j

It then follows from (25) that the 6-conditions are

(1) tr ZZ—l%i =0 (i=1...p)
(ii) 5 =z2'z
- oL -1 .
where Z = [Ql el,...,Qp ep , and

%i =[o... 0, 8, 0... 0] (i=1l...p) .

Let o*J be the typical element of E-l, then the condition (43.i) peduces to

J

p
z

o erarqile. (i=1...p) .
PR S T

Now A'le

(44)




where

b

_l
TA? ' - '
Then eiA Qj e. J lRleJ elRQeJ

so that (44) can be written as
p s P

T (cljeiRle.)p. = Lo Je'Rze
j=1 e ! ]

or in matrix notation

(2—.1" E'R/E)p = (z7 o E'R,E)s

where p' (Dl...p ),. s is a vector con51st1ng of p 1's and C.D'[cij 1j]

is the Schur product

The 6-conditions (43) may now be written as

S | -1,2-1

(1) p= (7 o E'R/E) 4(2 oB'R?r::),s_

(ii)

We have to make sure that the expressions in (45) exist, i.e. that E and
E-l o B'RlE have rank p. Since the Schur product of two positive definite
matrlces is also positive definite (see Bellman (1970 p.95)), sufficient
for Z 1. E'RlB to be positive definite is that I is positive definite and
E'RlE is nonsingular. Let E be the (T-1,p) Tatrix that is derived from E by

-1

deleting its last row, then sufficient for £ and £ ~ °© E'RlB to be positive

definite is that
rank (Z)= rank (F) =

When we now add the condition for 8 to the 6-conditions (45) , it is clear

that we have formed three well-defined functions:




-~ -

Bp,2) = [x'(@Hr(z™t o 1 " 1x'(Q Lyzl

2 I)Q y
p(E,E) (E"l ° E'RlE)'l(E’lo E'R,E)s (46)

Z(Q aB)

One iterative scheme to find the solution of (46) would be as follows:

(0) (0)

(i) Choose the initial values p and I

(0 |, _ga(0)

(ii) E(O) = B(p(o),Z(o)) and e y-XB8

(111) o) = (8(0),£(0)

E(l) —

(iv)

p(l)?‘(o))

(1) p(l) ‘(1))

(v) = I(

2(2) gD

(vi) B )

etcetera until convergence.

(0) (0)

Another scheme, equally feasible, would be to choose P and then

and I
calculate B(O) (l) (1), (1), p(2), (2), (2), etcetera.

There are several other possibilities.

Parks' procedure can be completely described in terms of the first scheme,
based on the initial values p( )'0 and Z(O)
In that case

(0) _ _ .~(0)

;(0) = (X'X)-lx'y and e = y-XB

- T-1 T-1
p@l) L e.. e, // bX e2 =1...p) and Q- Q(p(l))

] k=1 3K 34l [ gz 3K

(1) gaD)

= [x'(6'1)'5'1x]'lx'(a"l)'a-ly ;e ; 2= 2(Q,e' 1)

-1
=5 2'Z

- @ EY e Dy L @ty (1 g 1)qL




8(2) is Parks' so-called 'three-step' estimator. However, continuing

the procedure until convergence yields the ML estimator.

To construct the information matrix we proceed as follows:

K, — Q= Yt e AQ; (i=1...p),

where Y'' is defined in (24) and A in (42).

if  i#j

i=g .

It is clear that

tr(AQ,) = tr(AQi)2
and n-2 k b
tr(AQ,)'AQ. = I - I (p.p.) .
. k=0 h=0 * 3

Now let A = pipj , then

n-2 k n-2 k+1
r o AP 12 =

k=0 h=0 k=0

n l—An

A (12?2

From this it follows that

1

trKi(E- 8 I)Kj(z ® I)

to(y L g QiA')(Z_l e 1)(vil g AQj)(X 8 I)

to(y s yIdgy (Q}A"AQ,)




ey Y35y e (Q}A'AQ,)

1—(pipj)n ]

01]0 [

. 2
j (l-pipj)

Further

hk hk

trKi(E_lY 8 I) = tr(Y'" 8 QiA')(X—lY 8 I)

(v T (oAt = o .

Using the formulae in (26) we have

h (¥ ).. =2 1 [ -
where s g (o K3 _ -
pp 1] 1] 1 PiP} (1-pipj)2

n

] (i,j=l;..p),

and woo is defined in (26.vi).
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