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The theory of statistical inference for stochastic processes, which 

began with the monograph by Ulf Grenander (1950), is now a well-developed 

field (cf. Basawa and Prakasa Rao, 1980). The theory of stochastic control, 

which began with the work of Richard Bellman (1957), is now also well

developed (cf. Gihman and Skorohod, 1979). For reasons which are unclear, 

there has been little interface between these fields, and only recently has 

work begun on a theory of statistical inference for controlled stochastic 

processes, i.e. stochastic processes which arise as solutions to well-defined 

optimization problems. In certain fields such as economics, observed time 

series data can be interpreted as realizations of controlled stochastic pro

cesses of the general form {it,xt} where\ is a variable representing the 

action taken by an agent at time t, and xt is the observed state of the agent 

at time t. The goal of statistical inference for these data is not simply to 

infer the form of the stochastic process governing the historical evolution of 

{it,xt}, but to go deeper and attempt to infer the ultimate determinant of 

this stochastic process, namely, the mathematical objective function of the 

agent. This type of structural statistical inference is required in order to 

test the hypothesis that the observed data is in fact generated by an agent 

solving the specified stochastic control problem. If indeed such an hypothesis 

is supported by the data, then structural ·inference is also required in order 

to perform policy experiments which forecast how the stochastic process govern

ing {it, xt} changes when certain parameters of the agent's objective function 

are changed. While the existing literature on estimation on stochastic pro

cesses may permit us to consistently estimate the fora of the historical 

stochasHc process governing { it,xt}, it is of limited use for forecasting 

the effects of policy changes wMch alter the agent's objectiv~ function. An 
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alteration in the agent's objective function induces a corresponding shift in 

the solution to the stochastic control problem, i11plying that the stochastic 

process governing { it,xt} after the policy change is generally not equal to 

the historical stochastic process governing {it,xtJ before the policy change. 

Marschak (1953), and Lucas (1976) have shown that the existing non-structural 

or reduced-form statistical models can produce dr8118tic inference and fore

casting errors under coaonly analyzed policy experiments. 

To make the above somewhat abstract discussion 110re concrete, consider 

the following example which we analyze and estimate in Rust (1986b). Our data 

{iu,xu}, t=1, ••• ,T1, !=1, •••• ,L, consists of 110nthly observations on the 

mileage xt! of each bus! in the fleet of the Madison Metropolitan Bus 

Company. The agent is Harold Zurcher, maintenance mana.ger at -Madison Metro, 

who decides each month whether or not to replace the engine on bus! with a 

rebuilt engine: iu = 1 versus iu = O. Our hypothesis is that Harold 

Zurcher follows an engine replacement strategy which minimizes the expected 

discounted costs of operating each bus over its lifetime. The statistical 

problem is to use the data {itJ'xtJ} to infer the unknown parameter vector 

(/3, 81, 82, e3) where /3 is Harold's intertemporal discount factor, 82 is the 

cost of a replacement engine, e3 is a vector of parameters describing the 

stochastic evolution of the state variables {xtJ}, and 81 is a vector of 

parameters specifying the functional form of the operating cost function, 

c(xtJ,81), which equals the monthly operating and ■aintenance cost of each 

bus J as a function of the accumulated mileage since last replacement xtJ. 

Structural estimation of this model is required because 1) we want to test the 

hypothesis that Harold lurcher's behavior is in fact consistent with this 

simple model of optimal replacement, and 2) we want to forecast the effect of 
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certain policy changes on the timing of investaent in replacement engines. 

For example, we ■ight want to study the impact on the frequency of engine 

replacement of an increase in the cost of a replacement engine e2, or a change 

in bus utilization intensity (represented by an appropriate change in e3). 

Since engine replacement costs and utilization rates have not changed much in 

the past, existing reduced form methods of inference which attempt to directly 

measure engine costs or utilization rates and include them as explanatory 

variables in the model are likely to yield imprecise and unreliable forecasts. 

In this paper we define a class of controlled stochastic processes, 

discrete control processes, which are explicitly derived as solutions to 

infinite horizon markovian decision problems. Our definition provides a 

general method for directly incorporating unobservable state variables (state 

variables which are observed by the agent but not by the statistician) into 

the solution of the stochastic control problem so as to produce an internally 

consistent statistical model. Most importantly, we present a nested fixed 

point algorithm which computes maximum likelihood estimates of the structural 

parameters of discrete control processes. We prove that the maximum 

likelihood estimator is consistent and asymptotically normally distributed, 

and derive explicit formulae for the gradi_ent of the likelihood function and 

the asymptotic covariance matrix. To our knowledge, this nested fixed point 

algorithm allows us to formulate and estimate structural parameters of a wide 

class of controlled stochastic processes for which there were no previously 

known estimation methods. 

To put our results in perspective, a brief suaary the existing literature 

on esti■ation of controlled stochastic processes is in order. The literature 

dichot011izes according to whether the ti■e variable tis discrete or con-
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tinuous, and 110re importantly, according to whether the control variable it is 

discrete or continuous. If it can take any value in SOile convex subset of a 

Euclidean space we call lit,xt} a continuous control process, otherwise if it 

is restricted to lie in a countable set we cal 1 { it,xt} a discrete control 

process (the intermediate case where certain components of it are discrete 

and others are continuous has not been analyzed). In an iaportant contribu

tion, Hansen and Singleton (1982) have developed a practical, internally 

consistent technique for estimating structural paraaeters of a fairly general 

class of discrete-time, continuous control processes. Their aethod uses the 

generalized method of moments technique (Hansen (1982), Manski (1982)) to 

estimate first order necessary conditions of the agent's stochastic control 

problem (stochastic Euler equations), avoiding the need for an explicit 

solution of the optimal decision rule and analytic formulae for the probabi

lity distribution of the control led stochastic process governing { it ,xt}. The 

Hansen~Singleton method depends critically on the assumption that the agent's 

control variable it is continuous so that first order necessary conditions can 

be derived by the usual variational methods. In •ny circumstances, such as 

in our bus engine replacement problem, the agent's control variable will be 

discrete, ruling out the use of the Hansen-Singleton method. A further limi

tation is that the method relies on the assumption that all variables entering 

the agent's objective function are observed by both the agent and the sta

tistician; "this latter qualification does rule out s0111e IIOdels in which the 

implied Euler equations involves unobservable forcing variables" 

(Hansen-Singleton (1982), p. 1271). Garber and King (1985) show that this 

"exclusion restriction" is necessary for paraaeter identification. The pre-

- sence of unobservables will ordinarily lead to inconsistent para11eter esti11a-
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tes. Replacing unobservables by instruments will not work because the Euler 

equations are generally nonlinear functions of the state variables. 

The difficulties created by allowing for discrete control variables it and 

unobservable state variables et are twofold. First, discrete stochastic 

control problems rarely possess closed-form solutions or convenient first 

order necessary conditions amenable to estimation. Instead the solution is 

almost always given only implicitly from the solution to the fundamental 

equation of dynamic programming, Bellman's equation. The second problem is 

that the optimal control it will generally be a function of all the state 

variables in the model. This implies that if the agent's state variables con

sist of the vector (xt,et) but the statistician observes only xt, then we 

obtain a statistical model of the general form 

which is generally a highly nonlinear, non-separable function of the observed 

explanatory variables xt and the unobserved "error terms" £t. These con

siderations lead us to search for a statistical model in which 1) the depen

dent variable it is finite valued, 2) the data fit,xtJ are serially dependent, 

3) the functional form f of the statistical model does not have an a priori 

known closed-form solution, 4) the unobservables appear in a possibly nonli

near and non-separable fashion, and 5) the stochastic process governing the 

unobservables {et} is possibly serially dependent. 

Despite this formidable list of requirements, pioneering efforts by 

Heckman and Coleman (1983), Miller (1984), Pakes (1985), and Wolpin (1984) 

have yielded successful estimation methods for several special classes of 

models. Heckman and Coleman produced a method for estimating ~tructural para-
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meters of a class of continuous-time, infinite-horizon markovian models of 

employment transitions. Miller developed an infinite horizon multi-armed ban

dit lltOdel of occupation choice, solved by numerically computing Gitten's 

(1978) "dynamic allocation indices". Pakes developed a finite horizon optimal 

stopping model of patent renewal behavior of European firms and evaluated the 

likelihood function for non-renewal of patents by computing the distribution 

of times at which realizations of a simulated stochastic process of patent 

returns crossed a parametrically determined optimal stopping barrier. Wolpin 

developed a finite horizon model of Malaysian womens' decisions about the 

number and timing of births over their fertile period. The method involved 

numerically solving a woman's dynamic programming problem by backward induc

tion starting with the last year of the woman's fertile period. Although each 

of these papers have produced ingenious methods for interfacing stochastic 

control theory and statistical estimation theory, each method is application 

specific: none of the methods can claim to offer a general estimation method 

for a wide class of discrete control processes. In particular, many specific 

structural estimation problems (such as the bus engine replacement problem) fall 

outside the domain of any existing method. 

In section 2 we define a general class of discrete control processes and 

prove that their solution is obtained by computing the fixed point Ev9 to a 

particular differentiable contraction mapping. We derive a general formula 

for the conditional probability P(itlxt,6) of choosing alternative it given 

the observed state variable xt, which forms the basis of the sample likelihood 

function. For specific distributional assumptions about the unobserved state 

variables €t' we show that P(itlxt,6) takes very simple forms. For example, 

if the conditional distribution of €t given xt is assumed to be multivariate 

extreme value, then P(itlxt,8) has the well-known conditional logit form 
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exp{u(xt,it,e1)+~EV9(xt,it)} 

_I exp{u(xt,j,91)+~EV9(xt,j)} 
J£C(xt) 

where u(xt,j,91) is the current period utility of being in observed state xt 

and choosing alternative j, and ~EV9(xt,j) is the discounted expected future 

utility from time t+1 onward. In section 3 we derive the likelihood function 

for a panel of data {itl'xt1} t=1, ••. ,T1, 1=1, ••• ,L and present a nested fixed 

point algorithm which computes maximum likelihood estimates of the structural 

parameters of discrete control processes. The idea behind this algorithm is 

quite simple. Except for the presence of the unknown value function. EV9 we 

have a standard nonlinear maximum likelihood problem. The nested fixed point 

algorithm, therefore, consists of an "inner" algorithm which coaputes the 

- fixed point EV9 corresponding to the current value of 9, and an "outer" hill

climbing algorithm which searches over values of 9 in order to aaximize the 

likelihood function. In section 4 we show that EV9 is in fact a fixed point 

to a differentiable contraction mapping. This differentiability property 

enables us to use the very efficient Newton-Kantorovich algoritha to compute 

EV9, and allows us to derive closed-form solutions for its 8-derivatives. 

This, in turn, allows us in section 5 to derive closed-for■ solutions for the 

gradients of the likelihood function, and prove the consistency. asymptotic 

normality and asymptotic efficiency of the maximum likelihood estimator. 

-

Thus, except for the necessity of computing a contraction mapping fixed point 

at each evaluation of the likelihood function, our proposed 11aXimum likelihood 

estimator can be computed by standard optimization algorithlts such as BHHH 

(Berndt, Hall, Hall and Hausman (1974)) or Newton's method. 



-

-

8 

2. Solution of the Stochastic Control Problea: Infinite Horizon Case 

To simplify notation, we will state our results for an infinite 

horizon, stationary Markovian decision problem. By allowing our state 

variables to be elements of a general complete, separable lletric space, 

however, our arguments implicitly handle the finite horizon nonstationary 

case as well. In addition, via a well-known transforution of state 

variables, (see for example, Bertsekas (1976)), our fraaework iaplicitly 

handles Bayesian control of Markov processes where agents have imperfect 

information about some of the state variables and learn opti■ally by sequen

tially updating their beliefs via Bayes rule. We need the following notation: 

Choice set; a finite set of allowable 
values of the control variable it when 
state variable is xt. 

A #C(xt) dimensional vector of state 
variables observed by agent but not by 
the statistician. ~t!~!_is interpreted 
as an unobserved c011p0nent of utility of 
alternative i in ti■e period t. 

M-dimensional vector of state variables 
observed by the agent and statistician. 

Realized single period reward or utility 
when alternative i is selected and when 
the state variable is (xt, et>· e1 is a 
vector of unknown parame-ters to be estimated. 

Markov transition density for state 
variable (x, et} when alternative i is 
selected and when the variable is (xt,E:t). 
e1 is a vector of unknown parameters to be 
estimated. 

The complete (1+K1+K2+K3 ) vector of 
parameters to be estntated, Nhere 
~£(0,1) is the agent's inter-temporal 
discount factor. 
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o;ven the stochastic evolution of the state var;ables (xt, £t}, the agent 

■ust choose a sequence of decision-rules or controls ft(xt, £t, 8) to 

■axi■ize expected discounted utility over an infinite horizon. Define the 

value function v8 by 

(3) 

where ff• {ft, ft+,, ft+2 , •••• }, and f(xt,et)£C(xt) for all t, xt and et, and 

where the expectation is taken with respect to the controlled stochastic pro

cess {xt, et} whose probability distribution ;s def;ned on cylinder sets from 

ff and the transition probability for {xt, et} by 

(4) 

t+n-1 
[ n p(xi+i•e;+11xi,e1,f;(X;,e;),e2 ,e3 )n(xt,£t,e) 
i•t 

where O(xt,et,9) is an initial probability density for (xt,£t}. We have impli

citly assumed that the controls ft are 1) nonstochastic, and 2) depend only 

on the current state of the process (xt,£t). By the markov1an structure of 

the decision problem, these assumptions involve no loss of generality, as we 

show below. 

Problem (3) is known as an infinite-horizon discounted markovian 

decision problem. It differs from the standard formulation presented by 

Denardo (1967), Blackwell (1968), and Bertsekas and Shreve (1978), due to the 

fact the utility function [u(xt, it,e1) + et(it)J will generally not be 

uniformly bounded in (xt,et) under usual statistical assumptions about the 

distribution of unobservables. The unboundedness of the utility function 

could potentially lead to unbounded values of the objective function (3) and 

nonexistence of an opti■al policy ff. 
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We need to find assumptions sufficient to guarantee the existence of a 

stationary optimal policy ff• (f,f,f, ••• ) where f is given by 

(5) it• f(xt, et, 8) 

and is interpreted as a decision rule specifying the agent's optimal decision 

it when the state variables are given by (xt, £t). First we present some more 

notation. We will require that the number of elements in each choice set C(x) 

to be uniformly bounded in x, so that we have C(x) £ C • {1, ••• ,N} where N is 

an upper bound on the number of elements in each C(x). Define the state space 

of the controlled process by S = {{x,£)jx£6, eeRN) where 6 is a Borel subset 

of a c0111plete separable aetric space. Typically 6 will be a Borel subset of 

RH, as indicated by the notation xt = {xt(1), ••. ,xt(H)}. Strictly speaking 

et£ R#C(xt>, however since the dimensionality of et changes with the number of 
N . 

elements in C(xt), we imbed the state space for et in the common space R and 

zero out the unnecessary components in order to obtain an et vector with at 

most #C(xt) positive elements. Let A be Lesbesque measure on RN and letµ be 

a Borel measure on 6, the latter which need not be nonatomic. We define a 

measure v on Sin the usual way by v = µ x A. Our first assumption is needed 

in order to guarantee the existence of probability densities which will permit 

us to perform maximum likelihood estimation. 

(A1) For each ieC(xt) and (xt,£t)eS, the conditional probability distri

bution of (xt+l' £t+l> given (xt,£t,i) is regular and has a Radon

Nikodym density p(xt+1,et+11xt,£t,;,e2,e3) with respect to the 

measure v on S. 

The retnaining assumptions guarantee the existence of a stationary optimal 

policy ff to the stochastic control problem (3). Throughout the remainder of 
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the paper we wfll use the shorthand notation Ef(x,£,i) to denote the 

conditional expectation of the function f:S-+R with respect to the con

ditional probability density p(xt+l'£i+11xt,£t,i,92,e3): Ef(x,£,i} ■ 

I f(y,n)p(y,nlx,£,i,e2,e3)µ(dy)xA(dn). 
s 

(A2) 0 < ~ < 1 

(A3) C(x) f C = {1, ••• ,N} for all X£A. 

(A4) For each i£C(x), u(x,i,91) is upper semi-continuous at x for each 

x£A and we have 

where 

00 j 
R(x,£) ■ t ~ r.(x,£) < + oo 

j•O J 
(X,£)£S 

r0(x,£) = ■ax lu(x,i,91) + £(i)j 
i£C(x) 

rj+l(x,£) • ■ax Er.(x,£,i) 
i£C(x) J 

(AS) For each i£C(x), Eh(x,£,i) is continuous at each point (x,£)£S for 

all Borel measurable functions h:S-+R satisfying 

(X,£)£S 

Theorem 1 Under assumptions (A1), ••• ,(A5) a stationary optimal policy 

,r1r • (f,f,f, ••• ) exists for some Borel measurable 

function f:5-+C. The decision rule f is nonstochastic, ■arkovian 

and ;s determined fr011 Bellman's equation 

(6) V9(X,£) • ■ax [u(x,i,91) + £(i) + ~EV9(X,£,i)] 
i£C(x) 

by the identity 
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(7) f(x,e,O) ■ argmax [u(x,i,01) + e(i) + ~EV0(x,e,i)] 
ieC(><) 

Theorem 1 is a specialization of Theorem 2.1 of Bhattacharya and Majumdar 

(1985) who extend the basic results of stochastic dynamic programming to 

allow for unbounded rewards. Note that although the value function v8(x,e) 

is finite for each (x,e)eS, it is generally not uniformly bounded in (x,e). 

As a result, we cannot apply the standard results of Blackwell {1968) and 

Denardo (1967) who use the uniform boundedness property to show that v0 is a 

fixed point to a contraction mapping on the Banach space 8 of all uniformly 

bounded upper semicontinuous functions from S to R. This is unfortunate since 

the main numerical method for solving stochastic control probleas consists of 

computing the value function by solving the associated fixed point problem. 

Lippman (1975) has provided alternative conditions under which Theorem 1 holds 

and v0 is the unique fixed point to a contraction mapping on the Banach space 

Bw of all bounded, upper semicontinuous functions under a weighted supremum 

norm defined by 

(8) I lhl I.., = sup lh(x,e) l/w(x,£) 
(><,£)£S 

where w is a specified weight function which satisfies w ~ 1. However even 

adopting Lippman's approach, there are two difficulties which hamper direct 

statistical implementation of the model it= f(><t,et,O) given by the solution 

to (6) and (7). First, standard distributional assumptions for unobservables 

imply that et will be continuously distributed on RN with unbounded support. 

However, this raises serious dimensionality problems since the optimal sta

tionary policy f will ordinarily be computed by solving for the fixed point 
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v8 fr011 Bellman's equation. Even taking a rough grid approxi•tion to the 

true continuous distribution of £t, the dimensionality of the resulting finite 

approximation will still be too large to be computationally tractable. 

Secondly, since et appears nonlinearly in the unknown function EV8, we face 

the additional problem of integrating out over the et distribution to obtain 

conditional choice probabilities. Since ev9 is an unknown function, this will 

require the dual task of integrating v9 with respect to a finite grid approxi

■ation of the density p(xt+1,et+1 1xt, £t' i, e2, e3) to obtain EV6 , and then 

numerically integrating Bellman's equation (6) to obtain the conditional 

choice probability P(itlxt,8) needed to form the likelihood function. The 

following assumption enables us to circumvent these problems. 

(A6) For each (xt, £t)£S, the markov transition density factors as 

Assumption (A6) involves two restrictions. First, xt+1 is a sufficient 

statistic for £t+,• which implies that any statistical dependence between 

et and £t+1 is transmitted entirely through the vector xt+t· Second, the 

probability density for xt+1 depends only on xt and not et. Intuitively, the 

{et} process can be regarded as noise sup~rimposed on the underlying {xt} 

process, since in each period t, £tis drawn according to the density 

q(etlxt,82) given the realized value of xt .. The pattern of dependenee implied 

by assU11ption (A1) is displayed graphically in diagra■ 1 below. 

Actually (A6) is a stronger assumption than is necessary. All our results 

will go through under the weaker assumption 
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(A6') For each (xt, et, it) e S x C the 11arkov transition density 

p{xt+1 ' et+1 lxt' et, it' e2 ,e3 ) is independent of et. 

This implies that p admits the 110re geneqtl factorization 

In this case (xt+l'xt,it) is a sufficient statistic for et+t' allowing more 

complicated forms of dependence than is allowed under (A6). We adopt (A6) 

throughout the rest of the paper only to simplify notation. 

The payoff to adopting (A6) or (A6') is twofold. First, we will show 

that (A6) implies that EV8 is not a function of et, so that required choice 

probabilities will not require integration over the unknown function EV8• 

Second, we will show that EV8 is a fixed point of a separate contraction 

mapping on the space r = { (x, i) lxeA, ieC(x)}, eliminating the need to compute 

the fixed point v9 on the much larger space Sand avoiding the numerical 

integration required to obtain EV9 from v8• 

Before proving these claims, we need yet some 110re notation and a mild 

regularity assumption. Let g be a measurable, real-valued function from 

r to R. Define the norm of g, 11911 in the usual manner by 11911 = 
00 00 

suplg(x,i)I. It follows that the set B of all measurable, real-valued and 
(x,i)er 

11•11 -bounded functions on r is a Banach space. Given a vector r(x) = 
00 

{r(x,i)j;eC(x)} £RN, define the function G(r(x)lx,92) by 

(11) G(r(x}lx,82) • / {max [r(x,i) + e(i)J}q(efx,t2)A(d£) 
£ i£C(x) 

G(r(x)lx,92) is simply the conditional expectation o.f the maximum of [r(x,i) + 

e(i)], iE:C(x). McFadden (1981) calls Ga social surplus function. The social 

surplus function G has an important property, apparently first noted by 
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Williams (1977) and Daly and Zachary (1979), which is a key to our subsequent 

results. 

Theorem 2 Suppose the density q(elx,82) has finite first 1101tents. Then for 

any vector r(x) • {r(x,i)lieC(x)}, the social surplus function G(r(x)lx,82 ) 

defined in (11) has the following properties: 

A. G is a positively linear homogeneous, convex function of r(x). 

B. G has the additivity property G(r(x)+cfx,62) = ci + G(r(x)lx,82) 

for any constant ex, where r(x)+cx • {r(x,i)+alieC(x}}. 

C. Let G; denote the partial derivative of G with respect to r(x,i), and 

let P(ilx,82 ) denote the conditional probability that r(x,i)+e(i) is 

the largest: P(ijx,82 ) • / I{r(x,i)+e(i) = max [r(x,j)+e(j)J}q(delx,82 ). 
£ jeC(x) 

Then we have 

(12) P(ilx,82) = Gi(r(x)lx,82) and Pis a differentiable function of r(x). 

The proof of Theorem 2 is given in McFadden (1981). The key result is 

equation (12) which has the following intuitive explanation. The social 

surplus function can be regarded as the expected value of the maximum utility 

of choosing alternatives ieC(x) for a population of consumers indexed bye. 

If we increase the utility r(x,i) of the ; th alternative by 1 unit, how much 

does social utility go up? The amount is simply 1 times the fraction of the 

population choosing alternative i, or P(ilx,92). Before stating our main 

result we need to make one final regularity assumption. 

(A7) 

(13) 

ueB, and for each reB, EGeB where G(r(x)lx,&2) is given by (12) and 

EG is defined by 

EG(x,i) • J G(r{y)ly,82)p(dylx,i,93) 
y 
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- (Notice that in order to simplify notation in (13} we have left the dependence 

of EG on the vector r implicit). Assumption (A7) is a regularity condition 

which will be satisfied for most choices of densities q(£1x,e2). A sufficient 

condition for (A7) to hold is that q{£1x,e2) have finite first moments which 

are uniformly bounded in x. An immediate consequence of Assumption (A7) is 

given in Lemma 1 below. 

-

Lemma 1 Under assumptions (A1), ••• , (A7), EV9£B. 

Proof By assumption (A7) it follows that for any xtd and any measurable 

function f, 

It follows from (3) that for each (xt,£t)£S 

( 15) 

From (15) it follows that 

Since IIEGII~ < oo by (A7) it follows that EV9£B. Q.E.O. 

We are now ready to state the main result of this paper. 

Theorem 3 Let P(ilx,9) denote the conditional probability that the agent 

chooses alternative i given that he is in observed state x. Then under assump

tions (A1), ••• ,(A7), P(ilx,8) given by 

(17) P(ilx,8) = G1(r(x,e)jx,e2) 

where r(x,9) • {r(x,i,8)li£C(x)} is given by 
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(18) r(x,i,8) = u(x,i,81) + ~EV8(x,i), i£C(x} 

and where the function EV8£B is the unique fixed point to the contraction mapping 

T8 :B-B defined by 

(19) T8 (EV8 ){x,i) = / G{[u(y,81 ) + ~EV8(y)]fy, e2 )p(dylx,i,83 ). 
y 

Proof First we show that (A6) implies that the conditional expectation 

EV8{x,£,i) does not depend on£, and so can be written as ev8(x,i). By 

(A6) and Fubini's theorem we have 

= f {f V8 (y,ij)q(ijly,82 )A(dij)}p(dyfx,i,83 )µ(dy) 
y ij 

which is clearly independent of£. Substituting the formula for v8(y,~) 

given by Bellman's equation (6) into equation (20) we obtain the fixed 

point equation for EV8 

(21) EV8(x,i) =//{~ax [u(y,i,81 )+t(i}+~EV8(y,i)J}q{d£Jy,82)p(dyjx,i,83) 
y £ 1£C(y) 

= J G([u(y,81 ) + ~EV8(y)Jly,e2)p(dyfx,i,83). 
y 

By (A7) and Le111111a 1, equation (19) defines a nonlinear operator T8 :B-+8. To show 

that r 9 is a contraction mapping, notice that for each y and for each g,h£B we 

have 
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(22) max [u(y,i,e1)+£(i)+~g(y,i)]-max [u(y,i,e1)+£(i}+~h(y,i)J 
i£C(y) i£C(y) 

~ max ~lg(y,i)-h(y,i)I 
i£C(y) 

It follows immediately from (22) that 

so that Te is a contraction mapping and EV8 is the unique fixed point to 

Te in B. The formula for the conditional choice probabilities P(ilx,9) 

given in (17) follows from the fact that r(8,x) = u(x,81) + ~EV9(x) 

does not depend on£ and equation (12) of Theorem 2. 
Q.E.D. 

The significance of Theorem 3 is that the conditional choice probabilities 

of the stochastic control problem (3) can be computed using the same formuJas 

used in the static case with the addition of expected discounted future uti

lity ~EV8(x,i) to the usual static utility term u(x,i,81). Notice that the 

general static model of discrete choice arises as a special case of this model 

when p(•lx,i,83) is independent of i. In that case the expected utilities 

EV8(x,i) are also independent of i which implies {by Theorem 2) that 

G. is a function of {u(x,j,e)ljeC(x)} alone, so that P(ifx,9) = , 
Gi(u(x,e)lx,92) can be interpreted at the usual static choice probability. 

The intuition behind this result is clear; when p(•lx,i,93) is independent of 

i, current choices do not affect the evolution of the state variables {xt,et} 

and so have no future consequences. Therefore, it is optimal to behave myopi

cally and choose the alternative it which maximizes the single period utility 

u(xt,i,91) + £t(i). When current choices do have future consequences, the 
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term ,SEV8(x,i) provides the appropriate valuation of the future consequences 

of each action and must be added to the current utility in order to correctly 

describe the optimal behavior of the agent. 

By choosing speciffo functional forms for q(£fy,82) we can obtain concrete 

formulas for the choice probability P(i)x,8) and the contraction mapping r8• 

For example, if q(tfy,82 ) is given by a multivariate extreme value distribu

tion with cdf Q(£1y,82 ) given by 

(24) Q(£Jy,e2 ) = n exp{-exp{-e(i) - e2}} 
ieC(y) . 

where e2 =ya .577216, then P(ifx,8) is given by the well-known multinomial 

logit formula 

(25) P(ilx,8) = 
exp{u(x,i,81)+,SEV9(x,i)} 

I exp{u(x,j,81}+,SEV9(x,j)J 
jeC(x) 

and EV8 is given by the unique solution to the functional equation 

(26) EV8(x,i) =/log { _I exp[u(y,j,91) + ,sev6{y,j},J} p(dylx,i,93) 
y J£C(y) 

Similarly, if q(£1y,92} is a multivariate normal density P(ilx,9) will 

take the form of a probit function. The drawback of the Gaussian family of 

distributions is that they are not closed under the operation of maximization 

(this property characterizes the family of ·extreme value distributions), so 

that numerical integration is required to evaluate P(ifx,8). Since maximum 

likelihood estimation will require numerical coaputation of the fixed point 

EV 8 of each evaluation of the likelihood function, it aay 11ake sense to econo

mize c011puter time by using distributions like the IH.tltivariate extreme 
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- value (24) or McFadden's generalized extreme value distribution (GEV) (McFadden, 

(1981)) which yield closed-form nested logit expressions for P(ijx,8). If com

puter costs decline sufficiently, more general distributions for q{£1y,e2) 

could be used in order to allow for more general patterns of dependence across 

alternatives, thus avoiding the well-known IIA property of the multinomial 

-

logit model (see Oomencich and McFadden (1975)). 

3. Derivation of the Maximum Likelihood Estimator 

Suppose we have a panel of L individuals. For each individual we have 

r1 periods of data. Thus our data consists of (i~, ••• , i~ , x~, ... , x~) 
.t J 

J = 1, ••• , L. What is the likelihood function for our sample of data? 

The following lemmas will be useful in deriving the likelihood function. 

Lemma 2 Under assumptions (A1), ••• ,(A7), the controlled process {xt,£t} is 

jointly markovian. 

Q.E.D. 

Lemma 3 Under assumptions (A1), ... ,{A7)~ the controlled process {xt,it} is 

jointly markovian. 

(28) 
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Q.E.D. 

Lemma 4 Let dp{xt+1,;t+11xt,;tJ denote the conditional probability 

density of (xt+,• ;t+l> given (xt,it}. Under assuR1pt;ons 

(A1), ••• ,{A7) we have 

Proof The cond;tional probab;lity dp{xt+l';t+1 lxt,;t} 

can be decomposed as 

However, by Bellman's equat;on (6) and assumption (A6), ;tis obvious 

that at time t+1 the state variable xt+i is a sufficient statistic 

for cOR1puting the probability of ;t+l" Thus 

(31) 

where 

Q.E.D. 

Suppose we are g;ven initial conditions (x0 ,i0 ). We now wish to 

cOR1pute the joint likelihood of the observations (x1, ••• ,xT, ; 1, ••• ,iT) 

given (x0 ,;0 ), which we denote by Lf(x1, ••• ,xT,; 1, ••• ,i1 fx0 ,i0 ,9). 

Theorem 4 Under assu■pt;ons (A1), ••• , (A7) 111e have 

T 
(32) Lf (x1 , ••• ,><-r,i 1 , ••• ,;Tlx0 ,i0 ,9) = n P(itfxt,9)p(xtlxt_,,;t_,,83 ) 

t=l 

- f!:22f It is always possible to dec011pose Lf as a product of cond;tional 

likelihoods as follows: 
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By Lemmas 3 and 4 we have 

Substituting (34) into (33) yields our result. 

Q.E.O. 

Under appropriate regularity conditions, maximization of the likelihood 

Lf given in (32) provides a consistent, asymptotically normal, asymptotically 

efficient estimate of 6*. In addition to Lf, we define two partial-likelihood 

functions L1, L2 which provide alternative methods for estimating e. 

T 
(35) L1(x1, ..• ,xT,; 1 , .•• ,iTlx0 ,i0 ,e3 ) • n p(xtlxt_,,it_1,e3 ) 

t=l . 

T 
(36) L1 (x1, ••• ,Xr,i1, ••• ,irlx0 ,e) • n P(itfxt,e) 

t==O 

Neither L 1 nor L2 correspond to the true conditional likelihoods 

and 

obtained by dividing the joint likelihood Lf by the appropriate marginals. 
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Nevertheless, both L1 and L2 provide simpler partial-likelihood estimators 

which are consistent, and asyaptotically normally distributed. Note that 

using L1, one can only identify 83• This drawback is c011pensated by the fact 

that no internal calculation of ev0 is required in order to estimate 83• 

Thus, L1 may provide an easier means of obtaining initial consistent estimates 

f of 83 to be used as starting values in L2 or L. Let the maximum likelihood 

estimator corresponding to the likelihoods L f, L 1, L2 be denoted by ef, 91, 92, 

respectively. 

In the case where the initial condition is stochastic Lf should be 

regarded as a conditional likelihood function. A 110re efficient estimator 

than ef can be obtained by maximizing Lf multiplied by the probability density 

S2(x0 ,i0 ,8) for the initial condition (x0 ,i 0 ). There are two cases to 

consider: (1) the process has been operating for a long period of tiae and the 

joint distributions of (xt,it) and (xt,£t) have converged to ihe ergodic distri

bution, or (2) the process has only recently started up so (xt,£t) or (xt,it) 

cannot be regarded as having been drawn from the ergodic distribution. In the 

latter case, unless we know the initial condition of the process there is no 

way we can compute the probability distribution of (x0 ,i0 ) so that we have to 

be content with the conditional likelihood function (32). In the former case 

we can c011pute the unconditional probabil~ty of (x0 ,i 0 ) as follows. First 

compute the ergodic distribution of the controlled process {xt' it}. Under 

appropriate regularity conditions given in Appendix 3, this distribution 

is given by the unique solution Q(x,i,8) to the following functional 

equation: 

(39) Q{x,i,9) • / ~ P(ilx,9)p(xly,j,83)n(dy,dj,9) 
y J 
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- In the case where p(xjy,j,83) has finite support, (39) reduces to a ■atrix 
equation of which Q(x,i,8) is the unit eigenvector. Using the computed value 

of o, we obtain the unconditional full infor■ation likelihood 

-

* L (x0 , ••• ,xT,i 0 , ••• ,iT,8) as the product 

* T 
(40) L (x0 , ••• ,xT,i0 , ••• ,iT,8) = O(x0 ,i0 ,8) n P(itlxt,8)p(xtlxt-l'it_1,e3) 

t=1 

* ... Denote the maximum likelihood estimator corresponding to L by 8*. 

If panel time lengths are relatively long the extra infor■ation contributed 

'"* by n(x0 ,i0 ,9) is likely to add little to the efficiency of the estimator 9 

since, intuitively, the contribution of the first term of the likelihood beco

mes negligible as TJ ➔ ~. Note that under the assumption that all agents 

in the sample have the same parameter 9 (i.e. no heterogeneity), there is 

no problem of inconsistency in parameter estimates created by conditioning_ 

on (x0 ,i0 ) (for a discussion of this problem of "initial conditions" see 

Heckman (1981)). Therefore, as a general practice we recommend using the 

likelihood funcHon L f which, while not the true ful 1 information nximum 

likelihood equation when (x0 ,i0 ) is stochastic, is a full information 

maximum likelihood equation conditional on (x0 ,i0 ). 

With the exception of likelihood function L1 given in (35), none of the 

likelihood functions derived in this section have an a priori known, or 

closed functional form. Each of the likelihood functions L1 and Lf involve 

the conditional choice probability P(itlxt,9), which, by Theorem 3, depends 

on the unknown value function EV8• Since EV8 is a fixed point to the 

contraction mapping T8 defined in (19), our results suggest the following 

nested fixed point algorithm: an "inner" fixed point algorithm co■putes the 

fixed point EV9 corresponding to the current paraaeter estimate et, and 
t 

an "outer" hill-climbing algorithm searches over alternative values of et 
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to maximize the likelihood function. Given the coaputational burden involved in 

repeated fixed point calculations for each successive estimate et, it seems 

clear that one should design an outer algoritha which finds the maximum using 

the smallest number of function evaluations. Perhaps the most important stra

tegy for designing an efficient outer maximization algorithfll, is to find suc

cessively stronger conditions under which the likelihood function is 1) 

continuous, 2) continuously differentiable, and 3} twice continuously differen

tiable in e. Differentiability conditions 2) and 3) pennit use of more effi

cient gradient optimization methods, wHh condition 2) permitting use of the 

BHHH (1974) optimization algorithm, and condition 3} permitting use of Newton's 

method. These conditions also determine the asymptotic distribution of the 

estimator, since condition 1) is used to prove consistency, and conditions 2) 

and 3) are used to prove asymptotic normality. Since the fundamental objects 

u(xt,it,81 ), q(£tlxt,e2) and p(xt+1 1xt,it,e3) have a priori known functional 

forms, they can be chosen to be continuously differentiable. Thus, the only 

place where differentiability is at question is in the conditional choice proba

bility P(itlxt,8). By Theorem 3, P(ilx,e) = G1([u(x,e1)+~EV8(x)Jlx,e2) 

is continuously differentiable function of [u(x,91)+pev9(x)]. Therefore the 

question of differentiability reduces to the question of finding sufficient con

ditions under which the mapping 8 ➔ EV9 is a smooth mapping from Rl+K,+K2+K2 

into B. We turn to this problem in section 4. 



-

• 

-

26 

4. Differentiability of the Expected Value Function. 

Since ev8 is a fixed point of the contraction mapping. T8, EV8 is an 

i ■plicit function of 8. In this section we provide sufficient conditions 

for ev8 to be twice continuously differentiable in 8. These results will 

be used in Section 5 to prove that the likelihood equations are twice 

continuously differentiable which (along with other regularity conditions) 

will i■ply that the ■axiau■ likelihood estimator is asymptotically normally 

distributed. Our approach is to provide successively stronger conditions 

which imply that ev8 is 1) continuous, 2) continuously differentiable, and 

3) twice continuously differentiable. Throughout, we will let B denote the 

Banach space of all measurable 11•11 -bounded real valued functions on r, 
OD 

where 11•11 is the supre11um norm • 
OD 

(A8) u is a continuous function of e1• 

(A9) For any ge:B, EG is a continuous function of (92, e3) and g where 

EG(x,i) = J G(g(y)ly,92)p(dylx,i,93). 
y 

Assumptions (AS) and (A9) are continuity assumptions on u, and q and p, 

respectively. For fixed e3 the dominated convergence theorem (Pratt, 

(1960)) implies that a sufficient condition for (A9} to hold is that 

q(e:ly,82) is continuous in e2 uniformly for ye:A for all£ in RN except on 

sets A(y) of Lesbesgue measure zero. Similarly, by Scheffe's Theorem 

(Billingsley, (1979)), a sufficient condition for EG to be continuous in e3 

is that p(•lx,i,83) is continuous in e3 uniformly for (x,i)er and for all 

yeA except on sets A(x,i) ofµ. measure zero. 
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Theorem 5 Under assumptions (A1), ... ,(A9), ev8 is a continuous function 

of 6. 

Proof The result follows from Theorem 3 of Kantorovich and Aikilov 

((1982), p. 476), provided we can show that T8 is continuous in 6, i.e. for 

each geB, T8(g) ➔ T8 (g) as 8 ➔ 8. By formula (19} we can write 

/ [G([u(y,e,)+~(y)]IY,62) - G([u(y,e,)+/1g(y)]IY,82)lp(dyjx,i,83) 
y 

+ I G{[u(y ,81 )+/1Q(y) l I y ,e2 )[p(dy Ix,; ,e3)-p(dyf x,;, e3) 1 
y 

+ J [G([u(y,81 )+/jg(y)]IY,62) - G([u(y,81)+/jg(y)]jy,e2 )]p(dyjx,i,93 ) 
y 

Since G satisfies 

A A 

~ lluce,>-u<81>11ao + lt3-t3I ll911 00 , 

it follows from (A8) and (A9) that the first and third terms in (41) converge 

to zero uniformly on r. By assumption (A9) the second term converges to zero 

uniformly on r. Thus T8 is continuous in e which implies that ev8 is also 

continuous in e. 

Q.E.D. 

The following assumptions are sufficient to guarantee that ev9 

is a continuously differentiable function of e. In what follows, let 

L(Rk,B) denote the Banach space of linear operators from Rk to B. 
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K 
au/ae1 £ L(R 1,B) and is a continuous function of e1• 

(A11) For any r£B, aG(r(y)ly,82)/ae2 exists and is dominated 

by a p( • Ix, i ,83 ) integrable function g(y} for all y except 

on sets A(x,i) of p(•lx,i,83 ) measure zero. 

K 
{A12) For each r£B, aEG/a82£L(R 2, B) and is a continuous function 

of 8 and r. 

(A13) 
K3 

For each r£B, aEG/a83£L(R ,B) and is a continuous function of 8 

and r. 

By the Lesbesgue d0111inated convergence theorea for derivatives 

(Billingsley (1979), Pratt (1960)), a sufficient condition for (A13) to hold 

is that ap(ylx,i,83)/a83 exists, is bounded, and is continuous in 83, 

uniformly for (x,i)£f, except for yin sets A(x,i} ofµ measure zero. 

When this holds, we can write 

(43) aEG/a83(x,i) = J G(r(y}jy,e2) [ap(yjx,;,e3}/ae3Jµ(dy) 
y 

For example, if for each (x,i)£f p(•lx,i,83) has finite support, then (A13) 

will hold provided for each y£A and each ~x,i)£f, p(yfx,i,93} is continuously 

differentiable in 83• Similarly (A11) and dominated converage imply that 

aEG/ae2cx,i) = J {aG(r(y)jy,e2)/ae2}p(dyjx,;,e3). 
y 

Theorem 5 Under Assumptions (A1}, ••• ,(A13), EV9 is continuously 

differentiable in 9 in a neighborhood of each point 

O*£Rdi•(9) = R(l+K1+K2+K3) 
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(EV6,e) is a zero of the nonlinear operator A defined on BxRdill(O) 

defined by 

where o is the zero element in Band I is the identity operator on B. By 

the implicit function theorem for Banach spaces (Kantorovich and Aikilov (1982), 

Theorems 1 and 3, pp. 518-520), EV6 will be continuously differentiable in e 

in a neighborhood of any point 9* satisfying (44} provided the partial 

(Gateaux} derivatives of A with respect to EV and IJ exist and are continuous, 

and provided the partial derivative of A with respect to EV has a continuous 

inverse. Since I is the identity operator which is independent of e, we first 

verify that T6(EV) has derivatives in EV and 6 which exist and are continuous. 

We have 

(45) a;ae1 cr9 (EV)J(x,i) = f { E au(y,J,e1);ae1P(Jly,e)}p(dyjx,i,93) 
y j€C(y) 

(46) a;ae2cr6(EV)J(x,i) = / {aG([u(y,e1} + ~EV(y)Jfy,o2}/ae2}p(dyjx,i,e3) 
y 

(47) a;ae3[T9(EV)J(x,i) = a;ae3 {/ G([u(y,e1) + ~EV(y}Jly,e2)p(dylx,i,e3)} 
y 

(48) a;a~[T9(EV)](x,i) = /{ E EV(y,j} P(jfy,O}}p(dyfx,i,03 ) 
y j€C(y) . 

The derivative in formula (47) exists and is continuous by (A13). Assumption 

(A11) and the dominated convergence theore11 justify interchanging the opera

tions of differentiation and integration to yield formula (46) which is 

continuous in 6 by assumption (A12). Similarly (A10) and dominated con

vergence justifies interchanging differentiation and integration to compute 
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a/ae1[T8(EV)] and a/a~[T8(EV)]. By Theorem 5 and TheorH 2, Gi([u(y,81) + 

~EV]jy,82 ) = P(ily,8) and is a Lesbesgue almost everywhere continuous func

tion of u(y,81) and e2 • Using an argument similar to the proof of Theorem 4, 

it is easy to show that (45) and (48) are continuous in e. These formulas 
K 

define elements of a Banach space since au/a81£L(R 1 ,B) and EV£B. 

Let T8(EV8 ) denote the partial Gateaux derivative of T8 with respect 

to EV evaluated at the point EV8 . Since EV£B, it follows that T8(EV8 ) 

is a linear operator on 8. Let r8cev8)(m) denote the value of T9(EV9) 

evaluated at the point ■£B, defined formally by 

(49) T8(EV8 )(m) = lim [T8 (EV8+tm) - T8 (EV8 )]/t 
t➔o 

where t£R. Then, by Theorem 2 and the dominated convergence theorem we have 

(50) T9(EV8)(m)(x,i) = ~ J {I m{y,i)P(ily,9}}p(dyfx,i,83) 
y i£C(y) 

It is evident from (52) that T9(EV8 ) satisfies 

which implies that T'(EV8 ) is a continuous linear operator with norm 

IITe(EVe>lloo ~ ~ < 1. By the Banach inverse theorem (Kantorovich and 

Aikilov (1982), Theorem 3, p. 154), it follows that aA(EV,8)/aEv is a con

tinuous linear operator and has continuous inverse given by 

(52) 
00 

[aA(EV,8}/aEV)-1 = [I - T8(EV)]-l = I 
t=O 

[T' (EV)]t 
8 

Thus, all the conditions of the implicit functfon theorem are satisfied 
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so that ev8 is a continuously differentiable function of e in some neighbor

hood of 8*. 

Q.E.D. 

Corollary 1 Under assumptions (A1), ••• ,(A13), ev8 is a continuously 

differentiable function for all 8 in a compact set e. 

Proof. From Theorem 6 we know that EV8 is continuously differentiable 

in some neighborhood N8 about each point 8 in 0. These neighborhoods fona 

an open cover of 0, so that by compactness there exists a finite number 

of points e1, ••. ,er whose associated neighborhoods N8 _ cover e. Suppose 
1 

e£N8 _nN8 _ for j-i. If EVe(81) is the implicit function of 8 defined on 
, J 

N8 _, then by the uniqueness of the fixed point EV8 of Te, EV8(91) = EVe(8j} on , 
Ne. n N8 ., and hence EV 8 is uniquely defined and continuously differentiable 

, J 
over a 11 of e • 

Q.E.D. 

Corollary 2 Under assumptions (A1), .•• ,(A13), the derivative of 

(53) 

Eve with respect to 8 is given by 

00 

= [ I [T8(EV8)]t] [aT8(EV8)/38] = 
t=O 

[I-T9(EV9)]-1[aT9(EV9)/a8] 

where ar8(EV8);ae is given by (45), ... ,(48) and r8(EV8) 

is given by (50). 

Proof. By the iaplicit function theorem we have 

(54) 0 = A(EVe,e) 
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for all 6 in e. Differentiating the identity (54) and making use of the 

chain rule yields (53). 

Q.E.O. 

Corollary 3 Under assumptions (A1), ... ,(A13), aEv9/o6€L(Rdim{e},B). 

Proof. Using assumptions (A11), ... ,(A13) it is easy to verify that for 

each j, ar6 (EV6)/9j€B. Since the linear operator [I-T6]-1 is continuous 

with norm not exceeding 1/(1-~), it follows immediately from (53) that 

Q.E.D. 

By formula (53) it appears that we can formally differentiate EV9 a 

second time, using the product rule to obtain 

(55) = [; t[T8(EV6)]t-l] [[aT6(EV9)/aeJ[aT6(EV8}/a6'] 
t=O 

+ TO(EV9)(3EV9/39')] 

00 

+ [ E [T8(EV6)]tJ [aT0(EV6)/a9o6'] 
t=O 

The first term consists of the product of dim(8) linear operators on B 

times dim(8) elements of B, yielding a matrix of [dim(6}] 2 elements of B. 

The second term consists of a single linear operator on B acting on 

[dim(8)] 2 elements of B, again yielding a matrix of [dim(9}] 2 elements of B. 

We now present assumptions sufficient to guarantee that this formal 

differentiation is valid. 
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K2 

(A14) a2 u/ae1ae1£L(R 1,B) and is a continuous function of e1 • 

(A15) For any r£B, j,k£C(y), Gjk(r(y)ly,62) exists and is doainated by 

a p(•lx,i,83) integrable function for all y£A except on sets 

A(x,i) of p(•lx,i,83) measure zero. 

(A16) For any g,r£B, f { I I g(y,j)g(y,k)G.k(r(y}fy,82)}p(dyfx,i,83)£B 
y j,k£C(y) J 

and is a continuous function of 8 and r. 

(A17) For any rE:B, a2 G(r(y)ly,e2)/ae2ae2 exists and is dominated by a 

p(•ly,i,83) integrable function for ally except on 

(A18) 

sets A(x,i) of p(•lx,i,83) measure zero. 

K2 
2 For any r£B, E{a 2 G/ae2ae2} £L(R ,B} and is a continuous function 

of 6 and r. 

K2 

(A19) For any r£8, a2 [J G(r(y)IY,82)p(dylx,i,83)J/ae3a83£L(R 3,B) 
y 

and is a continuous function of 6 and r. 

(A20) For any r£B, j£C(y), aGj(r(y)jy,e2)/ae2 exists and is dominated 

by a p(•lx,i,83) integrable function for ally except on sets 

(A21) 
K 

For any r,gE:B, J { I: g(y,j) aG.(r(y)ly,e2}/ae2}p(dylx,i,83)£L(R 2,B) 
y j£C(y) J 

and is a continuous function of 8 and r. 

Theorem 6 Under assumptions (A1), ... ,(A21), the second derivative of EV8 
. dim(9) 2 

given by formula (55) exists and 1s an element of l(R ,B) and is 

- a continuous function of 8. 
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Proof. In order to compute a 2 Ev8;aeae• by applying the product rule to for

mula (55), we must verify that each of the terms is a differentiable function 

of 8. Assumptions (A15), ••• ,(A20) and the dominated convergence theorem imply 

that a2 r8(EV8)/aeae• exists, is an element of L(Rdim(9>2,B) and is a continuous 

function of 8. Explicit formulas for these derivatives are given in Appendix 1, 

which should make clear exactly where each of the assumptions (A15), .•• ,(A21) 

are used to prove existence and continuity of these derivatives. The linear 

operator [I-T8(EV8)]-1 is a continuous function of 8 since fr01R formula (50) 

it is evident that T8{EV8) is continuous in 8 with nor■ uniformly bounded by /3, 
QI) 

and thus the dominated convergence theorem implies that I [T8{EV9)]t = 
t=O 

[I-T8(EV8)]- 1 is a continuous function of 8. Since both [I-T9(EV8)]-1 

and [T8(EV8)]/aeae• are continuous functions of 8, so is their product, 

which is the second sum and in equation (55). To complete the proof we must 

verify that a;ae[I-T8(EV8 )]-1 exists, is a bounded linear operator in 

L(Rdim(e),B) and is a continuous function of 8. First we show that the operator 

aT9(EV8);ae• is a bounded linear operator on L(Rdim(B) ,B) and is a continuous 

function of 9. We have 

/3 J {II m(y,j) ar(8,y,k)/ae; G.k(r(8,y)fy,e2)}p(dyfx,i,93) 
y j,k£C(y) · J 
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+ ~ a/ae3 / { r m(y,J)P(Jly,e)}p(dyfx,i,93 ) 
y jeC(y) 

(59) aTe(EVe)(m)/a~(x,i) = / { I m(y,j)P(jfy,B)}p(dyfx,i,83) 
y jeC(y) 

Using assumptions (A16), ..• ,(A21), and Corollary 3 of Theorem 6, it is evident 

that ar6(EVe)/a8 is a bounded linear operator on L{Rdim(e) ,B} and is a 

continuous function of 8. It remains to show that the operator 
00 

L8 = [ r t[T8(EVe)lt-l] is a bounded linear operator on B and a continuous 
t=O 

function of e. To show that le exists and is bounded, note that for each N, 
N 

L: = [t~O t[T8(EV8)]t-1] is a bounded linear operator with norm not exceeding 

1/(1-M 2 • Furthermore, for each geB, LN(g) is a fast Cauchy sequence in B, 
00 00 

i.e. r lll:(g)-l:•1 (g)ll 00 = r (N+1)IIT'(EV8;g)flN < + oo. By the Banach-
N=O N=O 

Steinhaus Theorem (Kantorovich and Aiki lov, ( 1982}, p., 203), it follows that 

N Le .. le where Le is a linear operator with norm not exceeding l/(1-M 2 • 

00 

Since I lt[T' (EV8)]t-1 11 .s. t~t-l with r -~t-l = 1/0-lS, 2 , the dominated 
00 t=O 

convergence theorem permits us to interchange suaation and differentiation 
00 

to compute a/a8[I-T8(EV8)]-1 as [ I t[T'(EV8)]t-ll [aT'(EV8}/a8'] which 
t=O 

verifies that it is valid to apply the product rule for differentiation to 

aev81ae given in (53) to obtain the formula for a2 ev81aeae' given in (55). 

Furthermore, since T6(EV8) is continuous in e, the dominated convergence 
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theorem also implies that L8 is continuous in e. In conclusion, we have 

shown that the second derivatives a2 ev8;aeae• exist, are continuous in 8, 

and are given by formula (55). 

Q.E.O. 

Using the results obtained in Theorem 6, Corollary 2, we can how describe 

in more detail the nested fixed point algorithm suggested in Section 3. 

Recall that the algorithm consists of two components, an outer "hill-climbing" 

algorithm and an "inner" fixed point algorithm. The outer algorithm searches 

over values of 8 in order to maximize the likelihood functions Lf or L2 • Each 

time a new estimate 8t is generated by the outer algorithm, we must invoke the 

inner algorithm in order to compute the corresponding fixed point EV8 . 
t 

Theorem 5 established the Gateaux differentiability of the operator T 8, which 

implies that the fixed point EV8 can be computed using the quadratically con

vergent Newton-Kantorovich algorithm. A by-product of this method and 

Corollary 2 is that analytic derivatives aev8;ae can be computed with marginal 

additional effort since the computation of aev8;ae requires the inverse operator 

{I-T0)-1 which is already computed as part of the Newton-Kantorovich itera

tions. If the values of the likelihood function can be computed with about the 

same effort as its derivatives, it seems c 1 ear that one wants an outer hi 11 

climbing algorithm which minimizes the number of function evaluations needed 

to get within any pre-specified tolerance of a local maximum. Ordinarily this 

would mandate use of Newton's method, however, ordinary Newton's method 

requires second derivatives of the log-likelihood function which in turn 

requires the second derivatives a2 ev8;aeae•. In general the reduction in the 

number of likelihood function evaluations gained by using Newton's method is ) 

outweighed by the considerably greater effort required to comp~te a2 ev8aeae• 

at each function evaluation. An alternative, asymptotically equivalent 
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algorithm is based on the well-known identity 

-E{a 2 1ogL(8)/aeae•} = E{alogL(9)/aealogL(9)/ae'}. The BHHH algorithm (Berndt, 

Hall, Hall and Hausman (1974)) uses this identity to yield an alternative 

Newton-like algorithm which requires only first derivatives of the likelihood 

function. This algorithm substitutes the sample average of -alogL(8)/aealogL(9)/a9' 

for the true Hessian matrix of the log-likelihood function. If the sample size is 

large and the model is correctly specified, such a substitution should have 

negligible impact in the rate of convergence of the outer hi 11-climbing 

algorithm, while at the same time avoiding the computational burden of 

calculating a2 ev8;aeae'. The resulting nested fixed point algorithm adopts 

BHHH method as the outer hill-climbing algorithm and is summarized in Diagram 2. 

5. Asymptotic Properties of the Maximum Likelihood Estimator 

In principle, we must consider three separate cases in order to derive 

the asymptotic distribution of the maximum likelihood estimator. In case 

one, we have a fixed number T1 periods of observation for each individual, 

but the number of individuals L tends to infinity. In case two, we have 

a fixed number of individuals L, but the number of time periods T1 tends 

to infinity. In the final case, both T1 and L tend to infinity. Currently, 

most panel data sets have only a limited number of time periods r1 so that 

approximating the finite sample distribution of the maximum likelihood 

estimator by its asymptotic distribution as T1 -.co is not likely to yield 

accurate results. Furthermore, calculation of the asymptoHc distribution of 

the maximum likelihood esti■ator in cases two and three is complicated by 

serial dependence in the {xt,it} process. Since {xt,it} is jointly markov by 

le1111a 2 of section 3, one can show that the log likelihood forms a zero mean 
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martingale, so that a martingale strong law of large numbers must be applied 

to prove consistency, and a martingale central limit theorem must be used to 

prove asyaptotic normality of the maximum likelihood estimator. Application 

of these results appears to require continuous third derivatives of the like

lihood (see Billingsley (1961)). In the interest of space, we have decided to 

handle the complications arising in cases two and three in a sequel to this 

paper. In case one, the assumption of independence between individuals in a 

cross section seems tenable. With the additional assumptions that 1) the 

observation period r 1 is the same for all individuals and equal to a finite 

constant T, and, 2) the initial distribution of (x0 ,i0 ) is given by the ergo

dic distribution O(x0 ,i 0 ,9), it follows that the likelihood equations are 

independent and identically distributed among a cohort of individuals. Thus 

enables us to use the simpler i.i.d. strong law of large numbers and the 

lindeberg-Levy Central Limit theorem to prove consistency and asymptotic nor-
Af A1 A 

mality of the estimators 9 ,8 ,9 2 • Use of these theorems will only require 

boundedness and continuity of the second derivatives of the log-likelihood 

equation. Actually, Huber (1967) has shown that asymptotic normality obtains 

with a weaker Lipschitz condition on the first derivatives of the log

likelihood function. The cost of this extra generality is exacted in the form 

of more stringent and less intuitive conditions on moments of the score func

tion. Therefore, we have opted for the standard approach using continuous 

second derivatives. Our treatment of the i.i.d. maximum likelihood case is 

entirely standard and follows previous treatments, e.g. White (1982). In 

the following discussion, let Bl denote the estimator obtained by aaximizing 

the likelihood function Li derived from a sample of L individuals, i = f,1,2. 

The following assumption guarantees that these estimators are well-defined 

random vectors. 
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{A22) 
(1+K1+K2+K3) 

The parameter space 0 is a compact subset of R • 

Theorem 8 Under assumptions (A1), •.. ,(A10) and {A22), the maximum 
A 

likelihood estimator 8i, i = f, 1,2 is a measurable function 

f h d . bl ( J I .I .J) • 1 L o t e ran om var,a es x1, •.• ,xr,,,, ••• ,,T, ~= , ••• , • 

Proof Follows i•ediately from Theorem 2.1 of White (1982). 

(A23) For all 8£0 and initial distributions n,llog p(xt+11xt,;t,e3)1 
has finite expectation with respect to (xt+1,xt,it). 

Assumption (A23) is a standard regularity assumption necessary to 

guarantee consistency. The next assumption (A24) is the standard iden

tification condition necessary_to insure consistency of the maxillUIII likelihood 

estimator. 

(A24) For any initial distribution n, E{log P(ijx,8)} and 

E{log p(ylx,i,83)j have unique maxima ate= 8* and 

83 = es, respectively. 

Assumption (A24) can be deduced from the well-known "information inequality" 

provided the sets A and B have nonzero probability, where A= {Cx,i)£rlP(ilx,8) F 

P(ilx,8*)} and B = {(y,x,i)£Axrlp(ylx,i,e3) I p(ylx,i,9l}}. Thus, it seems 

likely that we could prove assumption (A24) from more basic conditions on the 

underlying functions u,p, and q. However, since even in simple IROCfels it is 

difficult to determine a priori whether the identification condition holds, 

and since in practice lack of identification will show up in the form of a 

- singular or near-singular hessian matrix, in the interests of space we simply 
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assume that (A24) holds. The following theorem proves consistency of the 
Ai 

estimators el, i=1,2,f. 

Theorem 9 Under assumptions (A1), ... ,(A10) and (A21), •.• ,(A24), as L ➔ oo 

8~ converges to 8* with probability one, i = f,1,2. 

Af 
Proof The result for el follows immediately from Theorem 2.2 of White (1982). 

The consistency of e1 and 92 follows since L 1 and L2 are partial-likelihood 

functions, and the Cox's consistency theorem for "partial-likelihood" 

estimators, Cox (1975). 

Q.E.D. 

The next set of assumptions guarantee the boundedness and continuity 

of the score function and its derivative, and are used to prove the asymptotic 

normality of the maximum likelihood estimator. To motivate these conditions 

it is helpful to write out explicit formulas for the score function. Let 
T 

Lf(8) = n P(itlxt,8)p(xtlxt_,,it_1,e3) be the likelihood for a single 
t=1 

individual. Then 

(60) a1ogLf(e)/ae1 

(61) 

T 
= I { I [ar(e,xt,j)/ae1 Gitj(r(e,xt>lxt,e2)/P(itlxt,e>} 

t=1 jeC(xt) 
T 

= I {. I l!aEv8(xt.j)/ae2 Gi .(r(9,xt>le2)/P(itlxt,e>} 
t=1 J€C(xt} tJ 

T 
+ I {aG;t(r(8,xt>lxt,e2)/ae2}/P(itfxt,8} 

t=1 

(62) 
T 

alogLf(B)/ae3 = 

T 
+ I {alog p(xtlxt_,,;t_1,e3);ae3} 

t=1 
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T 
(63) = I {. I [EV9(xt,j)+~aEV6(xt,j)/atJ]Gi .(r(e,xt) lxt,e2)/P(itlxt,8) f 

t=1 J€C(xt) tJ 

where r(S,xt,it) = u(xt,it,81) + ~EV8(xt,it). 

Assumptions (A1), ... ,(A14) and (A23), guarantee that the score function 

and its expectation are bounded and continuous in 9. The remaining 

conditions we need are ones to guarantee that the second derivatives of the 

log likelihood have finite expectation and are continuous functions of 9. The 

second derivatives of the log likelihood function are presented in Appendix 2. 

From these formulas it is apparent that the following additional assumptions 

are required. 

(A25) 

(A26) 

a 2 log p(xt+11xt,it,93)/ae3ae3 is a continuous function of 9 

for µxµxK almost all (xt+l'xt,it)eAxr, where K is counting measure on R. 

la 2 1ogp(xt+ilxt,it,83 )/ae3ae31 and 

I [alogp(xt+i lxt, it ,83 )/ae3 J[alogp{xt+l I it ,93 )/ae;] I have finite expectation 

in (xt+l ;xt, it) for al 1 9£ and all initial distributions n. 

(A27) For each reB, µ almost all xeA, and all i,j,keC(x), the third partial 

(A28) 

derivatives Gijk(r(x)lx,92 ) exist and are continuous in r(x) 

and 92• Furthermore, for any g,heB 

/ { r r r g ( y , j ) h < y , k ) G . . k ( r ( y) I y , e 2 ) } p { dy l x, ; , e 3 ) eB . 
y i,j,keC(y) iJ 

For each reB, µ almost all xe:A, and all j,k£C(x), the derivative 

aGjk(r(x)lx,92 )/ae2 exists and is continuous in r(x) and 92 . 

Furthermore, the function/ { r r g(y,k}aG.k(r(y)ty,B2 }/ae2}p(dylx,i,93 } 
y j,ke:C(y) J . 

is an element of B, for any ge:B. 
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For each r€B, µ almost all X€~ and all j£C(x), the derivative 

a 2 Gj(r(x)lx,e2)/ae2ae2 exists and is continuous in r{x) and e2 • 

Furthermore, 

Assumptions (A25) and (A26) are standard assumptions necessary to allow 

us to apply the Lindeberg-Levy central limit theorem to prove asymptotic nor-

Ai 
mality of 6L, i=f,1,2. Assumptions (A25) and (A26) guarantee that the expec-

tation of the hessian and outer product of the first derivatives of 

log p(yjx,i,03) are finite for all 9€0. These assumptions are exactly the 

ones used by White (1982) to prove asymptotic normality in the general i. i .d. 

case. Assumptions (A28), (A29), (A3O) are equivalent to differentiability 

assumptions on the choice probabilities P(ilx,0) which guarantee continuity 

and integrability of a2 1og P(ilx,9)/aeae'. For example, continuity of 

Gijk(r{x)lx,e2) is equivalent to assuming that the choice probability P(ilx,e) 

is twice continuously differentiable in r(x,j) and r(x,k). Similarly, con

tinuity of 3 2 G;(r(x)lx,e2)/ae2ae2 guarantees that the choice probability 

P(ilx,9) is twice continuously differentiable in the parameters e2 of the 

distribution of unobservables, Q(£1x,e2).· For example, in the case of 

gaussian tts with unrestricted covariance matrix, {A3O) requires the probit 

choice probabilities to be twice continuously differentiable in the covariance 

matrix parameters. Note that assumptions (A28), (A29},{A30) could also be 

stated directly in terms of assumptions on the distribution function 

Q(£Jx,e2). For example, a sufficient condition for {A.28} to hold is that 

Q(Elx,82) is three times continuously differentiable in E, with the integrals 
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OD 

J Qijk(t(x)e-r(x)]lx,e2)de 
-00 

uniformly bounded for xeA for each re B. 

To complete the Hst of assumptions define the [di1t(8) x dim{9)] 

matrices J~{8) and A~(9) by 

(64) H~(8) 

(65) 

T 
= I e{a 2 log P(itlxt,8)/aeae•} 

t=1 

T 
= I e{a 2 1og p(xtlxt_,,it_1,e3)Jaeae•J 

t=1 

T T 
(67) A1(e) = E{[ I alog P(itlxt,8)/aeJ [ I: alogP(itfxt,8}/a8'l} 

t=1 t=1 

T T 
(68) A.f-(8) = E{C I alog p(xtlxt_,,;t_1,e3)/38][ I a1ogp(xtlxt_,,it_1,e3)/39')J} 

t=1 t=1 

T 
(69) Ai(8) = E{[ I alog P(itlxt,8)p(xtlxt_,,;t_1,e3)taeJ 

t=1 

T 
• [ I a log P(itlxt,9)p(xtlxt_1,it_1,e3 )Jae']} 

t=1 

where the expectation in (64), ••• ,(69) are taken with respect to the density 
T 

[ n P(itlxt,8)p(xtlxt_,,it_1,e3 )]Q8(x0 ,i 0 ), and where fl is the density 
t=1 

of the ergodic distribution of (x0 ,i 0 ) given by the solution to equation (39). 

Note that -H;(e) is simply the information ■atrix of the full information 

- aaxi ■um likelihood estimator Of. Formulas (64), {65), (66) clearly display 

the information value of adding extra time periods to the panel. The matrix 
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Ai(B} is the expectation of the outer product of the first derivatives of 

log Li, i = f,1,2. When [Hi(8)]-1 exists, define the matrix Ji(B) by 

(70) i=f,1,2 

The following assumption guarantees the existence of the required inverses 

of Hi(8) and ~(8). 

(A30) 8* is interior to 9, Ai(9*) is nonsingular, and O* is a 
T 

regular point of Hi(8*), i=f,1,2. 

Theorem 10 Under Assumptions (A1}, •.• ,(A30}, H~{(}'lt) is negative 

definite, i=f,1,2. 

The proof is a direct application of Theorem 3.1 of White (1982). In the 

absence of problems of non-identification, the regularity of ~(8) is a 

generic property. This follows from the theory of Morse functions. 

Specifically, a Morse function is a twice continuously differentiable function 

which has a nonsingular hessian at each critical point. Clearly, if we knew 

that the score function was a Morse function, we could do without the assump-

i tion that 8* is a regular point of H1 {B). The Morse Lemma (Guilleman and 

Pollock, (1974)} tells us {roughly speakin.g} that almost every C2 function is a 

Morse function. Furthermore, as a practical matter, singularity in H~(B) 

will be detected in the course of finding the optimum of the likelihood func

tion. 

Theorem 11 Under assumptions (A1), ... ,(A30), 

. D . 
Y'L {0~ ➔ 8*) -> N(O,J;(8*)) i=f,1,2 
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Theorem 10 is the aain result of this paper, proving the asymptotic nor■ality 

of the maximum likelihood estimators e;, i=f, 1,2. A consistent estimate of 

the matrix J~(9*) can be obtained by evaluating the sample analogs of H;(e) 

i "; ; and AT(9) at 8L. Note that the asymptotic covariance matrix JT(D*) is not 

automatically guaranteed to equal the inverse of the information matrix 

-Hi(D*). To obtain that result we need two final assumptions. 

(A31) For µ x ic almost all (x, i )er, the miniaal support of 

p(•lx,i,83) does not depend on 8. 

(A32) There exists an integrable function h{xt+1,xt,it) which for 

almost all (xt+1,xt, it) (relative to the product measure 

µxµx,c on Axr) satisfies 

(72) J f ~ h(dxt+l'dxt,dit) < + oo 

xt+1 xt 1 t 

Note that ifµ has finite support, the right hand side of (71) will be 

dominated by h = 1 so (A32) will be satisfied. In empirical applications 

discrete valued x variables will always be used in order to compute the 

required fixed point of T8• 

Theorem 12 Under Assumptions (A1), ••• ,(A32), Ai(8*) = -Hi(9*) T T 

and 

YL ce[-8*) .JL> N(O, - [Hi(8*)J-1), i=f,1,2 

The proofs of Theorems 11 and 12 are straightforward applications of 

the general results of White (1982), but since our assumptions aren't perfectly 

matched to theirs, some discussion is in order. White require~ that the ■ini-
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mal support of the likelihood function not to depend one. By Assumption (A1) 

the minimal support of P(ijx,6) equals the set C{x) which is independent of 

e. By (A31) the minimal support of p{•lx,i,83 ) is independent of 8 which 

implies in turn that the likelihoods Li, i=f,1,2 have support which are inde

pendent of e. Finally, White places a domination condition on the derivative 

of the product of the score and the likelihood in order to prove that 

Af(8~) = -Hf{81)· Given that we have proved the uniform boundedness of 

the score and its derivative, it follows that it is sufficient to bound the 

likelihood uniformly in e. This is precisely condition (A32). 

Theorem 13 Under assumptions (A1), ••• ,(A30), the random variables 

(73) 

w 
I alog P(i Ix ,B)p(x Ix 1 ,; 1,&3}/ae s s s s- s-s=1 

are uncorrelated for w < t, which implies 

T 
= I E{[alog P{itlxt,e)p(xtlxt_1,it_1.e3)/ae] 

t=1 

Proof Since the controlled process {xt, it} is jointly markovian by lemma 

3, it follows that the derivative of the log-likelihood function forms a 

zero-mean martingale (see Billingsley, (1961)) which immediately implies (73). 

Q.E.O. 

Theorem 14 Under assumptions {A1), ••• ,(A30), and assuming that Q{x0 ,i 0 ,9) 

is the unique ergodic density, we have 
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where the expectation is taken with respect to the density 

Proof. Since the ergodic density g is self-reproducing by formula (39), 

it follows that for all t the joint density of (xt,it) is given by O(xt,it,9}, 

and the joint density of (xt,it,xt_,,it_1} is given by ff(xt,it,xt_,,it_1,e} 

defined in formula (76). This immediately implies that formulas (66) and (69) 

for Ai(9) and Hi(9} reduce to formulas (74) and (75), respectively. 

Q.E.D. 

It follows from Theorem 14 that increasing the number of time periods T 

decreases the asymptotic variance of et at rate 1/T. The value of adding 

the initial probability Q(x0 ,i 0 ,9} to obtain the full-information likelihood 

function Lf given in formula (40) is to increase information by amount 

-E{a 2 n(x0 ,i0 ,9)/aeaa•}, which equals E{[a~(x0 ,i0 ,9)/a9][an(x0 ,i0 ,9)/ae'J} 

under an appropriate analog of Assumption (A32). We have not been able to 

prove that Q(x0 ,i0 ,9) is twice continuously differentiable in e, so we have 

focused our results on the estimators e;, i = f,1,2. One can see that if T 

is relatively large, the effect of adding log n to log Lf will have relatively 

small i■pact on the asymptotic standard errors of the estimator. Given the 

- added difficulty of computing n and an;ao, the researcher might be 
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justified in concluding that the incremental value of this information is low 

in comparison to its computation cost. 

We should point out that the presence of alternative estimators for 9* 

provides the basis for Hausman-type specification tests (Hausman, (1978)). One 

Af A2 Af Af -1 A A }-1 Af A2 
particularly easy test statistic to compute is L(93-93){[JT(B3)] -[Jf(9J}l (93-93)' 

which is asymptotically chi-square with K3 degrees of freedom, 

Af •2 
where 93 and e3 are the full information and partial-likelihood estimates of 
* Ai Ai _, e3 and (JT(93 )] is a consistent estimate of the (83 ,e3 ) block of the 

Ai • asymptotic covariance matrix of 83 i=f,2. Under the null hypothesis of no 

Af A * Af model misspecification, both a3 and 83 are consistent estimates of e3 , with e3 

efficient in the class of all CUAN estimators which condition on (x0 ,i0 ) . 

. r. Af .r. A 

It follows that rL(83-9J) and rL(63-8JJ are asymptotically uncorrelated, 

- so that the covariance matrix of their difference is consistently estimated by 

{[JAf(9Af)]_, - [JA2 (02)-1J} I t· th" 1 tt . d d t Q nver ,ng ,s a er expression an pre- an pos T 3 T 3 • 

multiplying by YL(e;-e~) yields the Hausman test statistic which is 

asymptotically chi-square with degrees of freedom K3• The idea behind the 

test is that under misspecification, there is no reason to assume that 

8~ and e3 will converge to the same value. Large discrepancies in these 

estimators then provide evidence of model misspecification. The test 

statistic is relatively easy to compute since the estimator 82 is obtained 
3 

from the likelihood L2 which doesn't require internal computation of the 

optimal policy f(xt,€t,9). 

Although parameter estimates 6 are the end result of maximum likelihood 

estimation, in many cases interest focuses not on the parameters themselves 

- but on the form of the estimated value function v8 (x,i) • [u(x,i,81)+aev8 (x,i)J. 

Treating the estimated value function v8 as a B-valued random element, we 
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would like to compute its asymptotic distribution directly in order, for 

example, to compute confidence bands which tel1 us how precisely we estimate 

the unknown value function v8*. Recent progress on the theory of probability 

distributions in linear spaces (Vakhania, (1981)) enables us to prove the 

following result. 

A _r.; A 0 
Theorem 15 Let aN be a consistent estimator of 8* with rN(8N-6*) -> N(O,t). 

Then 1) the value function Ve is a B-valued random element, 

2) v8 is a consistent estimator of VB*' and 

3) YN(Va -Ve*> converges weakly to a Gaussian random 
N 

element on B with expectation O and covariance 

operator [3Ve*/38J[E][Ve*/38']£L(B,L(B,B)). 

Proof First we show that v8 is a B-valued random element for any random 
A 

variable 8. Let LE B*, the dual space of B. Since LoV8: ➔ Risa continuous 
A 

mapping from e to R, it follows immediately that for any random variable 6, 

LoV0 is a real random variable. By Lemma 2.2.2 of Taylor (1978), LoVe is a 

random variable for each LE B* iff v0 is a B-valued random element, 

establishing 1). Since v8: e ➔ Bis a continuously differentiable mapping 

from e to B, we have 

(77} I Ive -VB*-ave*/ae(eN-8*) I 100,1 leN-B*l·lsupj jav8*/ae-av8*/aa-ave*+a(O -a*laal loo 
N N 0<a<1 · 

by the mean value theorem for Banach spaces (Kantorovich and Aiki1ov (1982), 
A 

p. 500). Since with probability 1, eN ➔ 8*, (77) implies that with probability 1 

V0 ➔ V8*. Furthermore, we have 
N 

(78) I IYN(VeN - Ve*> - ave*/aB(t'N(eN-8*}}1100 

'YNI jeN-8* 11 sup I jav8*+a(0 -8*,;ae-av8*/aal loo 
0<a<1 N 
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Since lliNceN-8*)11 is Op(1), continuity of av(J;ae in 8 implies that the 

right hand side of (78) converges to O with probability 1. Thus, the 

asymptotic distribution of tN(V9 -v0*) equals the asymptotic distribution of 
N 

l'N av9*;ae(eN-8*). By the Banach-space version of Prohorov's Theorem (Araujo 

and Gin~ (1980)) we have that >'N av6*;ae(0N-0*) converges weakly to a B-valued 

random element iff L[>'N av0*/a0(8N-0*)] converges weakly to a random variable 

for each LE:B*, provided the sequence of random elements {YN av9*;ae(9N-6*)} 

is flatly concentrated, (i.e., has all its probability mass concentrated on a 

finite dimensional subspace of B). Since L = L[av8*;ae]£L(Rdim(B} ,R), it follows 

_r.; A D 
that L[rN av0*;ae(eN-0*}] -> N(O,LEL'), for every L € B*. By the definition 

of a Gaussian random element, it follows immediately that t'N av0*/36{0N-0*) 

converges weakly to a Gaussian random element on B with mean O and covariance 

operator [av0*/a0][E]3[V0*/a0']E:L(B,L(B,B)). 
Q.E.D. 

We conclude this section by noting that our rather extensive list of 

assumptions does not lead to a vacuous class of estimators; the extreme 

value distribution given in (20) satisfies all the required conditions for 

consistency and asymptotic normality. Thus, if, the functions u and p 

satisfy their own regularity conditions (A2), (A3), (A4), (A10), {A13}, (A14}, 

(A19), (A26) and (A27}, then Q(£1x,e2 ) gi~en by (24) satisfies all the 

remaining conditions necessary to prove consistency and asymptotic normality 

of the maximum likelihood estimator. These latter conditions, given by 

assumptions (A7), (A11), (A12), (A15), (A16), (A17), (A18), (A21), (A24), 

(A28), (A29), and (A30), can be easily verified using the following 

special property of the extreme-value distribution (24) 

(77) 
if i=j 

if i;tj 
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This property also enables us to obtain very simple formulas for the 

derivatives of logP(ilx,8). 

(78) alogP(ilx,8)/ae1 = ar(8,x,i)/ae1 - r ar(8,x,JJ/ae1P(Jlx,8) 
j€C(x) 

(79) alogP(ilx,8)/ae3 = ar(8,x,i)/ae3 - r ar(8,x,j)/ae3P(Jlx,8) 
j€C(x) 

{80) alogP(ilx,8)/3/3 = ar(8,x,i)/313 - I ar(8,x,j)/a13P(j}x,8) 
j£C(x) 

From formulas (78), (79), (80) we can see directly that E{alogP{ifx,9)/38} = 0. 

The simplicity yielded by the extreme value distribution makes it a natural 

starting point for empirical implementation. 
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Appendix 1. Second Derivatives of T6{EV). 

In this appendix we derive formulas for az[T6(EV}l/a&ae' wMch are 

used to verify that EV6 is twice continuously differentiable in e, and are 

also used to compute the hessian and asymptotic covariance matrix of the 

maximum likelihood estimator. Throughout we define r(8~y) • {r(8,y,j)jj£C(y)} 

with r(&,y,j) • [u(y,j,61) + /3EV6(y,j)]. Gi/r(9,x}lx,e2J denotes the second 

mixed partial derivative of G(r(&,x)lx,82) with respect to r(8,x,i) and 

r(8,x,j). By the results of McFadden (1981), G .. (rf8,x)Jx,e2) is continuous in 
1J 

r(8,x) for each x and e2• Assumptions (A15), {A1'1) and (A20) and the dominated 

convergence theorem justify interchanging differentiation and integration to 

obtain the following formulas for azEv6;aeae•. 

' (1) a 2 r8cev8)/ae1ae;<x,i) = / {. I azu(y,j,91)/3&1ae1PUIY,B)}p(dylx,i,e3) 
y J£C(y) 

(2) 

+ f { _I I au(y,j,e1)1ae1ar(e,y,k)/ae2Gjk(r(O,y)IY,82)}p(dylx,i,e3) 
y J ,k£C(y) · 

at/ { _I au{y,j,&1)/ae1P(jjy,e)}p(dylx,i,93}l/ae3 
y J£C{y) 
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/ { I: I: au(y,j,e1 )/ae1 ar(e,y,k)/at1Gjk(r(6,y)jy,e)}p(dylx,i,e3 ) 
y j,kE:C{y) 

+ J {a 2G(r(e,y)jy,e2 );ae2ae2}p(dylx,i,e3 ) 
y 

+ a[J {aG(r(O,y)ly,e2 )/ae2}p(dylx,i,e3 )J/ae3 
y 

a2r6 cev9 );ae3ae3cx,i) = a2 [J G(r(O,y)ly,o2)p(dylx,i,o3)J/ae3ae3 
y 

+ ar J { r ar(e,y,j)/ao3PUIY,O)}p(dylx,i,e3 )J/ae3 
y jE:C(y) 

(9) a 2 r9 (EV9 )/ae3at1(x,i) =a[/ { I: arce,y,j)/a~P(Jly,e})p(dylx,i,o3)]/ae3 
y jE:C{y) 

(10) a 2 r8 (EV8 )1a~a~(x,i) = / { r aev6 (y,J)/a~ P(jly,e)}p(dy!x,;,e3 ) 
y jE:C(y) . 
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Appendix 2. Second Derivatives of Lf(e) 

In this appendix we derive formulas for a 2 1og Lf(8)/aeae•. In order 

to simplify notation, we simply compute a2 [log{P(itfxt,6)P(xtlxt_,,it_,,e3 )}/aeae•, 

since the second derivative of log Lf(e) is simply the sum of these terms, i.e. 

T 
(1) a 2 [log Lf(e)J/aeae• = I: a 2 (log{P{itfxt,e)p{xtlxt_,,it_,,e3 )]/aeae• 

t=1 

Furthermore, we omit the "t" subscript on the x and i variables to further 

simplify notation. It is important to note that the zero mean martingale pro

perty of the score function (Theorem 13) implies that the only terms sur

viving after taking expectations of these second derivatives are the 

expectations of the bracketed terms containing the product of the scores. As 

in appendix 1, define r{e,x,j) • (u(x,j,e1) + ~v8{x,j)J. 

(2) a 2 1ogP(ilx,e)/ae1ae;= - [alogP(ilx,8)/ae1][alogP(ilx,e)/ae;J 

+ I: a2 r(e,x,j)/ae1ae1G .. (r(e,x}lx,82 )/P(ilx,8) 
jeC(x) 1 J 

+ I: I: ar(8,x,j)/ae1 ar(e,x,k)/ae1Gijk(r(8,x)lx,e 2 )/P(ilx,8) 
j,keC(x) 

(3} a 2 1ogP(ilx,8)/aa1ae2 = -[a1ogP(ilx,8}/ae1J[alogP(ilx,8}/ae2J 

+ r ca 2 r(e,x,j)/ae1aeiJ/P(ilx,eJ 
jeC(x) 

+ I: I: ar(9,x,j)/aa1ar{8,x,k)/ae2aG .. k(r(8,x) lx,e2 )/P(i lx,0) 
j,keC(x) iJ 

+ r [ar(8,x,j)/ae1aG1j(r(9,x}!x,e2};ae2J/P(ilx,e) 
jeC(x) 



' ) 

59 

+ r a 2 r(8,x,j)/ae1ae3s .. (r(8,x}lx,e2 )/P(ilx,8) 
jeC(x) ,; 

+ r r ar(8,x,j)/ae1 ar{e.x,k)/aeiG; .k(r(9,x)lx,e2)/P(ilx,8) 
j,keC(x) J 

(5) a 2 1ogP(ilx,8)/ae1at3 = - [alogP(ilx,8)/ae1J[alogP(ilx,e)/at3J 

+ I I ar(8,x,j)/ae1 ar(9,x,k}/a~ G .. k(r(8,x)lx,e2)/P(ilx,8) 
j,keC(x) iJ 

+ I a2 r(8,x,j)/ae2ae21G .. (r(8,x}lx,e2 )/P(ilx,8) 
jeC(x) lJ 

+ I I ar(8,x,j)/ae1ar(8,x,k)/ae2 G .. k(r(8,x) lx,82 )/P(i lx,8) 
j,keC(x) . lJ 

- + I [aG; .(r(8,x)lx,e2 )/ae2 ar(8,x,j}/ae3J/P(ilx,8) 
jeC(x) J 
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+ r a 2 r(e,x,j)/ae2a13 G •• (r(&,x)lx,82 )/P(ilx,&) 

jcC(x) lJ 

+ r r ar(&,x,j)/ae2 ar(B,x,k)/313 G •• k(r(8,x)lx,e2)/P(ijx,&) 
j,kcC(x) lJ 

+ r [aG; . ( r(e ,x) lx,e2}/ae2ar(9,x,j )/a/3]/P( i Ix, 9) 
jeC(x) J 

+ r r ar(9,x,j)/3e3ar(8,x,k)/ae3 G .. k(r(9,x)lx,e2 )/P(ilx,e) 
j,keC(x) 1J _ 

(10) a 2 1ogP(ilx,9}/ae3a13 = - [alogP(ilx,e)/a&3J [alogP(ilx,9)/313] 

+ .re( )a 2 r{6,x,j)/ae3 a13G .. (r{&,x)lx,&2 )/P(ilx,e) J€ X lJ 

+ r r ar(e,x,j)/ae3 ar(e,x,k)/313 G .• k(r(e,x)lx,,e2)/P(ilx,&) 
j,kcC(x) · 1 J 

(11) a 2 1ogP(ilx,e)/a13a13 = - (alogP(ilx,e)/a13] 2 

+ r a 2 r(e,x,j)/a13a13 G .• (r(9,x}fx,92)/P(ilx,9) 
jcC(x) lJ 

- + r r ar(e,x,j)/313 ar(&,x,k)/a13 G .. k(r(&,x)lx,&2 )/P(ilx,9) 
j,kcC(x) lJ 
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Appendix 3. Existence of an Invariant Distribution n. 

In this section we provide sufficient conditions for the existence of a 

unique invariant distribution Q which is the solution to the functional 

equation 

( 1 ) 

where O(x0 ,i 0 ,a) is interpreted as an invariant probability density corresponding 

to the joint controlled stochastic process {xt,it}. Recall the following 

notation. 

A = A Borel subset of RK. 

r = {(x,i)lxeA, ieC(x)} 

B = Banach space of all measurable, real valued functions on r 
under norm 11 • I I 

00 

Bc = closed subspace of B consisting of all real valued continuous 
functions on r. 

A linear operator Ea on B is defined by 

(2) = /{ r g(y,i)P(ily,a)}p(dyjx,i,a3 } 
y ieC(y) . 

It is obvious that Ea is a continuous linear operator with norm equal to 1. 

The following assumptions guarantee the existence of an invariant distribution 

o. 

{A32) 

(A33) 

For all 8e9, Ea is a linear operator on Bc, i.e., E8 :Bc ➔ Bc. 

1 T-1 t 
For all 8€9 and for each gcBc, the sequence - r E g converges 

T t=O 8 
to an element of Bc as T ➔ oo, 
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For all 9€0, for all E: > 0, there is a compact set F£ .£ A such 

that for all (x0 ,i 0 }£f we have 

Theorem Under assumptions (A32}, •.. ,(A34) there exists at least one 

invariant distribution n which is a solution to equation (1). 

Furthermore, given any initial density A(x0 ,i 0 ) the sequence 

T-1 f I (El}tA converges to a unique invariant density 
t=o 

where the adjoint operator E; is given by 

(4) E;X{x,i) = J I P(ilx,9)p(xly,j,63)X(dy,dj) 
y iE:C(y) 

For the proof of this Theorem, see Theorems 2.9 and 2.10 of Futia (1982). 

The following condition guarantees uniqueness of the invariant distribution 

n, and is the analog of the requirement in finite state markov chains that all 

states "communicate". 

{A35) For all 9£0, there is a point x0 £/J. such that for every 

neighborhood N and for all xE:A, iE:C(x), we have 
X 

0 

(5) J p(dylx,i,93 ) > 0. 
Nx 

0 

Theorem Under assumptions (A32), ... ,(A35) there exists a unique invariant 

distribution n which is the solution to (1). 

Proof. Assumption (A35) implies that the transition probability 

P(ily,9)p(ylx,i,93 ) satisfies the "uniqueness criterion" given 

in Futia (1982), so that Theorem 2.12 of that paper guarantees· the 

existence of a unique invariant distribution n. 
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