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ABSTRACT 

This paper presents a dynamic model of consumer trading on the primary, 

secondary, and scrap markets for a stochastically deteriorating durable good in 

a stationary economy with perfect information and no transaction costs. We 

explicitly model the trading process by tracking each durable from its "birth" 

in the primary market, through its sequence of owners in the secondary market, 

until its "death" in the scrap market. We prove that a stationary equilibrium 

exists, characterize the distribution of consumer holdings of durables, and show 

that equilibrium asset prices are shadow prices to a particular regenerative 

optimal stopping problem. We show that each heterogeneous agent equilibrium is 

observationally equivalent to a homogeneous agent equilibrium. We derive a dif­

ferential equation for equilibrium rental rates, and a functional equation which 

links rental rates to asset prices. These equations show precisely how the 

structure of durable prices and rental rates embody the functional form and 

population distribution of preferences, and the technological characteristics of 

durable goods. 
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1. Introduction 

The defining characteristic of a durable good is that it yields consumption or 

productive services over multiple time periods. Since most durables deteriorate with 

use and eventually wear out, it is often the case that one wishes to trade a durable 

well before the end of its economic lifespan. When transactions costs and infor­

mation asymmetries are minimal, or when the potential gains from trade are large 

enough to overcome these barriers, a secondary market comes into existence. 

Secondary markets commonly exist for relatively portable, standardized durables such 

as automobiles, ships, trucks, aircraft, railroad cars, and farm equipment, as well 

as for some non-portable, non-standardized durables such as housing. In either case, 

the essential benefit of a secondary market is to create dynamic trading oppor­

tunities similar to a securities market: the consumer can hold the current durable 

for any desired length of time and has the opportunity of trading it for a new asset 

or chopsing from an array of used assets of different ages and physical conditions. 

In certain cases, rental markets for durable goods also come into existence. A ren­

tal market helps to "complete" the secondary market; it offers consumers the option 

to rent a durable for a given period of time at a predetermined price rather than own 

the asset over the same period and face the risk of capital loss upon resale. 

The dominant framework for analyzing durable goods markets is the "user cost" 

model developed by Wicksell [36] in the 1930s, and applied in several recent studies 

such as Bulow [10], Chow [11], Parks [26], Sieper and Swan [30], and Stokey [31]. 

The essential features of this model are the assumptions that 1) the lifetime distri­

bution of a durable is inalterable once fixed at date of manufacture, 2) new and used 

durables are perfect substitutes, and 3) a complete, competitive rental market 

1 exists. The latter assumption implies that the equilibrium price of a durable 

equals the expected discounted value of the stream of rentals over the remaining 
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life of the asset. While the Wicksellian model has proven useful in many contexts, 

the strong assumption that new and used assets are perfect substitutes limits its 

usefulness as a model of a secondary market for durable goods. 

Recent work by White [35], Swan [32], [33], Sweeney [34], Wykoff [37], Miller 

[24], Bond [9], Berkovec [3], and Manski [21], can be viewed as attempts to relax the 

strong assumptions of the Wicksellian model in order to produce more realistic models 

of durable goods markets. Of these studies, Manski [21], [22] has provided the first 

true equilibrium analysis of durables markets by deriving durable prices from 

underlying assumptions about preferences of consumers and the technological charac­

teristics of the asset. Given the importance of durable assets in economic activity, 

it is somewhat surprising that these more realistic equilibrium models of durables 

markets have arisen only recently. This can probably be explained by several dif­

ficulties involved in constructing a model of a secondary market for durables. 

First, due to expectations and the carry-over of current durable stocks into future 

periods, one obtains a strong intertemporal linkage of prices: holdings of today's 

stocks depend on expectations of tomorrow's prices, but prices of tomorrow's stocks 

depend on carry-overs of today's stocks (which depend on today's prices). 

Effectively, one must solve for the entire equilibrium price path in order to deter­

mine prices at any particular date. Furthermore, consumer expectations must be self­

fulfilling along an equilibrium price path in any viable long-run equilibrium. A 

second problem stems from the logistical difficulties of "tracking" the stock of 

durables over time as they are traded among consumers. Since durables are typically 

subject to gradual deterioration with use, and since durables in different conditions 

are effectively different goods, one obtains a market with many distinct, but closely 

substitutable goods. Unless the economy is in a stationary state, the composition of 

the stock of durables is constantly changing as new durables are supplied to the eco-

.. 
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nomy by producers in the primary market and obsolete durables are removed from the 

economy in the scrap market. Consequently, it is necessary to follow the life 

history of each durable through its sequence of owners in order to determine its 

current physical condition and whether or not the current owner will supply it to 

secondary market, keep it, or scrap it. One quickly obtains a market with an unmana­

geable number of goods. 

The Manski model (and a similar model by Berkovec [3]) is a computable general 

equilibrium model which deals head-on with most of the difficulties outlined above. 

The result is a highly realistic model of a secondary market. However, because the 

model is designed for numerical computation, it is difficult to characterize the 

basic properties of equilibrium in this framework. The present study is an attempt 

to follow the spirit of Manski's approach using a different analytical apparatus 

which enables us to deduce general properties of the equilibrium and derive closed­

form solutions for specific examples. 

Section 2 describes the durables market and the objectives of three types of 

agents in the model: producers, scrappers, and consumers. We derive the 

consumer's optimal trading strategy when secondary markets exist, and the opti­

mal replacement policy when secondary markets don't exist. It turns out that 

the latter problem, formulated as a regenerative optimal stopping problem, 

provides the key to understanding how equilibrium prices and quantities are deter­

mined in secondary markets. 

Section 3 defines our concept of a stationary equilibrium in a secondary market. 

Generalizing the Wicksellian framework, we allow the distribution of asset lifetimes 

to be determined endogenously in equilibrium, and allow new and used assets to be 

imperfect substitutes. Further, we do not require the existence of a rental market 

for durables: prices are determined in neoclassical fashion as values which equate 
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supply and demand. 

In Section 4 we prove the existence and uniqueness of stationary equilibrium and 

characterize its basic properties. We show that the equilibrium distribution of 

asset lifetimes is simply the first passage time distribution to the optimal stopping 

barrier of the optimal replacement problem of Section 2. Further, equilibrium prices 

are the shadow prices associated with this optimal stopping problem. The objective 

function of the optimal stopping problem turns out to be an equally weighted average 

of the utility functions of consumers who purchase used assets; oddly enough, con­

sumers who purchase new assets are given zero weight. Interpreting this optimal 

stopping problem as defining a "modified utilitarian" social welfare function, it 

follows that stationary equilibria are efficient. Finally, this "dual" optimal 

stopping problem allows us to show that each heterogeneous agent stationary 

equilibrium is observationally equivalent to a particular homogeneous agent sta­

tionary equilibrium; i.e., we exhibit a homogeneous consumer economy with identical 

prices and quantities. 

Section 5 derives the basic properties of stationary equilibrium under the addi­

tional assumption that a competitive rental market exists. We show that rental com­

panies can be viewed as insurance intermediaries pooling independently evolving 

durable assets in order to provide insurance against capital losses at actuarially 

fair rates. This implies that if consumers are risk averse, all consumers would 

prefer to rent rather than own. This fact allows us to prove the existence of sta­

tionary equilibria for very general specifications of consumer preferences and 

guarantees that our partial-equilibrium characterization of the properties of sta­

tionary equilibria are in fact properties which hold in any general equilibrium 

system in which our durables market is imbedded. 
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2. Description of the Market for Durables 

The durables market consists of three types of agents: scrappers, producers, and 

consumers, who trade in three corresponding markets: scrap, primary, and secondary. 

Scrappers. Scrappers offer an infinitely elastic demand for durables at a fixed price 

P. r represents the scrap value of material contained in the durable and is assumed 

to have the same value regardless of the physical condition of the asset. 2 

Producers. There is a single producer of durable goods. A durable can be represented 

quite generally as a discrete parameter markov process whose state at time tis 

represented by a nonnegative real number xt. xt can be interpreted as an index of 

the physical condition of the asset. Thus, a newly produced durable is in state 0 

and larger x represents increased physical deterioration. Durables can be regarded 

as providing decreasing levels of service and/or requiring increasing operating and 

maintenance expenditures as the asset's condition deteriorates. A new durable con­

sists of the triple {P, m(•;T),t(•,•)} where Tis a parameter indexing a particular 

consumer, Pis the sales price of a new durable set by the producer, m(x;T) is the 

conditional expectation of one period operating and maintenance costs for consumer T 

as a function of the asset's state x, and t(x,y) is the conditional probability 

distribution of next period's condition y as a function of current condition x. Since 

this paper focuses on equilibrium in secondary markets, we assume that the produ-

- 3 cer's choice of price P and durability tare exogenously specified. 

Consumers. There are a continuum of consumers distinguished by a characteristic T 

where Tis a real number in the interval[.!_,;]. The population distribution of con­

sumers is given by a probability distribution Ron the interval [.!_,;], where R(T) is 

the fraction of population whose preference parameter is less than T• We assume that 
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the per period utility of having an asset in condition x and income I is given by 

4 U(I,x;T) = a(T)I+q(x;T). Each consumer holds at most one durable per period over an 

infinite horizon and chooses an optimal asset selection and replacement policy to 

maximize the expected utility of owning an infinite sequence of assets. Consider 

consumer behavior in the presence of secondary markets. Under the assumption of sta­

tionarity, the cost-structure consumer T faces is given by 

P(z) 

T(x) 

conditional expectation of 1 period maintenance 
costs for asset x 

purchase price of an asset in condition z 

trade-in value of an asset in condition x. 

At the beginning of each time period the consumer has the option of (a) continue to 

operate the currently held asset, or (b) trade in the currently held asset for a 

replacement in condition z. If option (a) is chosen an expected cost m(x;T) is 

incurred, the consumer obtains a one period expected utility of a(T)[I-m(x;T)]+q(x;T) 

and the asset makes a transition to a new state in the next time period according to 

t(x,•). If option (b) is chosen a cost of P(z)-T(x)+m(z;T) is incurred, the consumer 

obtains a one period utility of a(T)[I-P(z)+T(x)-m(z;T)]+q(z;T), and the decision 

process repeats itself in the next time period. The functions P, T and Mand the 

transition probability t generate expectations of future operating costs and resale 

values on the basis of which the consumer decides to keep or sell the currently held 

asset. Formally, consumer T who initially owns a durable in condition x =x, seeks an 
0 

infinite sequence of decision-rules ut which attain the infimum jT(x) given by 

00 

(2.3) j (x) = suprrE { r 13 tg(xt, ut) I x} 
L t=O 

where: 
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O<S<l 

and where: 

{

a(.)[It-m(xt;.)]+q(xt;.) 

g(xt,ut) = 
a(-r)[It-P(ut)+T(xt)-m(ut;-r)]+q(ut;-r) otherwise 

In order to simplify notation it is useful to observe that (2.3) can be refor­

mulated as an equivalent cost minimization problem. Define an "operating cost" func­

tion M(•;-r) by M(x;-r)=m(x;-r)-q(x;-r)/a(-r). Then a solution IT to (2.3) will exist if IT 

is a solution to 

co 

(2.4) J (x)=infrrE{ E 8 tG(xt, ut) I x} 
-r t=O 

where: 

otherwise 

Throughout the remainder of the paper we will work with the equivalent cost minimiza­

tion form of the agent's objective function. 

When no secondary market exists, the consumer has the option of (a) keeping the 

currently held asset in condition x at a cost of M(x;-r), or, (b) trading the 

currently held asset for a new asset at a cost of P-P+M(O;-r). The objective function 

remains the same as (2.4) with the modification 
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(2.5) 

The consumer's decision problem under the objective function (2.5) defines a 

(regenerative) optimal stopping problem: how long should the current asset be 

held until it is optimal to incur the transactions costs and purchase a new 

asset? As we shall see in Section 4, there is an intimate connection between 

the solution to this problem and the solution for equilibrium in secondary 

markets. We complete the description of the durables market with the following 

assumptions: 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(AB) 

There are no taxes or transactions costs and all trading occurs at 
equilibrium prices; there is no individual bargaining over price. 

Each consumer can costlessly verify the physical condition of each asset, 
and knows the structure of secondary market prices P, and the tech­
nological characteristics of durables,~-

+ For each xs:R, ~(x,•) is an absolutely continuous distribution function which 
satisfies t(x,O)=O. 

+ For each yeR, ~(•,y) is a continuous, nonincreasing function. 

~ satisfies Doeblin's condition (ref. Doob [15], Futia, [17] ). 

For any constant y) 0 the mean first passage time from Oto y under~ is 
finite. 

M(x;T) is twice continuously differentiable in each argument and satisfies 

3M/3x) €) 0, 3M/3T) 0, 32M/3X3T) 0. 

H has density h which is nonzero and continuous on[.!,.,~]. 

Note that the transition probability t defines a continuous linear transformation E 

on the Banach space of bounded Borel measureable functions defined by 
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°" 
Ef(x) = f f(y)~(x,dy). Eis the conditional expectation operator generated by~-

0 

To solve the consumer's problem (2.4) we must solve for the value function J 
1" 

which is the unique solution to Bellman's equation given by 

(2.6) J (x)=min[M(x;-r)+SEJ (x), inf {P(z)-P(x)+M(z;-r)+aEJ (z)}] 
1" 1" Z 1" 

Notice that in (2.6) the assumption of no transaction costs, (Al), implies that T=P. 

Theorem 2.1 Under assumptions (Al), ••• ,(A8) the consumer's optimal holding strategy 

(2.7) 

(2.8) 

(2.9) 

is given by 

* where z (-r) is a solution to: 

min M(z;-r)+P(z)-SEP(z) z 

and where J (x) is given by: 
1" 

* * * J (x)=[l/(1-S)][P(z (-r))+M(z (-r);-r)-SEP(z (-r))]-P(x) 
1" 

For proof, see Appendix. According to Theorem 2.1, with zero transactions costs the 

* optimal policy entails trading each period for an optimal asset z (-r). The formula 

for the consumer's value function J given by (2.9) has an intuitive explanation: 
1" 

the present value of holding an infinite sequence of assets in condition z is equal 

to the initial cost of the asset P(z) plus the expected discounted value of operating 

and maintenance costs M(z;-r)/(1-a) plus the expected value of trading costs 

[8/(l-S)][P(z)-EP(z)] less the trade-in value of the currently owned asset, -P(x). 

* Obviously we want to choose z to minimize the sum of these terms, so z (-r) must mini-
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mize (2.8). Formula (2.8) serves as a formalization of the intuitive notion that 

consumers' choice of durables involves a trade-off between capital and operating 

costs. 

Now consider the consumer's problem (2.5) when no secondary market exists. The 

consumer's value function is the unique solution to Bellman's equation defined by 

(2.10) J (x) = min[M(x;T)+BEJ (x),P-P+M(O;T)+BEJ {O)] T T - T 

Theorem 2.2 Under assumptions (Al), ••• ,(A8) the consumer's optimal holding strategy 

is given by 

(2 .11) 
otherwise 

* where y is the smallest solution to: 

(2.12) 

and where J is the unique solution to (2.10). 
T 

The proof of Theorem 2.2 is given in Bertsekas [S], pp. 232-234. 

To conclude this section we briefly indicate how the model implicitly allows for 

maintenance and usage decisions. These decisions can be made explicit by adding a 

variable A in t(•,•;A) as a control variable governing the mean rate of deterioration 

and in M(•;A) to represent increasing consumer utility for higher rates of utiliza­

tion (or lower levels of maintenance). Bellman's equation then becomes 
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(2.13) J(x)=min[infA{M(x;X)+aEJ(x;X)}, infzinfA{M(z;X)+P(z)-T(x)+f3EJ(z;X)}] 

m 

where EJ(x;X) = f J(y)~(x,dy;X). Suppose that X(x) attains the infimum in (2.13) for 
0 

each x. A(x) represents the consumer's optimal choice of utilization of the durable 

when it is in condition x. The residual uncertainty regarding the end of period con­

dition of the asset is given by the probability distribution A(x,y)=~(x,y;X(x)). 

results of Propositions 2.1 and 2.2 are valid for general transition probabilities 

which satisfy (A5), ••• ,(A8), it follows that if t is continuous in X, and if X is 

continuous in x, then Propositions 2.1 and 2.2 will also be valid for the transition 

probability A which incorporates the optimal usage decision. Although maintenance 

and usage decisions are not explicitly analyzed in this paper, the existence of such 

decisions provides an important reason why rental markets for durable goods may not 

exist: rental companies may not be able to observe the level of usage or maintenance 

X creating an incentive for renters to over-use or inadequately maintain rented 

durables. This moral hazard problem will be discussed in Section S. 

3. Stationary Equilibrium in Secondary Markets 

The durables market consists of a continuum of goods indexed by x and a continuum 

of consumers indexed by T• We describe the price of all durables by a price function 

P and the quantities of durables by a holdings distribution F. P(x) represents the 

price of asset x and F(x) represents the fraction of durables whose condition is in 

the interval [O,x]. P and F should be interpreted as the continuous analogs of price 

and quantity vectors. Define the scrap pointy as the smallest constant for which 

P(x)=P if x>y. If such a y exists, scrappage behavior in the durables market will 

take the form of a threshold rule similar to a single consumer's optimal scrappage 

behavior given in Theorem 2.2: keep the asset if Xc:[0,y] and scrap it otherwise. We 
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now show how a stationary price function, holdings distribution, and associated scrap 

point are determined •. Unfortunately, the traditional equilibrium condition, supply 

equals demand, is not well-defined in a market with a continuum of goods and con­

sumers. The natural generalization involves equating the popu-lation distribution of 

supply to the population distribution of demand. This motivates the following defi-

nition. 

* * Definition: A stationary equilibrium is given by {F(•;y ),P(•),y} where F and 

(3.1) 

(3 .2) 

* Pare functions, and y is a constant which satisfy: 

1. P(O)=P 

* 2. P(x)=P of x>y 

* 3. F(x;y) a stationary holdings distribution corresponding to~ and 

* y , and is the unique solution to the functional equation 

* co * * F(x;y) = f [1-~(y,y )~(y,x)]F(dy;y ) 
0 

* 4. Each consumer TE[.!,_,T] chooses a holding policy Z (T) which minimizes 

the expected cost (maximizes expected utility) of owning an infinite 

sequence of durables. From Theorem 2.1 we know that the optimal trading 

* policy for consumer Tis to trade each period for Z (T) given by 

* Z (T) = argmij[M(x;c)+P(x)-SEP(x)] 
O<x<y 

5 * 5. There exists a complete, measurable selection z (•) from the 

* correspondence Z (•) which satisfies for each x 

' . 



13 

(3.3) T * * Jr{, I z (,) < x}H(d,) = F(x;y ) 
T 

* * where I{, I z (,) < x} = 1 if z (,) < x, 0 otherwise. 

Condition Sis the continuous equivalent of supply=demand. Condition 4 requires that 

consumers employ self-confirming expectations of secondary market prices to determine 

their optimal asset holdings. Condition 3 defines the stationary holdings distribu­

tion Fas an ergodic or self-reproducing distribution corresponding to the transition 

probability, given by 

(3.4) ,cx,y) -
- { 1

1
-<I1(x,y)~(x,y) y e: [O,y] 

Ye: (y,co) 

According to (3.4) an asset is allowed to age normally if x e: [O,y], but is replaced 

with a new asset once x exceeds the threshold y. Thus,, provides us with a mathema­

tical formalization of the concept of flow equilibrium: each period the volume of 

new production equals the volume of scrappage. 

The easiest way to understand why formula (3.1) should define the relevant notion 

of a "quantity vector" is to consider the sequence of holdings distributions Ft which 

evolve over time according to the functional difference equation 

(3.5) 

y 
= f t(y,x)Ft(dy) 

0 

Formula (3.5) is simply a formalization of the basic accounting identity: current 

period stock= {last period stock (age adjusted)+ new production - scrappage}. 
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If flow equilibrium is maintained each period, Doeblin's condition (AS) implies that 

given any initial distribution F0 the sequence Ft defined by (3.5) converges at a 

geometric rate to an equilibrium distribution F which is the unique solution to 

(3.1). F represents the unique self-reproducing structure of durable holdings for a 

market which is in stationary flow equilibrium. Rust [28] shows that if ~(x,x)=O, 

F(x) equals the ratio of the durable's mean first passage time to the set (x,m) 

divided by the mean first passage time to the set (y,m), i.e., F(x) is a ratio of 

stopping times. 

To show how the model represents the dynamic trading process in the durables 

market, we will "track" a single durable from the beginning of its life as a newly 

produced asset in the primary market, through its sequence of owners in the secondary 

market, until its ultimate disposition in the scrap market. Consumers locate in the 

* * interval [O,y ] according to their optimal asset choice. Let Z (,) denote the opti-

* mal durable for consumer,. In general Z (•) is a correspondence, but if the market 

* * is in equilibrium we can choose a measurable selection z (•) from Z (•) which 

* assigns a unique asset to consumer,. Assume that z is chosen so that its range 

* equals the interval [O,y ]. This is simply the completeness condition which guaran-

tees that there is a demand for every possible asset in the interval [O,y]. We can 

now describe the history of an asset from its 'birth' until its 'death.' Let the 

asset begin at time Oas a newly produced asset. It is initially bought by some con­

sumer , 1 who sells the asset next period to consumer , 2 whose optimal policy is to 

always hold an asset in condition y2 • Each period a similar trade is made between 

the successive owners of the asset until the ftrst time the asset's condition exceeds 

* y , at which time the asset is sold for scrap value P. In the language of stochastic 

processes, the life history of a durable is a realization of a point process with an 

* absorbing barrier at y • 
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4. Characterization of Stationary Equilibrium in Secondary Markets 

It is convenient to begin with the case of a homogeneous consumers population 

(4.1) H(-r) -- { 01 
* if T ;;i, T 

* if T ( T 

The results in this case are transparent, and turn out generalize directly to 

general population distributions H. With homogeneous consumers it is clear that in 

any equilibrium all assets must be priced to yield the same level of utility 

* * - * (4.2) [1/(1-B)][M(x;-r )+P(x)-BEP(x)]=[l/(1-B)][M(O;-r )+P-BEP(O)] O(x(y 

Any price function P(x) which satisfies (4.2) together with the corresponding 

* holdings distribution F(x;y) constitute a stationary equilibrium provided P(x) = 

* P, x;;i,y • Although consumers are indifferent to the choice of durable, the 

* equilibrium price function causes consumers to "locate" along the interval [O,y ] 

* according to F(x;y) so that stock equilibrium is fulfilled. If consumers were not 

located this way, there would be a tendency for prices to rise or fall in locations 

where there are too many or too few consumers relative to supply. This would entail 

instantaneous relocations of consumers until all assets are priced to yield the same 

* utility. Once the location distribution coincides with F(x;y) and prices are given 

by P(x) there will be no changes in prices or holdings and no incentive to relocate. 

Since P(x);;i.P we can rewrite (4.2) as 

* * (4.3) P(x) = max[!_,P-BEP(O)+M(O;-r )-M(x;-r )+BEP(x)] 

Thus, a stationary equilibrium will by any solution to the functional equation (4.3) 
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Theorem 4.1 Under assumptions (Al), ••• ,(A8) if His given by (4.1), then a unique 

* stationary equilibrium {P,F,y} exists and is given by 

(4.4) P(x) = P-[J *(x)-J *(O)] 
T T 

* where y and J * are the optimal stopping barrier and value function 
T 

from the solution to the optimal stopping problem (2.12), and where 

* F(x;y) is the unique solution to the functional equation (3.1). 

Proof. By Theorem 2.2 the optimal value function J * exists and is the unique solu­
T 

tion to Bellman's equation (2.10). Assumptions (A4) and (A7) imply the monotonicity 

* of M + EJ * which implies that the optimal stopping barrier y is the unique solution 
T 

to equation (2.12). Consider the candidate price function given by (4.4). Clearly 

P(O)=P. * Equation (2.12) implies that P(x)=P for x) y • It only remains to show 

that P(x) is the unique solution to (4.3). It is easy to verify that (4.3) defines a 

fixed point to a contraction mapping, so a unique solution exists. Substituting 

(4.4) into (4.3) and using the fact that J * is the unique solution to the functional 
T 

equation (2.10), it follows that P(x)=P-[J *(x)-J *(O)] is the required solution to 
T T 

(4.3) Q.E.D. 

Theorem 4.1 shows that a stationary equilibrium arises from the solution to the 

optimal stopping problem (2.10). Equilibrium quantities are determined from the 

* * optimal stopping barrier y and the stationary holdings distribution F(x;y ). 

Equilibrium prices are simply "shadow prices" from the optimal stopping problem. 

Formula (4.4) shows that the price of asset x equals the price of a new asset P, less 

a discount [J *(x)-J *(O)] to compensate for the increased operating costs of holding 
T T 
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asset x. Since the optimal value function J * can be computed by successive approxi-
1' 

mations, it follows that equilibrium prices can be computed for any cost function M 

* * and transition probability~. Given J *, one can solve for y and compute F(x;y ) by 
1' 

standard numerical methods, see Futia [17]. For more specific parametric forms we 

can obtain explicit closed-form solutions for equilibrium. 

Theorem 4.2 

(4.5) 

(4.6) 

(4.7) 

-A(y-x) Under assumptions (Al), ••• ,(A8) if ~(x,y) = 1-e , then the 

unique stationary equilibrium is given by 

* * F(x;y )=(l+Ax)/(l+Ay ) 

* 
P(x) = max[!, P+[l/(l-8)]J~M(y;.*)/ay[l-8e-A(l-S)(y-x)]dy] 

X 

* where y is the unique solution to 

* 
(P-P)(l-8) = J~M(y;.*)/ay[l-Se-A(l-S)y]dy 

0 

The important point to notice about Theorem 4.2 is that if Mis concave, then the 

equilibrium price function is convex. This yields a pattern of rapid early depre­

ciation which we observe for many durable assets such as automobiles. Note that such 

a depreciation pattern is generated without assuming the existence of informational 

asymmetries which create the "lemon's problem" which is commonly believed to be 

responsible for rapid early depreciation. Theorem 4.2 suggests that observed price 

structures might be equally well explained in a perfect information framework with 

natural specifications of consumer preferences and aging process for durables. The 

convexity result extends to general transition probabilities~ which are convexity­

preserving. We say that a linear operator Eis convexity-preserving if Ef is convex 

whenever f is. We say that the transition probability~ convexity-preserving if its 
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associated conditional expectation operator Eis convexity-preserving. The following 

theorem, whose proof is given in the appendix, shows that this concept provides a 

general sufficient condition for a convex price structure. 

Theorem 4.3 Under assumptions (Al), ••• ,(A8) if~ is convexity preserving and Mis 

concave, then Pis convex. 

The homogeneous consumer model is objectionable because it implies an absence of 

gains from trade: consumers are no better off with a secondary market than under 

autarky. It follows that a homogeneous consumer model cannot provide a positive 

theory for the existence of secondary markets. To remedy this defect we now consider 

heterogeneous consumer economies with general population distributions H. Gains from 

trade due to heterogeneity imply that consumers are unambiguously better off than 

under autarky. Our analysis of the homogeneous consumer case is not superfluous, 

however, since we will show that each heterogeneous agent stationary equilibrium is 

observationally equivalent to a homogeneous consumer stationary equilibrium. 

With a continuum of distinct consumer types and only one equilibrium price func­

tion, it follows that consumers will no longer be indifferent between various con­

ditions of durables. For a given price function, consumer Twill "locate" at the 

* condition Z (T) which maximizes expected discounted utility. Consumers sort them-

selves by type; those with strong preference for newness buy new durables and sell 

their used assets to consumers with less intense preferences for newness. The 

reduced price of used durables compensates these consumers for holding older durable 

goods. The "shape" of the price function must be chosen to cause the distribution of 

consumer demand to equal the distribution of supply. The added complication is that 

since scrappage is determined endogenously, the range of available conditions must be 

determined simultaneously with equilibrium prices. The following theorem shows how 
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this is done. 6 

Theorem 4.4 Under assumptions (Al), ••• ,(A8) a unique stationary equilibrium exists 

and is given by the unique solution to the functional equation 

(4.8) 
- X -1 * 

P(x)=max(P,P-8EP(O) - JaM(y;H {1-F(y;y )})/aydy + 8EP(x)] 
0 

* where y is the smallest solution to 

* 
(4.9) P - 8EP(O) = P - * 'Y -1 * 8EP(y ) + JaM(y;H {1-F(y;y )})/aydy 

0 

* and where F(x;y) is the unique solution to (3.1). 

* Proof. By assumption (A8) we conjecture that the optimal asset z (-r) for consumer, 

* is unique, and that the function z is monotonically decreasing on the interval 

A A * A 

[!,_,,),where, is the smallest solution to z (,)=O. Using the equilibrium condition 

* *-1 
(3.3) and letting ,(x) denote the inverse of z (,), ,(x)=z (x), we have 

(4.10) 
't' * J I{, I z (,)<:x}H(d-r) = 1-H(-r(x)) 

'T 

which implies 

(4.11) 

* = F(x;y ) 

* X e; (O,y ] 

From the first order condition of the consumer's cost minimization problem we have; 

(4.12) * * * O=aM(z (,);,)/az + P'(z (-r)) - 8EP'(z (,))-re; [!_,;) 

Taking inverses we obtain 
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* 0 = 3M(x;T(x))/ax + P'(x)-SEP'(x) x E (O,y] 

Integrating (4.13) and using the fact that P(x)>!: we obtain Equation (4.8). Given a 

* solution y to (4.9), it follows that (4.8) defines a fixed point to a contraction 

* mapping so a unique solution P exists. By construction {P,F,y} satisfies conditions 

1, 2, 3 and 5 of the definition of a stationary equilibrium. To complete the proof 

we must verify that given P, it is indeed optimal for a consumer T to choose asset 

* z (T). The details of this argument are presented in the appendix. Q.E.D. 

The striking feature of Theorem 4.4 is that the functional equation which deter­

mines equilibrium prices (4.8), is identical to the corresponding equation for the 

* homogeneous consumer economy. If we define the function M(x;y ) by 

(4.14) * X -1 * M(x;y ) = J aM(y;H {1-F(y;y )})/aydy 
0 

then the equilibrium price function P from the solution to (4.8) could equally well 

be regarded as the equilibrium price function for a homogeneous consumer economy when 

* consumers have preferences M(x;y) given by (4.14). In this sense a heterogeneous 

consumer economy is observationally equivalent to a homogeneous consumer economy: 

given any heterogeneous consumer stationary equilibrium we can find a homogeneous 

consumer stationary equilibrium with the same price function and holdings distribu­

tion. In one sense this result is disheartening; given that we observe only 

equilibrium prices and quantities we cannot separately identify the functional form 

of consumer utility functions M(x;T) from the population distribution of preferences 

H(T)• On the other hand, the result shows that for empirical purposes we can 

restrict our attention to the simpler homogeneous consumer framework without loss of 

generality. Even though the actual economy has heterogeneous consumers, we can test 
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the implications of the stationary equilibrium model using in equivalent homogeneous 

. * consumer model, estimating the "composite" utility function M(x;y) given in (4.14). 

Theorem 4.4 gives us an explicit characterization of consumer holdings of 

* durables. Inverting T(x) to obtain z (T) we obtain 

(4.15) 
* __ { F

0
-l{ (1-H(.);y *} 

Z (T) 
T e: l.! .. , ~) 

T e: [~,-;] 

A -1 * 
where T = H {1-F(O;y )}. This is a "location function" which identifies the type of 

durable chosen by each consumer•• Notice that the price structure influences con-

* sumer location decisions only through the "sufficient statistic," y • Location deci-

-1 
sions are primarily governed by technological considerations as embodied by F ; 

this function allocates consumers in the right way so that consumer demand exactly 

matches the available stock. Consumer preferences do not enter except insofar as 

they determine e9uilibrium prices and equilibrium scrappage. From (4.14) we can see 

directly how the holdings distribution F enters the "composite utility function" 

* M(x;y) which in turn determines prices. The following Lemma provides a useful 

* alternative interpretation of the composite utility function M(x;y ). 

Lemma 4.1 Under assumptions (Al), ••• ,(A8) we have 

(4.16) * M(x;y ) 
X -1 * T -1 * = JaM(y;H {1-F(y;y )})/aydy = JaM(F {1-H(.);y };.)/axd. 

0 H-1{ 1-F(x;y*)} 

The proof is a simple exercise in a change of variables. According to Lemma 4.1 the 

* composite utility function M(x;y) is simply an equally weighted average of 

marginal utilities for all consumers buying assets in the interval (O,x], 
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with the exception that consumers T > T who buy new assets are not given any weight 

at all. This is due to the fact that in this 1D.Odel, once a consumer has bought a new 

asset x=O, there is nothing more they can do to express the intensity of their pre-
,. 

ferences for newness. Only consumers at the marginal level T and below can affect 

allocation decisions and indeed it is only they who are included in the social 

welfare function. All included consumers are given equal weight, and for this reason 

* we call M(x;y) a "modified utilitarian" social welfare function. The next result 

shows that equilibrium scrappage is the solution to an optimal stopping problem using 

the modified utilitarian welfare function as the objective function. 

Theorem 4.5 Under assumptions (Al), ••• ,(A8) the stationary equilibrium 

* {P,F,y} is given by 

(4.17) P(x)=P-[J (x)-J (O)] 
mu mu 

* where y and J are the optimal stopping barrier and value function mu 

from the solution to the optimal stopping problem (2.10) with the 

* modified utilitarian objective function M(x;y ), and where Fis given 

by the unique solution to (3.1). 

The proof of Theorem 4.5 follows directly from Theorem 4.1. It follows that sta­

tionary equilibrium with heterogeneous consumers is Pareto efficient, and equilibrium 

prices are simply "shadow prices" from the solution to the social optimal stopping 

problem. Thus, stationary equilibrium with heterogeneous consumers can be calculated 

in exactly the same way as with homogeneous consumers, but with one catch: the 

* social planner must know the optimal stopping barrier y ahead of time in order to 

* determine the correct social welfare function M(x;y ). If the social planner chooses 

an arbitrary value y, then computes the optimal stopping barrier f(y) corresponding 
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* to the social welfare function M(x;y), it may turn at that y *f(y). An equilibrium 

* * is located when y =f(y ). To conclude this section, we show that for specific func-

tional forms for~ we can derive closed-form solutions for equilibrium. 

Theorem 4.6 Under assumptions (Al), ••• ,(A8) if ~(x,y)=l-e-A(y-x), then the unique 

(4.18) 

(4.19) 

(4.20) 

stationary equilibrium is given by 

* * F(x;y) = (l+Ax)/(l+Ay ) 

* 
P(x)=max[t,P+[l/(1-e)]f;M(y;H-l{A(y*-y)/(l+Ay*)})/ay[l-ee-A(l-e)(y-x)]dy] 

X 

* where y is the unique solution to 

* 
(P-P)(l-e) = J;M(y;H-1{A(y*-y)/(l+Ay*)})/ay[l-ee-A(l-e)y]dy 

0 

The equilibrium price function (4.19) shows explicitly how the structure of durable 

prices .depends on the technological characteristics of the asset, and the form and 

distribution of consumer preferences. Notice the striking similarity of this solu­

tion and the solution to the homogeneous case given in Theorem 4.2. The result 

underscores the observational equivalence of heterogeneous and homogeneous stationary 

equilibria. 

5. Stationary Equilibrium in Rental Markets 

Our formulation of consumer preferences for durable goods given in Section 2 is 

restrictive in two respects: a) we have assumed that consumers are risk neutral, and 

b) we have implicitly assumed that consumer preferences for consumption of durables 

is strongly separable from consumption of other goods. The latter assumption allowed 

us to isolate the durable purchase decision from the consumption decision for other 
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goods. In this section we show that if a competitive rental market for durable 

assets exists, stationary equilibria will exist for very general non-separable speci­

fications of consumer preferences, and equilibrium prices and quantities will con­

tinue to satisfy the same functional equations derived in Section 4. A further 

consequence is that all the properties of stationary equilibrium derived in our par­

tial equilibrium framework continue to hold in any general equilibrium system in 

which our durables market is imbedded. 

To simplify the presentation, we initially assume that no secondary market exists 

and that each durable x must be rented on a one period contract from a risk neutral 

rental intermediary at a nonstochastic rate R(x). The rental intermediary buys new 

assets from the producer at price P and rents the asset each period of its economic 

lifespan which is determined from the solution to an optimal rental policy. Let V(x) 

be the present discounted value of a rental intermediary which owns a single asset in 

condition x, and let 8 be the risk-free discount factor. Then Vis the unique solu­

tion to the functional equation 

(5.1) V(x) = max[P,R(x)+BEV(x)] 

• 
The optimal rental policy corresponding to (5.1) is simply a stopping rule S(•) 

of the form 

S(x) -- { 01 
(rent) 

(scrap) 

where y is the smallest solution to V(y)=P. 

If X € [O,y] 

If X € (y,co) 

By duality theory, a general representation of preferences of consumer T for 

alternative durable assets xis given by a conditional indirect utility function 
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U(x,I-R(x),T) defined by 

(5.3) U(x,I-R(x),T) = max u(q1 , ••• ,qn,x,T) 
(q1,•··,qn) 

subject to 

(5.4) 
n 
r piqi + R(x) ( I 

i=l 

where we leave implicit the dependence of U on the price vector (p1 , ••• ,pn). We need 

the following assumptions. 

(A9) The rental market is perfectly competitive and all rental intermediaries have 

access to a perfect capital market for borrowing and lending a risk-free 

discount factor e. 
(AlO) Rental intermediaries can costlessly verify the level of maintenance, usage, or 

any other action undertaken by the renter which affects the rate of deteriora­

tion of the durable. 

(All) U is twice continuously differentiable in all of its arguments and satisfies 

for some e. and o 

au/ax ( e < 0 o) au/ar > o 2 a U/axa. < 0 

Assumptions (A9) and (AlO) enable a competitive rental market to exist. Assumption 

(All) allows us to rank consumer preferences by consumer type.: higher T consumers 

have stronger preferences for newness and possibly a higher marginal utility of 

income. 
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* Definition: A stationary equilibrium with rental markets is given by {R,V,F,y} 

* where R, V, and Fare functions and y is a constant which satisfies 

1. V(O)=P 

* 2. V(x)=P x > y 

* * 3. F(•;y) is a stationary holdings distribution corresponding tot and y ; 

the unique solution to the functional equation (3.1). 

4. Each consumer TE [.!_,T] chooses a rental asset in the set z*(T) given by7 

(5.5) * Z (T) = argmax U(x,I-R(x),T) 
O<x<y* 

* * 5. There exists a complete, measurable selection z from Z which satisfies for 

all x 

(5.6) T * * J I{T I z (T)<x}H(dT) = F(x;y ) 
T 

6. Vis the unique solution to the functional equation 

(5.7) V(x) = max [P,R(x)+aEV(x)] 

Most of the above conditions should be self-explanatory. Condition 1 is an 

equilibrium condition for rental intermediary purchases in the primary market. · If 

V(O)<P, it would be unprofitable to buy new assets so demand would fall to zero. If 

V(O)>P competition and new entry would drive down rental rates until V(O)=P. In con­

dition 4, stationarity and the one period length of rental contracts implies that the 

consumer's intertemporal decision problem reduces to a sequence of one period optimi­

zation problems (5.5). 
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From the first order condition for an optimum, consumer T's choice of rental 

* * asset z (T)£Z (T) satisfies 

(5.8) O=aU(x,I-R(x),T)/ax-[aU(x,I-R(x),T)/aI]aR(x)/ax * x=z (T) 

* * conjecturing that Z is single-valued and monotonic it follows that z has inverse 

*-1 -1 
z (x) = T(x) = H {1-F(x;y)}, x £ [O,y]. Substituting T(x) for Tin (5.8) and 

rearranging we obtain the following differential equation for rental prices 

(5.9) 

aU(x,I-R(x),H-1{1-F(x;y)]})/ax 

aR(x)/ax = aU(x,I-R(x),H-1{1-F(x;y)})/aI 

By assumption (All) and the contraction mapping theorem (Hoffman, [19], pp. 267-268), 

it follows that for each y (5.9) has a unique solution R. 
y 

Theorem 5.1 Under assumptions (Al), ••• ,(All) a unique stationary equilibrium in ren­

* tal markets {R,F,y} exists where R is the unique solution to (5.9) on 

* [O,y ]. 

The proof of Theorem 5.1 is given in the appendix. The significance of Theorem 5.1 

is that if shares of rental intermediaries are traded in a stock market, then V(x) is 

precisely the purchase price of asset x, V(x)=P(x). It then follows immediately that 

these prices are the solution to the same functional equation derived for prices in 

Section 4 under more restrictive assumptions about consumer preferences (compare 

8 (5.1) with (4.3) and (4.6)). Clearly, the functional equations determining rental 

prices (5.9), and asset prices (5.7), take the same form regardless of the prices of 

other goods and services. Thus, even though prices of other goods enter consumer's 
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indirect utility function U and affect the shape of the individual solutions to (5.7) 

and (5.9), the general properties of equilibrium are determined by the form of these 

functional equations and hence are independent of the particular general equilibrium 

system which our durable market is imbedded. 

Using (5.1) and the fact that V=P, we have for all x 

(5.10) R(x) = P(x)-SEP(x) 

Competitive rental rates equal expected depreciation: in effect, rental inter­

mediaries provide insurance against capital losses at actuarially fair rates. When 

rental markets do not exist (5.10) defines the "shadow rental price" of the asset. 

Solving for P(x)-SEP(x) from equation (4.1) we obtain 

(5.11) R(x) = P-SEP(O)-[M(x)-M(O)] 

The shadow rental rate for asset x equals the expected depreciation on a new asset 

less a discount for the excess operating costs of the used asset. 

Theorem 5.1 appears to depend on two restrictive conditions, a) rental inter­

mediaries are risk neutral, and b) consumers do not have the option of owning in 

addition to renting. In fact, neither of these conditions involve any loss of 

9 
generality, as the following arguments demonstrate. The law of large numbers 

implies that assumption a) is actually a consequence of the assumptions of zero tran­

sactions costs and infinitely many consumers. The rental intermediary is simply an 

insurance cooperative which allows consumers to pool and subdivide their risk of 

capital loss. Thus, suppose a rental intermediary owned by N shareholders purchases 

N durable 

basis is 

assets in 

N ~ 1 
t P(yi)N, 

i=l 

condition x. The resale value of these assets on a per share 

where yi is the random end of period condition of asset i. As 
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N+ao this resale value converges to its expectation EP(x). Since resale risk is 

completely diversifiable, it follows that the relevant discount rate is the risk free 

rate 8 and risk averse shareholders will unanimously agree that the rental inter­

mediary should maximize expected discounted profits. 

Jensen's inequality implies that condition b) involves no loss of generality; 

risk averse consumers always prefer to rent at actuarially fair rates rather than 

own. For example, comparing the expected utility of owning an asset over one period 

versus renting for one period we have 

(5.12) E{U(x,I-[P(x)-SP(y)],T)} < U(x,I-R(x),T) 

since R(x) = P(x)-SEP(x) by (5.10). 

Theorem 5.1 provides our final interpretation of equilibrium asset prices: P(x) 

is the expected discounted value of the future rental stream of asset x under an 

optimal rental policy. This interpretation of equilibrium prices is the starting 

point of the Wicksellian analysis of durable goods markets: given a rental schedule 

R, equilibrium prices Pare given by the solution to the functional equation (5.1). 

The contribution of our analysis is to generalize the Wicksellian framework to allow 

new and used assets to be imperfect substitutes, and to show how the equilibrium ren­

tal schedule is determined from the technology t, and the form and distribution of 

consumer prefrences, U,H. 

We conclude by emphasizing that when rental markets do not exist, the general 

approach outlined in this section is inapplicable. In this case asset prices rather 

than rental prices must bear the burden of equating supply and demand. The 

nonexistence of rental markets is often the result of a moral hazard problem: the 

rental intermediary cannot observe whether or not a renter abuses the equipment. 
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Recalling our discussion in Section 2, this problem can be modelled by allowing the 

deterioration of the asset~ to depend on a consumer action A• Even though the 

asset's condition xis observable by both parties, only the renter observes the level 

of care A• If an asset is returned in poor physical condition x, the rental inter­

mediary cannot determine whether xis due to improper maintenance AI' or due to 

proper maintenance A and an unlucky draw from~. The problems of nonexistence of p 

equilibria in a rental market are exactly the same as those present in other 

insurance markets with moral hazard: in order to cover the losses due to inadequate 

maintenance, rental rates are driven up. This creates more incentives for dishonest 

renters to abuse the equipment leading to a spiral of increasing rental rates as 

honest renters decide to own their own equipment rather than pay the price of others' 

negligence. In the limit, this adverse selection process may drive rental markets 

out of existence. In these cases private ownership may be a relatively efficient 

incentive-compatible allocation mechanism. This may be one reason why we sometimes 

observe active secondary markets for durable goods, but weak or nonexistent rental 

markets. A complete analysis of this issue might be an interesting topic for future 

research. 
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Footnotes 

1A common alternative formulation of the Wicksellian model is to treat the 

durable good as perfectly divisible with service flow proportional to quantity 

available, regardless of the vintage of this total quantity. If the initial quantity 

of the durable is normalized to 1 and Q(t) denotes the quantity remaining at time t, 

it is easy to see that an equivalent reinterpretation is to treat the durable as an 

indivisible unit, and interpret Q(t) as the complement of the cdf of the asset's 

lifetime distribution. For details, see Parks [26]. 

2 Our model can be easily generalized to allow scrap prices P to be determined 

endogenously by equating supply and demand in the scrap market. 

3Rust [29] studies equilibrium in the primary market where P and~ are cho­

sen to maximize the expected discounted profits of a monopolist. 

4 In the following analysis we assume that the consumer's per period 

endowment of income is sufficient to finance any desired holding strategy, or 

alternatively, that the consumer has access to a perfect capital market so that 

period budget constraints can be ignored. 

5 * * We say that z is complete if its range equals the interval [O,y ]. 

6 Theorem 4.4 may be of independent interest to researchers in monopolistic com-

petition theory. Durable choice can be interpreted as choice of a continuously dif­

ferentiated commodity. Our equilibrium price function matches supply and demand in 

each point in the commodity space, with the range of available products determined 

endogenously. In this sense, Theorem 4.4 provides a solution for a class of monopo­

listically competitive equilibria very similar to a class first proposed by Rosen 

[27]. 
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7 We have assumed that income I is the same for all consumers only to simplify 

notation: all our results go through if I is a continuously differentiable function 

of T with 3I/3T > o. 
8 Note that although the results of Section 4 require more restrictions on 

consumer preferences, they do not require existence of a rental market. 

9 In the interest of space we substitute hueristic arguments in place of formal 

proofs. 

.. 
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Appendix: Proofs of Theorems. 

c Theorem 2.1 Since the set of available assets is the compact interval [O,y*], there 

exists an optimal replacement asset z*(,); an asset which attains the infimum in 
• 

(2.6). Suppose for x * z*(,) it is optimal to keep x, then (2.6) implies 

(1) P(z*(,)) + M(z*(,);,) + SEJ (z*(,)) > P(x) + M(x;,) + SEJ (x) 
T T 

This contradicts the definition of z*(,). Thus, ut(x) = z*(,) for all x. Using this 

fact (2.6) reduces to 

(2) J (x) = P(z*(,)) - P(x) + M(z*(,);,) + SEJ (z*(,)) 
T T 

Taking expectations on both sides of (2) and solving for EJ (z*(,)) yields the solu­
T 

tion for J given in (2.9). Substituting this solution for J into 
T T 

(2.6), it follows z*(,) is a solution to (2.8). Q.E.D. 

Theorem 4.3 Since equilibrium prices Pare the fixed point of a contraction 

mapping, we have 

(3) 

where J 0 = 0, T(J0 )(x) = max[P, R(x) + 8EJ0 (x)], and R(x) = P - 8EP(O) + M(O;,*) -

M(x;,*). Since Mis concave and tis convexity preserving, it follows that for each 

j, Tj(J) is convex. Since Pis the uniform limit of convex functions, it is also 
0 

convex. Q.E.D. 

The following lemma will be used in the proof of Theorem 4.4. 

Lemma The stationary distribution F(•;y) given by the unique solution to (3.1) is a 

weakly continuous function of y. 



A.2 

Proof Assumptions (A3) and (A4) imply that for each x the transition probability 

V given by (3.4) is a weakly continuous function of y, i.e.,, (x,y) +, (x,y) for 
y Yn y 

every continuity pointy of V and for each sequence {y} converging by y. The 
Y n 

Lesbesgue dominated convergence theorem implies that for any probability measureµ, 
00 

the probability distribution E*µ(x) = f, (y,x)µ(dy) is weakly continuous in y. By 
y O i N-1 i 

Theorem 2.10 of Futia [17], the sequence N r (E*) (µ) converges weakly to F(•;y) 
i=O ~ 

for any initial probabilityµ. By induction (E*) 1 (µ) is weakly continuous in y for 
y 

each i, therefore it follows immediately that F(•;y) is weakly continuous in y. 

Q.E.D. 

Theorem 4.4 To complete the proof given in the text we must verify that 1) a solu­

tion y* to (4.9) exists, and 2) given the conjectured solution (4.8) for P, z*(,) = 

-1 
F {1-H(,);y*} is in fact the optimal asset choice for consumer•· To establish the 

first result, note that Theorem 4.1 implies that for each y, the solution for Pin 

(4.8) is simply the dual or shadow price solution to the optimal stopping problem 
X -1 

(2.10) with the cost function M(x;y) = J aM(y;H {1-F(y;y)})/aydy. Let the optimal 
0 

stopping barrier corresponding to this cost function be denoted by f(y). It is easy 

to verify that the required y* which satisfies (4.9) is simply the smallest fixed 

point off. Since f(O) > 0 and lim f(y) < -+m, it follows that such a fixed point 
y+oo 

f(y*) = y* will exist provided f is a continuous function of y. By assumption 

(A3), F(•;y) is absolutely continuous so that by the Lemma proven above F(x;y) is a 

continuous function of y for each x. Since His absolutely continuous by (A8) it 

-1 
follows that for each y, aM(y;H {1-F(y;y)})/ay continuous function of y. By the 

Lesbesgue dominated convergence theorem, it follows that M(x;y) is a continuous func­

tion of y for each x. Let J by the unique solution to (2.10) with cost function 
y 

M(x;y). Theorem 3 of Kantorovich and Aikilov [20] (p. 476) implies that J is a 
y 
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continuous in y, uniformly in x. Since f(y) is the unique solution to (2.12) it 

follows that f(y) = [M + SEJ ]-1(P - P + J (O)) is a continuous function of y. We 
y - y 

conclude that a smallest fixed pointy*= f(y*) which solves (4.9) exists. 

-1 
To complete the proof we verify that z*(T) = F {1-H(.);y*} is in fact the opti-

mal asset choice for consumer•· There are actually two cases to verify: 

Case I - interior minimum: 
-1 -1 

if i E [..!,.,H {1-F(O;y*)}), then z*(T) = F {1-H(T);y*} 

minimizes M(x;T) + P(x) - SEP(x). 

Case II - boundary minimum: if TE [H-1{1-F(O;y*)},:;], then z*(T) = 0 minimizes 

M(x;.) + P(x) - SEP(x). 

Consider case I. By construction it is easy to see that z*(T) is a critical point 

of M(x;T) + P(x) - SEP(x); see (4.12) and (4.13). To show this is a local minimum 

we compute the second derivative 

(4) (1-S)J"(z*(T)) = a2M(z*(.);.)/axax + P"(z*(.)) - SEP"(z*(.)) 

Differentiating the identity (4.13), solving for P"(x), evaluating this at z*(T), 

and substituting into (5), we obtain 

(5) (1-S)J"(z*(T)) = [32M(z*( T) ;T )/3X3T] [3F(z*(T) ;y*)/ax] 
h(l-F(z*(.);y*)) 

Assumption (A3) implies aF(x;y*)/ax exists and is positive, so that by assumptions 

(A7) and (AS) J"(z*(T)) > O, so z*(T) is a local minimum. To show this is the uni­

que global minimum, suppose there exists a y such that J (y) < J (z*(T)). Suppose 
T T 

that y < z*(T). Choose w £ (y,z*(T)) so that J'(w) < 0 and J (z*(T)), J (w) (the 
T T T 

existence of such aw follows from the fact that z*(,) is a local minimum). By 

the mean value theorem, there exists av£ (y,w) such that 
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' J (v) = [J (w)-J (y)]/(w-y) > 0. By the intermediate value theorem it follows that 
T T T 

there exists au E (v,w) such that J'(u) = 0. We then have 
T 

(6) 0 = 3M(u;-r)/ax + P'(u) - eEP'(u) 

(7) 0 = 3M(u;-r(u))/ax + P'(u) - eEP'(u) 

Since u < z*(-r) it follows that -r(u) > T• 

that (7) and (8) imply a contradiction. 

2 By assumption (A7), a M(x;-r)/axa-r > 0 so 

A symmetric argument shows that y > z*(-r) 

implies J (y) > J (z*(-r)). 
T T 

Thus, z*(-r) is the unique global minimum for case I. 

A -1 
verify case II, let -r = H {1-F(0;y*)}. 

Since a2M(x;-r)/axa-r > 0, it follows that 

I 
Formula (4.12) implies that JA(0) = 0. 

T 

J'(0) > 0 for -r > -r, so that 0 is a local 
T 

minimum of J (0) for -r E (; T]. Suppose for some -r E (;,:;] there exists an x such 
T 

J (x) < J (0). By the mean value theorem there exists av E (0,x) such that 
T T 

To 

J'(v) = [J'(x) - J'(0)]/x < 0. By the intermediate value theorem there exists aw E 
T T 1" 

(0,v) such that J'(w) = 0. This implies that the following equations hold simul-
1" 

taneously 

(9) 0 = 3M(w;-r)/ax + P'(w) - eEP'(w) 

(10) 0 = aM(w;-r(w))/ax + P'(w) - eEP'(w) 

2 which is a contradiction since a M(x;-r)/axa-r > 0 and -r(w) < •. Q.E.D. 

Theorem 5.1 Assumption (All) implies that aR/ax < e/o < 0. The contraction mapping 

theorem guarantees that given any constant y and any initial condition the differen- "* 

tial equation (5.9) has a unique solution R. on the compact set [0,-ok/e] -1<.,y ~ 

satisfying ~,y(0) = k. Let vk,y be the unique solution to (5.7) with rental func-

tion R 
k,y (extended to R+ by defining Rk,y(x) = Rk,y(-ok/g) for x) -ok/g). Since 



.. 

A.5 

R... and V are fixed points to contraction mappings which depend continuously on y 
-7.c, y k, y 

and k, Theorem 4 of Kantorovich and Aikilov [20], (p. 476) guarantees that R... and 
-""k, y 

Vk are continuous functions of y and k, uniformly in x. Since VP (0) = P and lim 
,Y _,y - k+oo 

Vk (0) = -+=, it follows that for each y there exists a smallest constant k(y) such 
,Y 

that vk(y),y(O) = P. To simplify notation, let R = R...( ) and V = Vk( ) • y -7.c y ,y y y ,y 

f(y) be the optimal stopping barrier for V , i.e., the smallest solution to P = 
y 

Let 

R (f(y)) + SEV (f(y)). Since R (x) is negative for x) -ok(y)/e, it follows that 
y y y 

f(y) ( -ok(y)/e. Since f(O) > 0, a fixed point f(y*) = y* will exist provided f is 

continuous. Continuity off in y is established exactly as in Theorem 4.4, using the 

fact that both R and V are continuous in y, uniformly for x in [0,-ok(y)/e]. It 
y y 

* follows that a fixed pointy exists such that V *(O) = P and V *(x) = P for x) y*. 
y y -

To conclude the proof we must verify that given the rental function R = R *, z*(T) = 
y 

-1 
F {1-H(T);y*} is in fact the optimal asset choice for consumer T• This may be 

verified using an argument identical to the one used to establish this result in 

Theorem 4.4. Q.E.D. 
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