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Input Use under Cost-of-Production Crop Insurance: Theory and Evidence 
 

ABSTRACT 
 

There have been a number of previous studies that examined the effects of yield- or revenue-

based crop insurance products on input use of farmers. However, no study has specifically 

investigated the input use impacts of a cost-of-production (COP) crop insurance policy, even 

though this type of crop insurance is the predominant one used in several other countries outside 

of the U.S. (such as the Philippines and China). This article aims to theoretically and empirically 

examine the effect of a COP crop insurance product on farmers’ chemical input use. Our 

theoretical model suggests that the effect of COP insurance on input use can either be positive or 

negative, with the resulting impact depending on the strengths of: (a) the traditional moral hazard 

effect of insurance (i.e., an input use decreasing effect); versus (b) the marginal incentives to 

apply more inputs due to input levels being the main determinant for expected indemnity 

amounts in this type of insurance (i.e., an input use increasing effect). A survey data set from 

corn farmers in the Philippines is then used to empirically illustrate how a particular COP 

insurance product influences input use in a real-life context. In this case, we find that COP 

insurance increases the use of chemical inputs (e.g., fertilizers and weedicides), implying that the 

positive marginal incentive to apply more inputs dominates the negative moral hazard effect.          

Keywords: Cost-of-Production Crop Insurance; Moral Hazard   

JEL Classifications: Q18; Q12; G22 
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1. Introduction 

Since crop insurance programs are perceived to have less trade-distorting effects by the World 

Trade Organization (WTO), a number of developed and developing countries have steadily 

replaced direct government payments with crop insurance as the primary means to stabilize farm 

incomes. Over the last two decades, increasingly higher premium subsidies have been used to 

encourage farmers to purchase crop insurance. In the Philippines, for example, approximately 

5.96B Philippine Pesos (PhP) (or ~US$ 111M) worth of agricultural products are covered with 

crop insurance in 2010 (Yorobe and Luis, 2015). The growth in crop insurance uptake worldwide 

has made it one of the most important risk management tools that farmers across the globe 

utilize. However, over the years, there has been policy interest with respect to the input use effect 

of crop insurance since its use has been shown to influence fertilizer and chemical application, 

which in turn could affect run-off to and pollution of nearby bodies of water. Due to this 

environmental concern, there have been several academic studies that examined the effect of 

particular types of insurance (i.e., mostly yield and revenue based policies) on farmer input use.    

One such study is the seminal work of Horowitz and Lichtenberg (1993) (hereinafter 

called HL) who proposed a model of crop insurance with the key prediction that the effect of 

crop insurance on input use can either be positive or negative. Two incentives drive their result. 

First, with crop insurance, a risk averse farmer’s expected income is higher, which in turn leads 

to a lower marginal utility of income for the farmer. As a result, the farmer spends more on 

inputs and the effect is larger if the farmer is more risk averse. The second effect is the 

traditional moral hazard effect. With crop insurance, the input has no effect on revenue in a 

larger set of states of nature and hence the farmer has fewer incentives to spend on inputs. Using 

data collected from a survey in 1987, their empirical analysis showed crop insurance had a 

positive effect on input use for corn producers in their sample. In a related study, Wu (1999) 

found that the intensive-margin effect of crop insurance on chemical use was negative (based on 

data from corn farmers in the Central Nebraska basin of the US), but the extensive-margin effect 

of crop insurance on chemical use was positive. 

In contrast, using data from corn farmers in Iowa, Babcock and Hennessy (1996) showed 

that insured farmers in their sample used less chemical inputs than non-insured farmers. Smith 

and Goodwin (1996) and Goodwin, Vandeveer, and Deal (2004) reported similar empirical 

findings using different datasets from the U.S. Moreover, there are also studies that found crop 
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insurance having little effect on input use. Quiggin, Karagiannis and Stanton (1993) found a 

negative but insignificant effect of insurance on input use. Goodwin and Smith (2003) showed 

that the Federal crop insurance program had little impact on soil erosion, implying that the 

insurance effect on input use may be negligible. A recent study by Weber, Key and O’Donoghue 

(2016) also found that insurance had little direct effect on input use.  

One important feature to note in this previous literature is that all of the studies cited 

above investigated the input use effect of a specific set of crop insurance products – individual 

yield- or revenue-based crop insurance. These crop insurance products are the ones that are 

predominantly offered and used by farmers in the US Federal crop insurance program. 

Therefore, these past studies may offer limited lessons and policy insights for other countries 

where the individual cost-of-production (COP) type of crop insurance plays a more prominent 

role, such as in China and the Philippines. For example, China’s COP insurance program only 

compensates farmers a portion of the costs spent on inputs if yields fall below insured levels 

(Zhong and Zhu, 2017). Likewise, in the Philippines, farmers are required to submit an input use 

plan upon COP insurance application, and the indemnity payment is a percentage of the total 

input costs stated in the plan (Reyes et al., 2015; He et al., 2018). The COP insurance products 

are structured differently as compared to the yield- and revenue-based products in the US and 

may hence affect input use differently. 

In addition, the use of COP insurance programs have been growing rapidly in China and 

the Philippines. China’s crop insurance premium income increased from $3.54 billion in 2012 to 

$6.14 billion in 2016, and in the Philippines, the number of insured farmers increased from 0.148 

million in 2009 to 1.195 million in 2015. This expansion in the uptake of COP insurance 

programs signals that there is a need for further research on the possible consequences of COP 

insurance programs on input use (and ultimately its effect on the environment). Note that COP 

crop insurance is also slowly gaining markets in more developed countries as well. For example, 

a COP crop insurance product has recently been offered by private insurance companies in the 

US and Canada.1 Thus, insights from a study that examines COP insurance may also provide 

implications for a number of other countries that have started offering or thinking about offering 

this type of insurance in the future. 

                                                 
1 See the “Production Cost Insurance” products offered by ARMTech in the US and GlobalAgRisk Solutions in Canada: (1) 
ARMTech: https://armt.com/UploadFolder/file/2016ProductBrochures/pci%20for%20producers.pdf; and (2) GlobalAgRisk 
Solutions: https://agrisksolutions.ca/about#the-product 

https://armt.com/UploadFolder/file/2016ProductBrochures/pci%20for%20producers.pdf
https://agrisksolutions.ca/about#the-product
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In this study, we offer the first theoretical analysis, as well as an empirical illustration, of 

the possible effects of COP crop insurance on farmer input use. Our theoretical model builds on 

the work of HL, with the important difference that we specifically model a COP insurance 

product while HL considered a yield-based insurance policy. Similar to HL, our model predicts 

that the effect of COP insurance on input use can either be positive or negative, but the 

underlying drivers and conditions for these effects to occur are different. In particular, the 

positive input use effect in HL only occurs if the specific input being considered is yield 

reducing and/or the farmer is risk averse. In contrast, we find that the positive effect of COP 

insurance on input use is still possible even when the input is yield increasing and the insured 

farmer is risk-neutral. Intuitively, given that input costs partly determines the magnitude of 

indemnity payments from COP coverage, a COP insured farmer has additional marginal 

incentives to use more inputs (i.e., the input use increasing effect). On the other hand, we also 

theoretically find that the traditional moral hazard effect of insurance (i.e., the input use 

decreasing effect) also plays a role in the eventual input levels utilized by COP insured farmers.    

We empirically demonstrate the effect of COP insurance on fertilizer and chemical use 

based on a cross-sectional survey data set from corn farmers in the Philippines. As briefly 

mentioned above, the COP crop insurance contract offered in the Philippines determines the 

indemnity payments based on the cost of production inputs (e.g., fertilizers and pesticides). 

Farmers are required to submit a proposed farming plan and budget to the insurer at the time of 

insurance application, and then they will be monitored by technicians sent by the insurer during 

the production season (i.e., to make sure the actual amounts of inputs applied are consistent with 

the ones stated in the plan). The stated costs of these contracted inputs are then used to calculate 

the indemnity payment if losses occur. Our empirical results show that COP insured Philippine 

corn farmers use more fertilizers and weedicides, as well as spend more on total chemical use, 

relative to non-COP-insured farmers. This suggests that the positive marginal incentives to apply 

more inputs, given the indemnity structure of the COP insurance, dominates the negative moral 

hazard effect in this empirical context, which may then have potentially negative consequences 

for the environment (in terms of chemical run-off in the soil and non-point source pollution).    

The remainder of the paper is organized as follows. The next section introduces the 

Philippine crop insurance program. The third section presents the model and discusses its key 



4 
 

implications. Our data is described in section four and section five details the estimation strategy. 

Empirical results are discussed in section six in and the final section concludes.  

 

2. Empirical Setting: COP Crop Insurance in the Philippines 

Continued growth of the agricultural industry has been recognized by the Philippine government 

as a key component to the country’s economic development. Agriculture not only provides food 

and raw materials to other sectors, but also provides employment and absorbs a large portion of 

the working poor in rural areas. However, high poverty rates are still prevalent in many 

agricultural subsectors in the rural regions of the Philippines (Reyes et al., 2015a). Three out of 

every four poor individuals in the Philippines come from agricultural households (Reyes et al., 

2015a). 

According to the Rural Poverty Report (2011) of the International Fund for Agricultural 

Development (IFAD), adverse weather shocks is a major factor that contributes to 

impoverishment in the Philippine agricultural sector. Farmers could mitigate the impact of 

adverse weather shocks in several ways. They can adopt on-farm strategies to alleviate 

production risks (i.e., crop diversification), or purchase crop insurance. The latter has been 

recognized by the Philippine government as a viable institutional tool that can address negative 

shocks in agricultural production.  

Crop insurance has been viewed as especially suitable in recent years when farmers have 

been confronted with new challenges imposed by climate change (e.g., particularly in light of 

“super-typhoon” Haiyan that devastated the central region of the Philippines in 2013). The 

Philippines has a tropical maritime climate and it is more prone to natural disasters, such as 

floods and typhoons. As such, this country is particularly vulnerable to the impacts of climate 

change. One adverse weather event can instantly cause severe losses and poor smallholder 

farmers are usually unable to recover from these losses. These situations give rise to the main 

theme of crop insurance programs in the Philippines, which is to make sure that farmers are able 

to restart production and rebuild their livelihood after severe losses.  

 

2.1 The Philippine Crop Insurance Corporation (PCIC)   

The crop insurance program in the Philippines is administered by the Philippine Crop Insurance 

Corporation (PCIC), a government-owned corporation. PCIC is mandated to provide insurance 
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protection to agricultural producers against natural calamities, such as typhoons, floods, 

droughts, earthquakes, as well as pests and diseases. It also provides insurance against loss of 

non-crop agricultural assets including machinery and equipment.   

Unlike in some countries, crop insurance in the Philippines is regarded as both a risk 

management tool for farmers and a credit risk reduction mechanism for lending institutions. Crop 

insurance can be used as surrogate collateral when financial assistance is provided to agricultural 

producers, and farmers are required to purchase crop insurance when participating in 

government-sponsored credit programs. Crop insurance is also viewed as a mechanism that 

provides incentives for lending institutions to make loans available to producers, especially in 

underdeveloped rural areas where credit access may be an issue (Reyes et al., 2015b). 

 

2.2 The PCIC COP Insurance Program for Corn 

Corn is one of the two major crops in the Philippines being insured by PCIC (the other one being 

rice).2 In particular, there are two types of corn insurance offered by PCIC: (1) the natural-

disasters-only type, and (2) the multi-risk type. The natural-disasters-only type insures farmers 

against crop loss caused only by natural (i.e., typically “weather-related”) disasters, such as 

typhoons, floods, droughts and earthquakes. The multi-risk type, on the other hand, covers a 

more comprehensive set of risks that includes all disasters covered under the natural-disaster-

only program, plus losses from pest infestation and/or plant diseases.    

 PCIC also classifies corn producers who buy coverage into two categories: (a) the borrower 

client, and (b) the self-financed client. The borrower client secures a production loan from a 

formal lending institution, and also purchases crop insurance. As mentioned above, formal 

government-sponsored lending institutions typically require purchase of crop insurance for 

farmers wanting to acquire loans from them. The self-financed client, however, does not have 

loans from formal sources and only purchases crop insurance from PCIC.3      

The insurance coverage (i.e., the liability amount) for corn is primarily determined based on 

the total cost of some production inputs, as indicated in the Farm Plan and Budget that the 

                                                 
2 The PCIC has seven major insurance product lines: rice, corn, high-value commercial crops (i.e., vegetables and fruits), 
livestock, fishery, non-crop agricultural assets, and term insurance packages. 
3 It is important to note that there are cases where corn producers are classified by PCIC as “self-financed,” but in reality these 
“self-financed” producers may also have production loans from informal lenders that require them to buy crop insurance (Reyes 
et al., 2015a). It may be the case that this type of corn producers have had a bad credit history such that it would be difficult for 
them to get loans from formal sources.     
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farmers are required to submit upon application. Insured farmers are then monitored by 

technicians during the production season to ensure the actual amounts of inputs used are the 

same as the ones stated in the Farm Plan and Budget. When a loss occurs, the costs of these 

inputs (e.g. fertilizers and pesticides) are then used to determine the indemnity payments. This 

makes the PCIC corn coverage a COP type of insurance, and inputs such as fertilizers and 

pesticides are the contracted inputs.  

Reyes et al. (2015b) point out that premium rates for corn insurance in the Philippines are 

largely based on historical data on damage rates (i.e., the ratio of indemnity to liabilities, which 

is also called the loss cost ratio) at the provincial level. Premium rates for the corn insurance 

product vary depending on: geographical location (i.e., different rates for different provinces), 

the type of insurance cover (natural-disaster-only vs. multi-risk), and cropping season (wet vs. 

dry). Provinces are typically classified as low, medium or high risk depending on historical 

damage rates. Premium rates are higher for multi-risk cover (as compared to the natural disaster) 

because it covers losses from pest and diseases, in addition to losses from weather events. Wet 

season cropping is also associated with higher premium rates (relative to the dry season 

cropping) because the wet season is when typhoons and floods usually occur. It should be noted, 

however, that PCIC premium rates have not been regularly updated over time (Reyes et al., 

2015b, p. 42). Since 1981, premium rates charged to farmers were only updated once in 2005. 

The Philippine government heavily subsidizes corn insurance premiums. The government 

pays more than 50% of the total insurance premium for corn. Lending institutions also share a 

portion of the premium if the insured farmer borrows from them (i.e., the borrower client). 

Therefore, the borrower clients’ premiums are shared among the lending institution, the 

government, and the farmers themselves. The self-financed clients’ total (unsubsidized) 

premiums, on the other hand, are only shared with the government. Note that the total 

(unsubsidized) premium rate is typically the same for both the borrowing and the self-financed 

farmers.4 In addition, the government’s share is also the same for both types of farmers. This 

arrangement means that self-financed clients have to pay an additional amount of premium 

(relative to the borrower clients), which is equivalent to what would have been assumed by 

lending institutions if they were borrower clients.  

                                                 
4 See the PCIC table of national composite premium rates and premium sharing schemes of the corn insurance program at: 
http://pcic.gov.ph/index.php/insurance-packages/corn-crop-insurance/. 
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The premium rate shared by the lending institution and the government is also constant 

across different types of insurance cover (i.e., natural-disaster-only vs. multi-risk) as well as 

different risk classifications (i.e., low vs. medium vs. high). This scheme implies that the 

premium rate paid by the lending institutions and the government remains the same for farmers 

with different risk classification levels and the additional premium for being high risk will have 

to be borne by the high-risk farmers themselves. For example, the premium rate (premium as a 

percentage of liability) actually paid by a self-financed corn farmer classified as high risk is 

11.48% and the government pays 10.62%; while a low risk farmer only pays 5.83% himself with 

the government still paying 10.62%.     

When a loss event occurs due to a covered cause of loss, farmers need to file a Notice of 

Loss to the PCIC regional office. A team of adjusters will then verify the claim and only a loss 

over 10% of the expected yield would make the insured farmers eligible for indemnity payments. 

The insurance policy pays out indemnity in proportion to the percentage of loss due to specific 

insurable causes (as specified by the adjuster). For example, if the realized yield is just 70% of 

the expected yield for a farmer who insures the input cost or cost of production (i.e., the 

minimum coverage required by the PCIC), then the indemnity payments will be equal to 30% of 

the input costs. In this case, the farmer’s net income would be the total revenues from selling 

70% of expected yield less 70% of the input costs (i.e., since 30% of input costs is paid back as 

indemnity).   

In 2012, 29% of the insured farmers had indemnities paid from the PCIC corn COP 

insurance program. As for the causes of loss, typhoons, floods and droughts were the main 

causes. For example, in 2012, an indemnity of PHP(Philippine Peso)15.77 (or US$0.374) million 

was paid for losses due to typhoons or floods, while PHP4.53 (or US$0.107) million and PHP6 

(or US$0.142) million were paid for losses due to pests and diseases, respectively. In general, the 

losses caused by natural disasters are more than twice the losses caused by pests or diseases 

(Yorobe and Luis, 2015). Therefore, seasonal climate variability and occurrence of adverse 

weather events are the main sources of uncertainty for corn farmers in the Philippines. 

 

3. Theoretical Framework 

In this section, we develop a theoretical model to illustrate the effect of COP insurance on input 

use in the context of the Philippine crop insurance market. Our model builds upon the work of 



8 
 

HL with the important difference that in their model, the indemnity payment for a qualified loss 

is a percentage of the expected revenue (that is, they model a revenue-based insurance product), 

while in the Philippine crop insurance market that we model here, the indemnity payment is a 

percentage of the input costs. 

Formally, assume a representative farmer owns one hectare of arable land.5 The farmer’s 

production technology can be described by the production function 𝑄𝑄(𝑥𝑥,𝜔𝜔), where 𝑥𝑥 is a set of 

inputs whose costs are used to determine the indemnity payments in the COP insurance contract 

(such as fertilizer and pesticides). We define 𝜔𝜔 as a random variable affecting corn yield. It is 

assumed that 𝜔𝜔 follows the distribution of 𝑔𝑔(∙) with support [𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚]. For example, 

when there are no natural disasters or crop diseases during the growing season, 𝜔𝜔 will be close 

to 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚. When damaging natural disasters and/or crop diseases occur, 𝜔𝜔 will be close to 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚. If less severe natural disasters and/or crop diseases occur, then 𝜔𝜔 will be in between 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚. We further assume 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) > 0, and 𝑄𝑄𝜔𝜔(𝑥𝑥,𝜔𝜔) > 0,6 that is, the 

production function is increasing in the inputs as well as the random shock. 

Upon purchasing the COP insurance, the farmer needs to submit a Farm Plan and Budget, 

stating how much 𝑥𝑥 he plans to use and he will be monitored throughout the production process 

so that the stated x amount is met. The farmer has the choice of purchasing either the natural-

disasters-only insurance or the multi-risk insurance. The insurance is such that if there is a 

qualifying loss and the loss is larger than 10% of the expected yield, then the indemnity payment 

will cover part of the farmer’s total expenditures on 𝑥𝑥, proportional to the qualified loss in the 

expected yield. To be specific, at the end of the growing season, suppose the realized yield is 

𝑄𝑄(𝑥𝑥,𝜔𝜔). If the realized yield is less than 0.9𝑄𝑄� and the losses are covered by the insurance type 

the farmer purchased, then the insurance company will pay the farmer �1 − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

� 𝛼𝛼𝑥𝑥. Here, 𝛼𝛼 

is the unit price of 𝑥𝑥 and 𝑄𝑄� is the expected yield, which, as in the HL model, is assumed to be 

determined exogenously by the insurance company based on historical farmer yields. The 

expression �1 − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

� is then the share of expected yield that is lost during production. 

Therefore, with the assumption 𝑄𝑄𝜔𝜔(𝑥𝑥,𝜔𝜔) > 0, given 𝑥𝑥, there exists a trigger state 𝜔𝜔∗ =

                                                 
5 We fix the size of the land to focus our analysis on the effect of insurance on the intensive margin of input use. 
6 We also discuss below how our results will change when 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) < 0. The assumption 𝑄𝑄𝑤𝑤(𝑥𝑥,𝑤𝑤) > 0 is always maintained.   
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𝜔𝜔(𝑥𝑥,𝑄𝑄�) such that for 𝜔𝜔 < 𝜔𝜔∗, 𝑄𝑄(𝑥𝑥,𝜔𝜔) < 0.9𝑄𝑄� and the farmer will receive an indemnity 

payment.    

With these assumptions, farmer f’s expected utility can be described by the following 

equation,  

(1)     𝐸𝐸𝐸𝐸(𝑥𝑥) = ∫ 𝑢𝑢(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)− 𝑎𝑎𝑥𝑥)𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔 +𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
𝜔𝜔∗     

� 𝑢𝑢�𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)−
𝑄𝑄(𝑥𝑥,𝜔𝜔)

𝑄𝑄�
𝑎𝑎𝑥𝑥�𝑃𝑃𝑐𝑐𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔 +

𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

 

� 𝑢𝑢(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)− 𝑎𝑎𝑥𝑥)(1− 𝑃𝑃𝑐𝑐)𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔
𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

 

 

where 𝑢𝑢 is a risk-averse utility function (𝑢𝑢′ > 0, 𝑢𝑢′′ < 0), 𝑝𝑝 is the output price and 𝑃𝑃𝑐𝑐 is the 

probability that the losses are covered by the insurance farmer 𝑓𝑓 purchased. If the farmer chose 

not to purchase crop insurance, 𝑃𝑃𝑐𝑐 = 0. And the 𝑃𝑃𝑐𝑐 for the multi-risk insurance is larger than 

that of the natural-disasters-only insurance. The first order condition with respective to 𝑥𝑥 can be 

written as,  

(2)   ∫ 𝑢𝑢′(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)− 𝑎𝑎𝑥𝑥)(𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔)− 𝑎𝑎)𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔 − 𝑢𝑢(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗)− 𝑎𝑎𝑥𝑥)𝑔𝑔(𝜔𝜔∗) 𝑑𝑑𝜔𝜔
∗

𝑑𝑑𝑚𝑚
+𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝜔𝜔∗         

    𝑢𝑢 �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗)− 𝑄𝑄(𝑚𝑚,𝜔𝜔∗)
𝑄𝑄�

𝑎𝑎𝑥𝑥�𝑃𝑃𝑐𝑐𝑔𝑔(𝜔𝜔∗) 𝑑𝑑𝜔𝜔
∗

𝑑𝑑𝑚𝑚
+ 

      ∫ 𝑢𝑢′(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)− 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥)(𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔)− 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥 − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎)𝑃𝑃𝑐𝑐𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔 +𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
 

         𝑢𝑢(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗)− 𝑎𝑎𝑥𝑥)(1− 𝑃𝑃𝑐𝑐)𝑔𝑔(𝜔𝜔∗) 𝑑𝑑𝜔𝜔
∗

𝑑𝑑𝑚𝑚
+ 

                            ∫ 𝑢𝑢′(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)− 𝑎𝑎𝑥𝑥)(𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔)− 𝑎𝑎)(1− 𝑃𝑃𝑐𝑐)𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔 = 0.𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
 

 

Denote the left hand side of (2) as 𝐴𝐴. The effect of insurance coverage on input 𝑥𝑥 can be 

derived by totally differentiating (2) with respect to 𝑥𝑥 and 𝑃𝑃𝑐𝑐 and then rearrange terms to get,  

(3)                                        
𝑑𝑑𝑚𝑚
𝑑𝑑𝑃𝑃𝑐𝑐

= −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑃𝑃𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚

 ,                       

where  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚

< 0 is the second order sufficient condition for 𝑥𝑥 defined implicitly in (2) to be the 

optimal solution to the maximization problem (1). As a result, 𝑑𝑑𝑚𝑚
𝑑𝑑𝑃𝑃𝑐𝑐

 has the same sign as 𝑑𝑑𝑑𝑑
𝑑𝑑𝑃𝑃𝑐𝑐

 , 

which can be derived from (2) as the following, 
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(4)   𝑑𝑑𝑑𝑑
𝑑𝑑𝑃𝑃𝑐𝑐

= �𝑢𝑢 �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗)− 𝑄𝑄(𝑚𝑚,𝜔𝜔∗)
𝑄𝑄�

𝑎𝑎𝑥𝑥� − 𝑢𝑢(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗)− 𝑎𝑎𝑥𝑥)� 𝑔𝑔(𝜔𝜔∗) 𝑑𝑑𝜔𝜔
∗

𝑑𝑑𝑚𝑚
+ 

   ∫ �𝑢𝑢′ �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)− 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥��𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔)− 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥 − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎� −𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
 

                                      𝑢𝑢′(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔)− 𝑎𝑎𝑥𝑥)(𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) − 𝑎𝑎)]𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔 

 

The first term in (4) is negative (Claim 1) and the second term can be either positive or negative 

(Claim 2).7 As a result, the effect of insurance coverage on the contracted input 𝑥𝑥, 𝑑𝑑𝑚𝑚
𝑑𝑑𝑃𝑃𝑐𝑐

 , can 

actually be either positive or negative.  

Based on (3) and (4), COP crop insurance coverage influences the use of input x through a 

couple of channels. First, COP insurance increases farmer’s total income when the state of nature 

is below 𝜔𝜔∗. However, as the insured increases the use of 𝑥𝑥, the trigger level 𝜔𝜔∗ also 

decreases. In this case, the farmer will lose the additional income from COP insurance when the 

true state of nature is actually just below 𝜔𝜔∗. Therefore, the farmer has less incentives to use 

more 𝑥𝑥 in this case. This explains why the first term of (4) (i.e., in the first set of square 

brackets) is negative. 

Second, the latter term in (4) (i.e., in the second set of square brackets) indicates two 

possible effects of COP insurance on the use of contracted input x: (a) when 𝜔𝜔 < 𝜔𝜔∗ as the case 

for the second term in (4), COP insurance gives the insured farmer additional income (aside from 

the income selling whatever is left of Q), and this consequently decreases the marginal utility of 

income for the farmer, which then gives the farmer incentives to spend and use more 𝑥𝑥; (b) the 

marginal cost of using 𝑥𝑥 changes from 𝑎𝑎 to �𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑥𝑥 + 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

� 𝑎𝑎, and whether this is an 

increase or decrease depends on whether 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑥𝑥 + 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

 is larger or smaller than 1. For 𝜔𝜔 <

𝜔𝜔∗, we know 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

<0.9. But the magnitude of 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑥𝑥 depends on the level of 𝑥𝑥. Therefore, 

the marginal cost of x can either decrease or increase because of the COP insurance, and this part 

of the COP insurance effect on x can either be positive or negative.  

The main result from equations (3) and (4) above is similar to the main implication from HL 

in the sense that it is possible for crop insurance coverage to either have: (1) a negative effect on 

input use (i.e., the traditional notion of moral hazard in crop insurance) or (2) a positive effect on 

                                                 
7 See proofs of claim 1 and claim 2 in the Appendix. Both results hold even when the farmer is risk neutral, that is, 𝑢𝑢′′ = 0.  
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input use. However, in HL, the positive input use effect only occurs if the specific input being 

considered is yield reducing (i.e., 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) < 0) and/or the farmer is risk averse. In contrast, the 

last part of the proof for Claim 2 in the Appendix shows that the positive effect of COP insurance 

on input (x) is still possible even when: (a) the input is yield increasing (𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) > 0), which 

we maintain here, and (b) when the insured farmer is risk-neutral. Intuitively, since input x is the 

input whose costs determine the indemnity payment with COP insurance coverage, the 

theoretical model above suggests that COP insurance can provide additional incentives to use 

more x even if the insured is risk-neutral. This is the key difference between the COP insurance 

and the individual yield- or revenue-based insurance in terms of its effect on input use. 

 

3.1 Numerical Examples 

The possible effects on input use of COP insurance are best illustrated using a couple of 

numerical examples. In the first set of examples, farmers are considered to be risk averse. For 

both examples in this setting, we assume the utility function takes the form of 𝐸𝐸(w)= (w+10)1-θ

1-θ
, 

where the original wealth of the farmer is assumed to be 10, w is the profit from agricultural 

production and the risk aversion parameter θ is set to be 0.8.8 The production function is 

specified to be 𝑄𝑄(𝑥𝑥,𝜔𝜔) = 𝜔𝜔 x
1+x

 and the output and input prices 𝑝𝑝 and 𝑎𝑎 are set to be 10 and 

1, respectively. We can easily check that with this specification of the output function, we have 

𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) > 0. Finally, 𝑄𝑄� is chosen to be the expected output 𝐸𝐸[𝑄𝑄(𝑥𝑥∗,𝜔𝜔)] (i.e., expectation 

over 𝜔𝜔), when 𝑥𝑥∗ is the amount of input used, and where 𝑥𝑥∗ is the optimal amount of input 

use without the insurance. 

In the first example, 𝜔𝜔 is assumed to follow the uniform distribution on [0, 1], representing 

the scenario where good, medium and bad yields are equally likely. In this case, the optimal 

input use without insurance can be calculated by maximizing the following objective function, 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = ∫ 1
(10𝜔𝜔 𝑚𝑚

1+𝑚𝑚−𝑚𝑚+10)2
𝑑𝑑𝜔𝜔1

0 , which gives 𝑥𝑥∗ = 1.1643. As a result, 𝑄𝑄� = ∫ 𝜔𝜔 𝑚𝑚∗

1+𝑚𝑚∗
𝑑𝑑𝜔𝜔1

0 =

0.5 𝑚𝑚∗

1+𝑚𝑚∗
= 0.2690 and the trigger level 𝜔𝜔∗(𝑥𝑥) = 0.9𝑄𝑄�/ 𝑚𝑚

𝑚𝑚+1
= 0.2421 𝑚𝑚+1

𝑚𝑚
. With these, we can 

then calculate the optimal input use with a full coverage COP (𝑃𝑃𝑐𝑐 = 1) by maximizing the 

following objective function  

                                                 
8 Shi, Chavas and Lauer (2013) used the same utility function.  
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(5)    𝐸𝐸𝐸𝐸(𝑥𝑥) = ∫ 𝑢𝑢 �10𝜔𝜔 x
1+x

− 𝑥𝑥�𝑑𝑑𝜔𝜔 + ∫ 𝑢𝑢 �10𝜔𝜔 x
1+x

−
𝜔𝜔 x

1+x
0.2690

𝑥𝑥� 𝑑𝑑𝜔𝜔𝜔𝜔∗

0
1
𝜔𝜔∗  

                  = −0.5[∫ 1

(10𝜔𝜔 x
1+x−𝑚𝑚+10)

2 𝑑𝑑𝜔𝜔 + ∫ 1

(10𝜔𝜔 x
1+x−

𝜔𝜔 x
1+x

0.2690𝑚𝑚+10)
2 𝑑𝑑𝜔𝜔]𝜔𝜔∗

0
1
𝜔𝜔∗ . 

 

The optimal input use in this case 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 is 1.3641, which is larger than 𝑥𝑥∗, the optimal input use 

without the COP insurance. In this particular numerical example, the COP insurance incentivizes 

farmers to use more inputs (i.e., input-use increasing effect of COP).  

In our second example, 𝜔𝜔 is assumed to follow the Beta (5,1) distribution, representing the 

scenario where the probability for a good outcome in yield is larger than that of a bad outcome. 

In this case, using exactly the same procedure described above, we can obtain the optimal input 

use without the COP insurance as 𝑥𝑥∗ = 1.8723. As a result, 𝑄𝑄� = ∫ 𝑚𝑚∗

1+𝑚𝑚∗
5𝜔𝜔5𝑑𝑑𝜔𝜔 = 0.54321

0 . 

And the trigger level 𝜔𝜔∗(𝑥𝑥) = 0.9𝑄𝑄�
𝑚𝑚

𝑚𝑚+1
= 0.4888 𝑚𝑚+1

𝑚𝑚
. With these, we can then calculate the optimal 

input use with a full coverage COP (𝑃𝑃𝑐𝑐 = 1) by maximizing the following objective function,  

(6) 𝐸𝐸𝐸𝐸(𝑥𝑥) = ∫ 𝑢𝑢 �10𝜔𝜔 x
1+x

− 𝑥𝑥� 5𝜔𝜔4𝑑𝑑𝜔𝜔 + ∫ 𝑢𝑢 �10𝜔𝜔 x
1+x

−
𝜔𝜔 x

1+x
0.5432

𝑥𝑥�5𝜔𝜔4𝑑𝑑𝜔𝜔𝜔𝜔∗

0
1
𝜔𝜔∗  

= −2.5[�
1

(10𝜔𝜔 x
1+x − 𝑥𝑥+10)

2 𝜔𝜔
4𝑑𝑑𝜔𝜔 + �

1

(10𝜔𝜔 x
1+x −

𝜔𝜔 x
1+x

0.5432 𝑥𝑥+10)

2 𝜔𝜔
4𝑑𝑑𝜔𝜔]

𝜔𝜔∗

0

1

𝜔𝜔∗
. 

The optimal input use in this case 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 is 1.8077, which is smaller than 𝑥𝑥∗, the optimal input 

use without the COP insurance. For this second numerical example, the COP insurance 

discourages farmers to use inputs (i.e., input-use decreasing effect of COP). The two simple 

numerical examples above show that the possible effect of COP insurance can either be positive 

or negative when farmers are risk averse. 

Next, we present two more numerical examples assuming farmers are risk neutral. In this 

third case, we assume that the utility function takes the form of 𝐸𝐸(w)=w+10, and keep all other 

specifications and parameter values the same as above. For this third example, 𝜔𝜔 is again 

assumed to follow the uniform distribution on [0, 1]. In this case, the optimal input use without 

insurance can be calculated by maximizing the following objective function, 𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) =

10∫ 𝜔𝜔 𝑚𝑚
1+𝑚𝑚

𝑑𝑑𝜔𝜔1
0 − 𝑥𝑥 + 10, which gives 𝑥𝑥∗ = 1.2361. As a result, 𝑄𝑄� = ∫ 𝜔𝜔 𝑚𝑚∗

1+𝑚𝑚∗
𝑑𝑑𝜔𝜔1

0 = 0.2764 
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and the trigger level 𝜔𝜔∗(𝑥𝑥) = 0.9𝑄𝑄�/ 𝑚𝑚
𝑚𝑚+1

= 0.2488 𝑚𝑚+1
𝑚𝑚

. With these figures, we can then 

calculate the optimal input use with a full coverage COP (𝑃𝑃𝑐𝑐 = 1) by maximizing the following 

objective function  

(7)           𝐸𝐸𝐸𝐸(𝑥𝑥) = ∫ �10𝜔𝜔 x
1+x

− 𝑥𝑥�𝑑𝑑𝜔𝜔 + ∫ �10𝜔𝜔 x
1+x

−
𝜔𝜔 x

1+x
0.2764

𝑥𝑥� 𝑑𝑑𝜔𝜔.𝜔𝜔∗

0
1
𝜔𝜔∗  

The optimal input use in this case 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 is 1.4068, which is larger than 𝑥𝑥∗ (the optimal input 

use without the COP insurance). Thus, in this third specific numerical example, the COP 

insurance incentivizes farmers to use more inputs (i.e., input-use increasing effect of COP), even 

under risk neutrality.  

   For the fourth example (under risk neutral utility function), 𝜔𝜔 is again assumed to follow 

the Beta (5,1) distribution. In this case, the optimal input use without insurance can be calculated 

by maximizing the following objective function, 𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = ∫ (10𝜔𝜔 𝑚𝑚
1+𝑚𝑚

− 𝑥𝑥 + 10)5𝜔𝜔4𝑑𝑑𝜔𝜔1
0 , 

which gives 𝑥𝑥∗ = 1.8868. As a result, 𝑄𝑄� = ∫ 𝑚𝑚∗

1+𝑚𝑚∗
5𝜔𝜔5𝑑𝑑𝜔𝜔 =  0.54471

0  and the trigger level 

𝜔𝜔∗(𝑥𝑥) = 0.9𝑄𝑄�
𝑚𝑚

𝑚𝑚+1
= 0.4902 𝑚𝑚+1

𝑚𝑚
. Using these figures, we can then calculate the optimal input use 

with a full coverage COP insurance (𝑃𝑃𝑐𝑐 = 1) by maximizing the following objective function,  

(8)   𝐸𝐸𝐸𝐸(𝑥𝑥) = ∫ �10𝜔𝜔 x
1+x

− 𝑥𝑥 + 10� 5𝜔𝜔4𝑑𝑑𝜔𝜔 + ∫ �10𝜔𝜔 x
1+x

−
𝜔𝜔 x

1+x
0.5447

𝑥𝑥 + 10� 5𝜔𝜔4𝑑𝑑𝜔𝜔.𝜔𝜔∗

0
1
𝜔𝜔∗  

The optimal input use in this case 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 is 1.8186, which is smaller than 𝑥𝑥∗, the optimal input 

use without the COP insurance. Therefore, in this fourth example, the COP insurance 

discourages farmers to use inputs (i.e., input-use decreasing effect of COP), even under risk 

neutrality. These two latter examples show that even in the case where farmers are risk neutral, 

the possible effect of COP insurance can also be either positive or negative. 

  

3.2 The Case When 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) < 0 

The theoretical analysis so far hinges upon the assumption that 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) > 0, that is, the input 

𝑥𝑥 is yield increasing. This is generally true for weedicides and pesticides as they are damage 

abating, but may not be true for fertilizers. Fertilizers might promote both crop and weed growth 

and as a result, the final effect on yield might be ambiguous. Also, under certain extreme weather 

conditions, fertilizers can be even yield reducing (Horowitz and Lichtenberg, 1994). Therefore, it 
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is also worthwhile to reexamine our main results under the alternative assumption of 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) <

0.  

 In this case, it can be shown that the first term in (4) is positive (Claim 3 in Appendix) and 

the second term can still be either positive or negative (Claim 4 in Appendix).9 As a result, the 

effect of insurance coverage on the contracted input 𝑥𝑥, 𝑑𝑑𝑚𝑚
𝑑𝑑𝑃𝑃𝑐𝑐

 , can still be either positive or 

negative. Therefore, our main theoretical result above continues to hold even in the case of 

possibly yield reducing inputs.  

 

4. Data 

As our model predicts an ambiguous relationship between COP insurance coverage and input 

use, an empirical illustration is warranted to further investigate the effects of COP insurance in a 

particular real-life context. To do so, we use a survey dataset from the Philippines. The dataset 

comes from a farm-level survey conducted in 2013 under a program called “Improving the 

Agricultural Insurance Program to Enhance Resilience to Climate Change.” This program was 

administered by the Southeast Asian Regional Center for graduate study and research in 

agriculture (SEARCA). This survey covers three major corn growing provinces in the 

Philippines: Isabela, Pangasinan and Bukidnon (see Figure 1). Farm households were selected 

for the survey using a multi-stage stratified random sampling approach. Two municipalities from 

each province were chosen based on the area devoted to corn production and the number of 

producers enrolled in the PCIC corn insurance program. The data on the area devoted to corn and 

the number of insured producers were obtained from the Bureau of Agricultural Statistics (BAS) 

and PCIC, respectively. In each sampled municipality, two villages with the largest numbers of 

insured farmers were chosen, and then, corn farmers in each village were stratified into insured 

and non-insured for the wet season (June-December) of the year 2012. In each stratum, farmers 

were chosen randomly. The list of insured corn farmers was provided by PCIC and the list of 

non-insured farmers were obtained from village heads. A total of 426 corn producers were 

surveyed, with half of them insured and the other half uninsured. The questionnaire elicits a wide 

range of farmers’ information including the farmer’s demographic background, socio-economic 

                                                 
9 See proofs of claim 3 and claim 4 in the Appendix. Again, both results hold even when the farmer is risk neutral, that is, 𝑢𝑢′′ =
0.  
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conditions, inputs used, farming and management practices, and some psychometric measures 

(such as indicators of cognitive ability and cautiousness).   

A few farmers were dropped from the sample. First, two farmers who used open-pollinated 

seeds were dropped. It is because the yields of open-pollinated seeds are usually lower and 

farmers who use this type of seeds may behave quite differently from farmers who purchase 

seeds. Second, twenty two “farmers” surveyed who were paid care-takers of the fields were 

dropped because these respondents usually do not make insurance purchase and input use 

decisions. Finally, some farmers reported unrealistically high per hectare yields and these 

numbers were likely due to measurement errors. Thus, considering the average mean yield is just 

five thousand kilograms per hectare, six farmers with historical mean yields larger than 12,000kg 

per hectare plus eighteen farmers with missing historical yields were dropped from this sample. 

As a result, there are 402 farmers in our working sample. 

 

5. Empirical Strategy 

We estimate the effect of insurance on input use, by estimating the following empirical model, 
 

(9)     𝑦𝑦𝑚𝑚 = 𝛽𝛽0+𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚 + 𝛽𝛽2𝑋𝑋𝑚𝑚 + 𝑢𝑢𝑚𝑚, 
 

where 𝑦𝑦𝑚𝑚 is the amount of input used. We consider the amounts of fertilizers (𝐹𝐹𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝑚𝑚), 

weedicides (𝑊𝑊𝐼𝐼𝐼𝐼𝑑𝑑𝐹𝐹𝐼𝐼𝐹𝐹𝑑𝑑𝐼𝐼𝑚𝑚), and pesticides (𝑃𝑃𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹𝐼𝐼𝐹𝐹𝑑𝑑𝐼𝐼𝑚𝑚) used per hectare, as well as the total 

expenditure on these three inputs (𝐸𝐸𝑥𝑥𝑝𝑝𝐼𝐼𝐼𝐼𝑑𝑑𝐹𝐹𝐹𝐹𝑢𝑢𝐼𝐼𝐼𝐼𝑚𝑚), as dependent variables in our empirical 

analysis. 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚, in this case, is a dummy variable indicating whether insurance is 

purchased or not. The vector 𝑋𝑋𝑚𝑚 includes farmer 𝐹𝐹’s characteristics that can potentially 

influence the amount of inputs used. Below we discuss the definition of each variable and the 

justifications for including them in the empirical specification. 

Since each farmer has land with different qualities, faces different weather conditions, and 

uses different technology, we include the average value of the reported yields per hectare for the 

two most recent years, that is, 2010 and 2011 yields (i.e., the 𝐻𝐻𝐹𝐹𝐼𝐼𝐹𝐹𝐻𝐻𝐼𝐼𝐹𝐹𝐼𝐼𝑎𝑎𝐹𝐹𝐻𝐻𝐹𝐹𝐼𝐼𝐹𝐹𝑑𝑑𝑚𝑚 variable) in the 

specification. The intent is for this variable to control for the potential effect of unobserved 

individual heterogeneity on input use (which cannot be captured by province dummies). Input 

decisions also depend on type of seeds used. The 𝐻𝐻𝑦𝑦𝐻𝐻𝐼𝐼𝐹𝐹𝑑𝑑𝑚𝑚 variable is equal to 1 if farmer 𝐹𝐹 

uses hybrid seeds and 0 if GMO or BT seeds are used. Newly developed GMO and BT seeds 
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offer various new features, such as inherent resistance to pests like Asian corn borer, which lead 

to less pesticides needing to be used for pest control. The presence of inherent herbicide 

tolerance in some GM crops also allow farmers to apply more weedicides without damaging 

their crops. 

The variable 𝐷𝐷𝐹𝐹𝐼𝐼𝐹𝐹𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐻𝐻𝑎𝑎𝑑𝑑𝑚𝑚 is the distance between farmer 𝐹𝐹’s field and the nearest road. 

Because transportation cost is part of the input cost, the distance to the nearest road can affect 

farmers’ input use decisions. Moreover, in remote areas (such as those included in the study), 

farmers have little outside job opportunities and other sources of income. As a result, they may 

tend to use more inputs to ensure good yields. The total farming area is denoted as 𝐴𝐴𝐼𝐼𝐼𝐼𝑎𝑎𝑚𝑚. It is 

expected that larger farms are associated with more farming assets, so this variable is used to 

examine the wealth effect of insurance on input use. Also, the area variable reflects the scale of 

the farm and captures any returns to scale effect on input use.  

Two variables are used to account for farm diversification. 𝐿𝐿𝐹𝐹𝐿𝐿𝐼𝐼𝐼𝐼𝐹𝐹𝐻𝐻𝐼𝐼𝐿𝐿𝑚𝑚 is set to 1 if the 

farmer raises any livestock and 0 otherwise. Farmers can apply livestock manure to their fields 

instead of fertilizers. 𝑂𝑂𝐹𝐹ℎ𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝐻𝐻𝑝𝑝𝑚𝑚 is set to 1 if the farmer plants other crops aside from corn and 

0 otherwise. Farmers who grow other crops may face less risks due to diversification, and this 

risk reduction may in turn affect input choices.  

A risk aversion measure (𝐷𝐷𝐹𝐹𝐼𝐼𝐿𝐿𝐴𝐴𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚) is also included in the empirical specification 

because risk-averse farmers may use more conservative management approaches, such as using 

more chemicals to minimize uncertainty in their farming income. Farmers’ risk preference is 

elicited in the survey using a hypothetical question asking whether they are willing to try a new 

seed variety that may double their yield or cut their yield by several given proportions (20%, 

50% and 75%). Those farmers who are not willing to try this risky seed even when it has only 

half chance of decreasing their yields by 20% are considered to be the most risk-averse ones, and 

the 𝐷𝐷𝐹𝐹𝐼𝐼𝐿𝐿𝐴𝐴𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚 variable is set to 1 for these farmers (zero otherwise). Finally, province 

dummies are included to control for heterogeneity in input prices or any other effects that vary at 

the regional level.10  

 

                                                 
10 Village information is missing for some farmers so that village dummies cannot be used.  
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5.1 Identification 

One challenge in estimating the reduced form equation in (5) is that the insurance variable, 

𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚, might be endogenous. For example, a farmer may possess some private information 

that his fields have a high probability of being struck by pests in the coming year. As a result, he 

purchases insurance and also uses more pesticides to minimize the expected loss. To correct for 

this potential endogeneity bias, we use the instrumental variable (IV) approach. For a variable to 

be a good instrument, it has to satisfy two conditions. First, it has to be excluded from (5), that is, 

it should have no effect on input use once 𝑋𝑋𝑚𝑚 is controlled for. Put in other words, it needs to be 

uncorrelated with the error term 𝑢𝑢𝑚𝑚 in (5). Second, it has to be correlated with the potentially 

endogenous variable, that is, the insurance variable. Although the second condition can be tested 

directly by examining the first stage estimation results from the two-stage least squares IV 

estimation, the first condition can only be tested indirectly through the overidentification test. 

Below, we identify three variables in our dataset that can potentially be used as IVs, and then 

discuss under what assumptions they can be considered as valid instruments. We also perform 

statistical tests to examine the validity of these instruments.          

Our first instrumental variable is 𝑒𝑒𝐼𝐼𝐼𝐼𝑑𝑑𝐹𝐹𝐹𝐹𝑚𝑚, which is the total amount of loans farmer 𝐹𝐹 

utilized. One section in the survey is on sources of capital. It asks farmers to report the sources 

and the amount of their borrowings. The sources can be official or private lending institutions, 

banks, relatives and other channels. In the Philippines, those who borrow from official lending 

institutions are required to purchase insurance and some farmers who borrow from other 

channels are also required to purchase insurance. Therefore, the amount of loan certainly has an 

impact on the likelihood of purchasing insurance. On the other hand, if a farmer cannot borrow 

all the money he needs to purchase inputs, then the more he can borrow, the more inputs he will 

use. In the Philippines, this is unlikely to be the case, at least for those farmers who borrow from 

official lending institutions. For these farmers, they can submit a Farm and Budget Plan stating 

the amounts of inputs they plan to use and the loan amount they need to purchase these inputs as 

part of their loan application. As the government has been very supportive of farming, it usually 

approves the requested amount of loan. Therefore, under the assumption that farmers have no 

problem borrowing the money needed to purchase inputs (i.e., no credit constraints), this variable 

can be considered as a valid instrument.  
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Our second instrumental variable is organization membership (𝑂𝑂𝐼𝐼𝑔𝑔𝑚𝑚), which is equal to 1 if 

farmer 𝐹𝐹 is a member of any organization, which includes farmers organizations, civic 

organizations, and religious organizations; and 0 otherwise. In the Philippines, farmers can 

purchase crop insurance as a group (i.e., such as through cooperatives). This may significantly 

reduce the burden of document preparation and increase the likelihood for crop insurance 

participation. On the other hand, the effect of organization membership on farming practices is 

far from being direct. Farmers make their input use decisions mainly based on the quality of their 

land and their experiences in farming and by listening to agricultural technicians and following 

the instruction manuals for the chemicals. Therefore, under the assumption that organization 

membership has little effect on input use, the 𝑂𝑂𝐼𝐼𝑔𝑔𝑚𝑚 variable can be a valid instrument.     

Our third and final instrument is a measure of farmers’ perception of the usefulness of crop 

insurance. One question in the survey asks whether they agree that buying crop insurance can 

manage the risks of crop failure. If farmer 𝐹𝐹 believes crop insurance is a useful tool to manage 

risks, the variable 𝐸𝐸𝐼𝐼𝐼𝐼𝑓𝑓𝑢𝑢𝐹𝐹𝑚𝑚 is set to 1. It is set to 0 otherwise. Obviously, farmers who believe 

crop insurance is a useful tool to manage farming risks are more likely to purchase insurance. On 

the other hand, farmers’ perception of the usefulness of crop insurance should have little effect 

on their farming practices and their input uses in particular.  

All the variables discussed in this section, together with their definitions, are listed in Table 

1. The summary statistics for these variables are reported in Table 2. 

 

6. Estimation Results 

We estimate (5) using a two-stage least squares (2SLS) procedure. The first-stage estimation 

results are reported in Table 3. All three instrumental variables have a positive sign (as expected) 

and a statistically significant effect on crop insurance purchase. The F statistic for the joint 

hypothesis that none of the three instrumental variables has any effect on insurance purchase is 

larger than 10, indicating that we can reject the hypothesis that the IV regression is weakly 

identified. This verifies that our instruments are correlated with the potential endogenous 

variable.  

 The second-stage estimation results are reported in Table 4. Several results are worth 

discussing. First, the overidentification test results indicate that we cannot reject the hypothesis 

that our instruments are valid. Second, crop insurance is found to have a positive effect on the 
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use of fertilizers, weedicides and pesticides as well as the total expenditure on chemicals. Three 

out of the four estimated effects are statistically significant . The magnitudes of the effects are 

not small. For example, insured farmers use 53 more kilograms of fertilizers per hectare than 

uninsured farmers. This is equivalent to about 12% of the average amount of fertilizers used by 

farmers in the dataset. This empirical result suggest that the input-use-increasing effect of COP 

insurance (i.e., from our theoretical model, this is the marginal incentives to apply more input 

due to the structure of the COP policy) dominates the input-use-decreasing effect of COP that 

comes from the traditional moral hazard effect in insurance.  

Third, farmers with higher yields in the past use more fertilizers and spend more on 

chemicals. As discussed above, historical yields capture unobserved individual heterogeneity. 

One reason that some farmers had high yields in the past could be that these farmers tend to 

apply more chemicals to their lands than others. Fourth, farmers that are located farther away 

from roads are found to use more fertilizers and chemicals in total. Also, they are found to use 

more weedicides and pesticides, though the effects are not statistically significant. In remote 

areas, farmers have little outside job opportunities and other sources of income. As a result, they 

may tend to use more inputs to ensure good yields. 

Fifth, diversified farmers are found to use fewer fertilizers and chemicals in total. They are 

also found to use less weedicides and pesticides, though the effects are not statistically 

significant. Farmers who also grow livestock can use animal manure as an alternative to 

commercial fertilizer and hence use less fertilizers. Also, for these farmers, their sources of 

income are diversified so they have less incentives to boost yields by using more inputs. Sixth, 

risk-averse farmers use more fertilizers and spend more on all inputs combined. They are also 

found to use more weedicides and pesticides, though the effects are not statistically significant. 

This is consistent with the idea that risk averse farmers are willing to invest more in inputs to 

minimize the chance of crop failure (and this is also consistent with the theoretical framework 

developed above).  

Finally, we also tested whether the insurance variable is endogenous or not using the 

Hausman test and results of the test indicate that we cannot reject the hypothesis that the 

insurance variable is exogenous. This is actually not surprising because in the Philippine crop 

insurance market many farmers do not purchase insurance voluntarily. Those farmers who 

borrow from official lending institutions are required to purchase insurance and some farmers 
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who borrow from other channels are also required to purchase insurance. In light of this finding, 

we also estimate (5) using simple ordinary least squares (OLS) regression and the results are 

shown in Table 5. The OLS results are very similar to the 2SLS results, both in terms of 

statistical significance and magnitudes of the effects with the only exception that insurance is 

found to have a smaller effect on fertilizers and weedicides. But the absolute value of the 

estimates are still not trivial and are statistically significant. For example, the 2SLS results show 

that on average insured farmers use 53 more kilograms of fertilizers per hectare than uninsured 

farmers, while the OLS results show insured farmers use 30 more kilograms of fertilizers per 

hectare than uninsured farmers.  

 

6.1 Robustness checks 

Although the overidentification test and the first-stage F-test results above suggest that we 

cannot reject the hypothesis that the three instrumental variables used are valid, we also cannot 

rule out the possibility that any or all of them are invalid. The variable 𝑒𝑒𝐼𝐼𝐼𝐼𝑑𝑑𝐹𝐹𝐹𝐹𝑚𝑚 may be 

considered by some as an issue. For example, farmers who don’t have good outside work 

opportunities are more likely to be poor and borrow money, and at the same time use more inputs 

because they spend more time in the fields. From the discussion of the variables above, it is clear 

that the variable 𝐸𝐸𝐼𝐼𝐼𝐼𝑓𝑓𝑢𝑢𝐹𝐹𝑚𝑚 appears to require the weakest assumptions as a valid instrumental 

variable. Therefore, in our first robustness check, we drop 𝑒𝑒𝐼𝐼𝐼𝐼𝑑𝑑𝐹𝐹𝐹𝐹𝑚𝑚 and use both the 

𝑂𝑂𝐼𝐼𝑔𝑔𝑎𝑎𝐼𝐼𝐹𝐹𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝐻𝐻𝐼𝐼𝑚𝑚 and the 𝐸𝐸𝐼𝐼𝐼𝐼𝑓𝑓𝑢𝑢𝐹𝐹𝑚𝑚 variables as the only two instrumental variables in our 2SLS 

regression. Estimation results are reported in Tables 6 and 7. The first-stage results in Table 6 

show that 𝑒𝑒𝐼𝐼𝐼𝐼𝑑𝑑𝐹𝐹𝐹𝐹𝑚𝑚 and 𝐸𝐸𝐼𝐼𝐼𝐼𝑓𝑓𝑢𝑢𝐹𝐹𝑚𝑚 still have positive and statistically significant effects on 

insurance purchase. The F statistic for the joint hypothesis that neither of the two instrumental 

variables has any effect on insurance purchase is very close to 10 (at 9.7), implying that the IV 

regression is not weakly identified. The second-stage estimation results are still consistent with 

our main results above. The insurance effects on fertilizers, weedicides and total chemical use 

are still positive and statistically significant; though the estimated magnitudes are slightly larger 

compared to the initial 2SLS results where all three instrumental variables are used.   

In our second robustness check, we only include the 𝐸𝐸𝐼𝐼𝐼𝐼𝑓𝑓𝑢𝑢𝐹𝐹𝑚𝑚 variable as the instrumental 

variable in our 2SLS regression. Estimation results are reported in Tables 8 and 9. The first-stage 

results in Table 8 show that 𝐸𝐸𝐼𝐼𝐼𝐼𝑓𝑓𝑢𝑢𝐹𝐹𝑚𝑚 has a positive and statistically significant effect on 
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insurance purchase, rejecting the hypothesis that this IV regression is weakly identified. The 

second-stage estimation results are again consistent with our other results above. The insurance 

effect on fertilizer use is still positive and statistically significant (at the 5% level of 

significance), and its effect on total expenditure for chemical inputs is also positive and 

statistically significant (albeit at the 11% significance level). The estimated magnitudes are 

similar to the other robustness checks. 

Another concern is that the short-run decision of choosing seed types to use (i.e., GM or not) 

could be endogenous as well. To address this concern, we drop the 𝐻𝐻𝑦𝑦𝐻𝐻𝐼𝐼𝐹𝐹𝑑𝑑𝑚𝑚 variable in the 

empirical specification and run the main regression again (see Table 10 and Table 11). The 

results are almost identical to the specification with the variable of 𝐻𝐻𝑦𝑦𝐻𝐻𝐼𝐼𝐹𝐹𝑑𝑑𝑚𝑚 included in the 

specification. 

Our last robustness check uses the propensity score matching (PSM) method to estimate the 

effect of insurance on input use (e.g. Rosenbaum and Rubin, 1983). The PSM approach relies on 

a different set of assumptions than the IV regression approach to identify the causal effect. 

Specifically, the unconfoundedness assumption has to be satisfied, which assumes that the 

potential treated or untreated outcomes are independent of the treatment status conditional on a 

set of variables, which are called confounders. In our context, treatment refers to having 

insurance and the confounders are the 𝑋𝑋 variables in (5). To implement this approach, we first 

estimate a logit model to calculate the probability of each farmer purchasing COP insurance 

(e.g., the propensity score). Then, for each farmer with insurance, we match him/her with one, 

five, or ten uninsured farmers who have the smallest differences between their propensity scores. 

For each uninsured farmer, we also match him/her with one, five, or ten insured farmers who 

have the smallest differences between their propensity scores and his score. Next, we compute 

the difference between a farmer’s input use with the average of his matched farmers. Finally, we 

average the differences across all farmers to obtain the average treatment effect.  

The PSM estimation results in Table 12 show once again that having insurance significantly 

increases fertilizers use, weedicides use (for one to five and one to ten matching results) and the 

total expenditure on chemicals. In addition, the magnitudes of the effects for fertilizers and 

weedicides are very close to those of OLS results, but are smaller than those of 2SLS estimates. 

Note, however, that the insurance effect on total chemical expenditure for the PSM procedure is 

very similar to both the OLS and 2SLS results above. Overall, the PSM results are consistent 
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with our main results from the 2SLS procedure and the other robustness checks conducted 

above.  

 

7. Conclusion 

In this study, we develop a theoretical model that examines the effect of COP crop insurance on 

input use application of farmers. Although there have been previous studies that investigated the 

effects of crop insurance on farmer input use, none have specifically focused on the input use 

effects of COP insurance (i.e., most previous studies only considered yield- or revenue-based 

crop insurance products). COP crop insurance coverage is uniquely different from yield- or 

revenue-based crop insurance because indemnity payments in this type of policy are explicitly 

linked to the total input cost of the farmer. In this theoretical model of COP insurance, we 

explain the incentives behind its potential effect on farmers’ input use decisions (i.e., as 

compared to previous theoretical studies that looked at effects of yield or revenue crop 

insurance). 

Overall, our theoretical analysis suggests that there are different channels by which COP 

crop insurance influence chemical input use by farmers. Consistent with previous literature that 

examines input use effects of yield- and revenue-based crop insurance, our theoretical model also 

reveal that the effect of COP insurance on input use can either be positive or negative. However, 

the resulting COP insurance impact on input use depends specifically on two channels: (a) the 

traditional moral hazard effect of insurance (i.e., an input use decreasing effect); and (b) the 

marginal incentives to apply more inputs due to input levels being the main determinant for 

expected indemnity amounts in this type of COP insurance (i.e., an input use increasing effect). 

In the latter channel, as COP insurance indemnity is based on the reported input use (and cost), 

the actual marginal cost of using additional inputs with COP insurance could be lower. 

Moreover, unlike past studies, the positive input-use increasing effect in our theoretical model 

holds, even if the COP insured farmer is risk-neutral or even if the inputs being considered has 

some yield-reducing features.  

 Based on a cross-sectional survey dataset of corn farmers in the Philippines (i.e., where COP 

insurance is the predominant insurance used), we then empirically illustrate the effect of a 

particular COP insurance product on farmers’ application of chemicals in a real-life context. 

Using IV econometric procedures, we find that Philippine corn farmers with COP insurance 
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coverage use more fertilizers and weedicides compared to uninsured farmers, and the total 

chemical expenditures of these COP farmers tend to be higher as well. Our results are also robust 

to several specification checks and using alternative estimation procedures. In sum, the empirical 

analysis indicates that the input-use-increasing effects of COP insurance (i.e., due to COP 

indemnities being tied to reported input levels) dominates the input-use-decreasing effects (i.e., 

from traditional moral hazard incentives) – resulting in a positive overall input use effect of COP 

insurance for this specific Philippine context.  

 It is important to point out that results from the theoretical and empirical analyses may have 

important implications for the environment. With the possibility of theoretically having a 

positive chemical input use effect of COP insurance (and with the strong positive effects shown 

in the empirical illustration), it is likely that the environment may be adversely impacted with 

increased COP insurance adoption. If COP insurance indeed encourages more chemical input 

use, then run-off of excess chemicals not absorbed by the plant may increase, and thereby 

exacerbate non-point source pollution in nearby waterbodies. In the Philippine context, given the 

empirical results above, policy makers should be cognizant of the potential “unintended” 

consequence of promoting COP insurance (i.e., increasing water pollution and algal blooms due 

to chemical runoff) and weigh this “cost” against the “benefit” of better risk protection in 

agriculture.     

 Findings from this study point to several potential directions for future research. First, in 

addition to the specific COP insurance product studied in this paper (i.e., based primarily on the 

structure of the COP insurance product in the Philippines), other variations of the COP product 

exists, and as such further research that examines the input use effects of these other COP 

insurance types should also be examined. For example, to save on the cost of verifying actual 

input use through hired technicians, indemnity payments in China’s COP insurance program do 

not depend on the actual input cost incurred, but on a level exogenously set for each farmer. 

Therefore, the incentive from the change in the marginal cost of input use may not be present in 

this type of COP insurance product. Hence, it may be important to examine the input use 

impication of this type of insurane product. Second, the empirical analysis in this study is mainly 

meant to illustrate how COP insurance products can affect fertilizer and pesticide use behavior in 

a specific context (for a specific group of farmers and for one survey year). Therefore, it would 

be beneficial to empirically examine input use behavior using panel datasets with longer time-
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series dimensions and larger cross-sectional scopes in order to strengthen the evidence base in 

the literature. Perhaps multi-year, randomized control trials (RCTs) in different countries (and 

for different COP products) are also possibilities for future investigation. These types of 

extensions to the present study are crucial, especially if COP insurance offerings increases in the 

future and gains more popularity worldwide.           
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Figure 1. Locations of Surveyed Municipalities in the Philippines 
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Table 1: List of Variables 
Variable Unit Definition 

Dependent variables   

Fertilizer 100 kilograms/hectare Total kilograms of fertilizers applied per hectare  

Pesticide Kilogram /hectare Total kilograms of pesticides applied per hectare 

Weedicide Kilogram /hectare Total kilograms of weedicides applied per hectare 

Expenditure 10,000 PHP Total expenditure on chemical inputs per hectare 

   

Independent variables 
 

Insurance 
 

1=having insurance and 0 otherwise 

HistoricalYield 1,000 kg/hectare Mean yield per hectare for 2010 and 2011 

Hybrid 
 

1=hybrid varieties and 0 otherwise 

DistanceRoad Kilometer Distance to nearest road 

Area Hectare Total area of planted fields 

Livestock 
 

1=farmer raises any livestock and 0 otherwise 

OtherCrop 
 

1=farmer plants other crops aside from corn and 0 otherwise 

RiskAverse 
 

1= most risk-averse farmer and 0 otherwise 

Isabela 
 

1=Isabela and 0 otherwise 

Pangasinan 
 

1=Pangasinan and 0 otherwise 

   

Instrumental variables 

Credit 10,000 PHP Total amount of loan accessed 

Org 
 

1=with membership in any organization and 0 otherwise 

Useful 
 

1=farmer believes insurance can manage the risks of crop 
failure and 0 otherwise 
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Table 2: Summary Statistics of Variables 
Variable Obs Mean Std. Dev. Min Max 
Fertilizer 402 4.43 1.48 0.54 11 
Pesticide 402 0.43 1.78 0 30 
Weedicide 402 4.44 3.32 0 24 

Expenditure 402 1.19 0.37 0.19 2.57 
Insurance 402 0.50 0.50 0 1 

HistoricalYield 386 5.07 2.47 0 18 
Hybrid 402 0.71 0.45 0 1 

DistanceRoad 392 0.99 1.85 0 20 
Area 394 2.51 2.34 0.25 26 

Livestock 402 0.15 0.36 0 1 
OtherCrop 402 0.54 0.50 0 1 
RiskAverse 402 0.20 0.40 0 1 

Isabela 402 0.35 0.48 0 1 
Pangasinan 402 0.33 0.47 0 1 

Credit 401 3.06 3.65 0 34.5 
Org 402 0.50 0.50 0 1 

Useful 400 0.79 0.41 0 1 
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Table 3: First-Stage Estimation Results 
 Insurance 

Variable Coef. Std. Err. 
HistoricalYield 0.0236** 0.01 

Hybrid 0.0135 0.05 
DistanceRoad 0.0035 0.01 

Area -0.0181* 0.01 
Livestock 0.0477 0.06 

OtherCrop -0.0710 0.06 
RiskAverse -0.0325 0.06 

Isabella 0.0029 0.06 
Pangasinan 0.0442 0.07 

Credit 0.0394*** 0.01 
Org 0.2749*** 0.05 

Useful 0.3407*** 0.06 
Constant -0.0982 0.10 

   

N of obs. 367 
F Stat. for Instruments 12.13 

Adj. 𝐷𝐷2 0.27 
Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 4: Second-Stage Estimation Results 
 Fertilizer Weedicide Pesticide Expenditure 

Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Insurance 0.5177** 0.25 1.0819* 0.58 0.3514 0.37 0.1014 0.07 

HistoricalYield 0.0604** 0.03 0.1417** 0.07 0.0522 0.05 0.0314*** 0.01 

Hybrid 0.1152 0.15 0.5154 0.34 0.0108 0.22 -0.0112 0.04 

DistanceRoad 0.0821** 0.03 0.0604 0.08 -0.0051 0.05 0.0255*** 0.01 

Area 0.0242 0.03 -0.0494 0.07 0.0390 0.04 0.0020 0.01 

Livestock -0.0465 0.18 -0.3604 0.42 -0.2153 0.27 -0.0097 0.05 

OtherCrop -0.3765** 0.15 -0.5191 0.36 -0.1869 0.23 -0.0983** 0.04 

RiskAverse 0.6468*** 0.16 0.1874 0.39 0.6242** 0.25 0.1529*** 0.04 

Isabela -0.5672*** 0.16 -0.0280 0.39 0.4881** 0.25 -0.0990** 0.04 

Pangasinan 1.0589*** 0.18 -3.7181*** 0.42 -0.0038 0.27 0.1469*** 0.05 

Constant 3.5780*** 0.24 4.3732*** 0.56 -0.2510 0.36 0.9663*** 0.07 
         

N of obs. 367  367  367  367  

𝐷𝐷2 0.3042  0.2677  0.0412  0.1989  

 

Overidentification Test 

 Fertilizer Weedicide Pesticide Expenditure 

Sargan 𝜒𝜒2(2) 1.219 2.0667 0.9944 0.8639 

P-Value 0.5436 0.3558 0.6082 0.6493 

Basmann 𝜒𝜒2(2) 1.1797 2.0048 0.9618 0.8352 

P-Value 0.5544 0.3670 0.6182 0.6586 

 

Endogeneity Test 

 Fertilizer Weedicide Pesticide Expenditure 

Wu-Hausman F test statistic 1.2016 1.3166 0.0453 0.0242 

P-Value 0.2659 0.2520 0.8315 0.8766 

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 5: OLS Estimation Results 
 Fertilizer Weedicide Pesticide Expenditure 

Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Insurance 0.3071** 0.13 0.5093* 0.30 0.2807 0.19 0.0976*** 0.04 

HistoricalYield 0.0617** 0.03 0.1568** 0.07 0.0541 0.05 0.0306*** 0.01 

Hybrid 0.0861 0.15 0.5307 0.35 0.0128 0.22 -0.0182 0.04 

DistanceRoad 0.0849** 0.03 0.0726 0.08 -0.0032 0.05 0.0252*** 0.01 

Area 0.0255 0.03 -0.0445 0.07 0.0390 0.04 0.0021 0.01 

Livestock -0.0362 0.18 -0.3069 0.42 -0.2071 0.27 -0.0116 0.05 

OtherCrop -0.3754** 0.16 -0.5425 0.36 -0.1902 0.23 -0.0964** 0.04 

RiskAverse 0.6102*** 0.17 0.1456 0.39 0.6225** 0.25 0.1475*** 0.05 

Isabela -0.5747*** 0.17 -0.0275 0.39 0.4876* 0.25 -0.1005** 0.05 

Pangasinan 1.1005*** 0.18 -3.7156*** 0.42 -0.0092 0.27 0.1564*** 0.05 

Constant 3.6959*** 0.23 4.5595*** 0.54 -0.2278 0.35 0.9776*** 0.06 
         

N of obs. 369  369  369  369  

Adj. 𝐷𝐷2 0.2928  0.2576  0.0148  0.1778  

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 6: First-Stage Estimation Results (using Organization and Useful as the 
instruments) 

 Insurance 

Variable Coef. Std. 
Err. 

HistoricalYield 0.0259** 0.01 
Hybrid 0.0585 0.06 

DistanceRoad 0.0102 0.01 
Area -0.0032 0.01 

Livestock 0.0703 0.07 
OtherCrop -0.1158** 0.06 
RiskAverse -0.0541 0.06 

Isabela 0.0714 0.06 
Pangasinan 0.1214* 0.07 

Org 0.2860*** 0.05 
Useful 0.3898*** 0.06 

Constant -0.1325 0.10 
   

N of obs. 368 
F Stat. for 

Instruments 9.02 

Adj. 𝐷𝐷2 0.19 

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 7: Second-Stage Estimation Results (using Organization and Useful as the 
instruments) 

 Fertilizer Weedicide Pesticide Expenditure 

Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Insurance 0.6962** 0.29 1.5521** 0.69 0.1240 0.44 0.1408* 0.08 

HistoricalYield 0.0559* 0.03 0.1298* 0.07 0.0579 0.05 0.0304*** 0.01 

Hybrid 0.1133 0.15 0.5069 0.35 0.0138 0.22 -0.0114 0.04 

DistanceRoad 0.0780** 0.03 0.0505 0.08 0.0000 0.05 0.0246*** 0.01 

Area 0.0235 0.03 -0.0532 0.07 0.0402 0.04 0.0020 0.01 

Livestock -0.0645 0.18 -0.4039 0.42 -0.1930 0.27 -0.0139 0.05 

OtherCrop -0.3695** 0.16 -0.5008 0.37 -0.1957 0.23 -0.0968** 0.04 

RiskAverse 0.6573*** 0.17 0.2229 0.39 0.6096 0.25 0.1546*** 0.05 

Isabela -0.5660*** 0.17 -0.0273 0.39 0.4870** 0.25 -0.0986** 0.05 

Pangasinan 1.0618*** 0.18 -3.7228*** 0.43 -0.0056** 0.27 0.1484*** 0.05 

_cons 3.5153*** 0.25 4.2143*** 0.58 -0.1722 0.37 0.9521*** 0.07 
         

N of obs. 368  368  368  368  

R^2 0.2928  0.2515  0.0397  0.1962  

 

Overidentification Test 

 Fertilizer Weedicide Pesticide Expenditure 

Sargan 𝜒𝜒2(2) 0.0048 0.4087 0.1027 0.1224 

P-Value 0.9448 0.5226 0.7486 0.7265 

Basmann 𝜒𝜒2(2) 0.0046 0.3958 0.0994 0.1184 

P-Value 0.9458 0.5293 0.7525 0.7307 

 

Endogeneity Test 

 Fertilizer Weedicide Pesticide Expenditure 

Wu-Hausman F test statistic 2.4127 2.8534 0.1567 0.4269 

P-Value 0.1212 0.0921 0.6925 0.5139 

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 8: First-Stage Estimation Results (using only Useful as the instrument) 
 Insurance 

Variable Coef. Std. Err. 
HistoricalYield 0.0211* 0.01 

Hybrid 0.0340 0.06 
DistanceRoad 0.0223* 0.01 

Area 0.0027 0.01 
Livestock 0.1070 0.07 

OtherCrop -0.0461 0.06 
RiskAverse -0.0812 0.06 

Isabela 0.0848 0.07 
Pangasinan 0.1444** 0.07 

Useful 0.4484*** 0.06 
Constant -0.0676 0.11 

   

N of obs. 368 
Adj. 𝐷𝐷2 0.15 

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 9: Second-Stage Estimation Results (using only Useful as the instrument) 
 Fertilizer Weedicide Pesticide Expenditure 

Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Insurance 0.7116* 0.37 1.2167 0.86 0.0173 0.55 0.1620 0.10 

HistoricalYield 0.0556* 0.03 0.1383* 0.07 0.0606 0.05 0.0299*** 0.01 

Hybrid 0.1130 0.15 0.5131 0.35 0.0158 0.22 -0.0118 0.04 

DistanceRoad 0.0777** 0.03 0.0575 0.08 0.0023 0.05 0.0241** 0.01 

Area 0.0234 0.03 -0.0504 0.07 0.0411 0.04 0.0018 0.01 

Livestock -0.0659 0.18 -0.3730 0.42 -0.1832 0.27 -0.0158 0.05 

OtherCrop -0.3689** 0.16 -0.5138 0.36 -0.1999 0.23 -0.0960** 0.04 

RiskAverse 0.6584*** 0.17 0.1973 0.39 0.6015** 0.25 0.1563*** 0.05 

Isabela -0.5660*** 0.17 -0.0277 0.39 0.4869** 0.25 -0.0986** 0.05 

Pangasinan 1.0617*** 0.18 -3.7190*** 0.42 -0.0044 0.27 0.1481*** 0.05 

_cons 3.5101*** 0.26 4.3274*** 0.60 -0.1362 0.39 0.9450*** 0.07 
         

N of obs. 368  368  368  368  

𝐷𝐷2 0.2913  0.2645  0.0365  0.1918  

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 10: First-Stage Estimation Results (Dropping the Hybrid variable) 
 Insurance 

Variable Coef. Std. Err. 
HistoricalYield 0.0236** 0.01 
DistanceRoad 0.0035 0.01 

Area -0.0179* 0.01 
Livestock 0.0462 0.06 

OtherCrop -0.0720 0.06 
RiskAverse -0.0317 0.06 

Isabela -0.0015 0.06 
Pangasinan 0.0441 0.07 

Credit 0.0396*** 0.01 
Org 0.2738*** 0.05 

Useful 0.3401*** 0.06 
_cons -0.0866 0.09 

   

N of obs. 367 
F Stat. for Instruments 13.27 

Adj. 𝐷𝐷2 0.2693 

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 11: Second-Stage Estimation Results (Dropping the Hybrid variable) 
 Fertilizer Weedicide Pesticide Expenditure 

Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Insurance 0.5181** 0.25 1.0850* 0.58 0.3526 0.37 0.1011 0.07 

HistoricalYield 0.0606** 0.03 0.1424** 0.07 0.0522 0.05 0.0314*** 0.01 

DistanceRoad 0.0826** 0.03 0.0623 0.08 -0.0051 0.05 0.0255*** 0.01 

Area 0.0262 0.03 -0.0405 0.07 0.0392 0.04 0.0018 0.01 

Livestock -0.0598 0.18 -0.4199 0.42 -0.2167 0.27 -0.0084 0.05 

OtherCrop -0.3889** 0.15 -0.5745 0.36 -0.1880 0.23 -0.0972** 0.04 

RiskAverse 0.6535*** 0.16 0.2172 0.39 0.6249** 0.25 0.1522*** 0.04 

Isabela -0.6020*** 0.16 -0.1835 0.37 0.4849** 0.24 -0.0957** 0.04 

Pangasinan 1.0625*** 0.18 -3.7020*** 0.42 -0.0035 0.27 0.1466*** 0.05 

_cons 3.6713*** 0.21 4.7903*** 0.50 -0.2427 0.32 0.9574*** 0.06 
         

N of obs. 367  367  367  367  

R^2 0.3030  0.2631  0.0411  0.1988  

 

Overidentification Test 

 Fertilizer Weedicide Pesticide Expenditure 

Sargan 𝜒𝜒2(2) 0.9400 1.3922 0.9890 0.9175 

P-Value 0.6250 0.4985 0.6099 0.6321 

Basmann 𝜒𝜒2(2) 0.9116 1.3518 0.9593 0.8897 

P-Value 0.6339 0.5087 0.6190 0.6409 

 

Endogeneity Test 

 Fertilizer Weedicide Pesticide Expenditure 

Wu-Hausman F test statistic 1.1913 1.2951 0.0454 0.0233 

P-Value 0.2758 0.2559 0.8315 0.8787 

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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Table 12:  Propensity Score Matching Estimation Results 
 Fertilizer Weedicide Pesticide Expenditure 

Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

ATE （1 to 1)        

Insurance 0.2311 0.14 0.4866 0.35 0.3331 0.25 0.0776** 0.04 

ATE  (1 to 5)        

Insurance 0.3696*** 0.13 0.4770* 0.29 0.2871 0.19 0.1070*** 0.04 

ATE  (1 to 10)        

Insurance 0.3336** 0.14 0.5651** 0.30 0.2992 0.19 0.1044*** 0.04 

         

N of obs. 369  369  369  369  

Note: ***, **, and * indicate significant at 1 percent, 5 percent, and 10 percent. 
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APPENDIX 

Claim 1: When 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) > 0, the first term of (4) is negative.  

Proof: First, by definition, 𝑄𝑄(𝑥𝑥,𝜔𝜔∗) = 0.9𝑄𝑄�. Therefore, 𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑄𝑄(𝑚𝑚,𝜔𝜔∗)
𝑄𝑄�

𝑎𝑎𝑥𝑥 > 

𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑎𝑎𝑥𝑥 and hence 𝑢𝑢 �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑄𝑄(𝑚𝑚,𝜔𝜔∗)
𝑄𝑄�

𝑎𝑎𝑥𝑥�> 𝑢𝑢(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑎𝑎𝑥𝑥). 

Second, totally differentiating 𝑄𝑄(𝑥𝑥,𝜔𝜔∗) = 0.9𝑄𝑄� with respect to 𝑥𝑥 and 𝜔𝜔∗ and 

rearranging terms gives 𝑑𝑑𝜔𝜔
∗

𝑑𝑑𝑚𝑚
= − 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔∗)

𝑄𝑄𝜔𝜔(𝑚𝑚,𝜔𝜔∗), which is negative as we assume 

𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔∗) > 0 and 𝑄𝑄𝑤𝑤(𝑥𝑥,𝜔𝜔∗) > 0. As a result, the first term of (4) is negative. This 

completes the proof.    

 

Claim 2: When 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) > 0, the second term of (4) can be either positive or 

negative.  

Proof: The second term of (4) can be written as ∫ [𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔)]𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔, where 𝑒𝑒(𝜔𝜔) =  𝑢𝑢′ �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥�, 𝐷𝐷(𝜔𝜔) =

𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) − 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥 − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎, 𝐸𝐸(𝜔𝜔) =  𝑢𝑢′[𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑎𝑎𝑥𝑥] and 𝐹𝐹(𝜔𝜔) =

 𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) − 𝑎𝑎. Therefore, the second term of (4) is a weighted sum of 

𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) with 𝜔𝜔 ∈ [𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝜔𝜔∗] and weights 𝑔𝑔(𝜔𝜔). Below we 

discuss the sign of 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) for a representative 𝜔𝜔 and show it can 

be either positive or negative. Then, ∫ [𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔)]𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
 can 

either be positive or negative, depending on the specification of 𝑔𝑔𝑓𝑓(∙). This is 

because as long as 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is positive for some values of 𝜔𝜔 and 

negative for other values, then the weighted sum can be either positive or negative, 

depending on the weights assigned todifferent values of 𝜔𝜔.  

 We now show for a representative 𝜔𝜔, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) can be either 

positive or negative. First, note that by defnition, for 𝜔𝜔 ∈ [𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝜔𝜔∗], 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

< 0.9. 

As a result, 0 < 𝑒𝑒(𝜔𝜔) = 𝑢𝑢′ �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥�< 𝑢𝑢′(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑎𝑎𝑥𝑥) = 𝐸𝐸(𝜔𝜔) 
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because 𝑢𝑢′ > 0, 𝑢𝑢′′ < 0. Then, depending on the relationships among 𝐷𝐷(𝜔𝜔), 𝐹𝐹(𝜔𝜔) 

and 0, we have the following six cases.   

Case 1: 𝐹𝐹(𝜔𝜔) < 𝐷𝐷(𝜔𝜔) < 0, then 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) > 𝐸𝐸(𝜔𝜔)𝐷𝐷(𝜔𝜔). So, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) > 𝐸𝐸(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) = 𝐸𝐸(𝜔𝜔)�𝐷𝐷(𝜔𝜔) − 𝐹𝐹(𝜔𝜔)� > 0. So in this 

case, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is positive.   

Case 2: 𝐹𝐹(𝜔𝜔) < 0 < 𝐷𝐷(𝜔𝜔), then 𝑒𝑒(𝜔𝜔)𝐹𝐹(𝜔𝜔) > 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔). So, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) > 𝑒𝑒(𝜔𝜔)𝐹𝐹(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) = 𝐹𝐹(𝜔𝜔)�𝑒𝑒(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)� > 0. So in this 

case, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is positive.   

Case 3: 0 < 𝐹𝐹(𝜔𝜔) < 𝐷𝐷(𝜔𝜔), then 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) can be either 

positive or negative.  

Case 4: 𝐷𝐷(𝜔𝜔) < 𝐹𝐹(𝜔𝜔) < 0, then 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) can be either 

positive or negative. 

Case 5: 𝐷𝐷(𝜔𝜔) < 0 < 𝐹𝐹(𝜔𝜔), then 𝑒𝑒(𝜔𝜔)𝐹𝐹(𝜔𝜔) < 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) so −𝑒𝑒(𝜔𝜔)𝐹𝐹(𝜔𝜔) >

−𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔). As a result, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) < 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −

𝑒𝑒(𝜔𝜔)𝐹𝐹(𝜔𝜔) = 𝑒𝑒(𝜔𝜔)�𝐷𝐷(𝜔𝜔) − 𝐹𝐹(𝜔𝜔)� < 0. So in this case, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is negative.   

Case 6: 0 < 𝐷𝐷(𝜔𝜔) < 𝐹𝐹(𝜔𝜔), then 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) < 𝐸𝐸(𝜔𝜔)𝐷𝐷(𝜔𝜔) so 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) < 𝐸𝐸(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) = 𝐸𝐸(𝜔𝜔)�𝐷𝐷(𝜔𝜔) − 𝐹𝐹(𝜔𝜔)� < 0. So in this 

case, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is negative.   

These six cases show clearly that for a representative 𝜔𝜔, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) can be either positive or negative. Also, note that even when the farmer is 

risk neutral, that is, 𝑢𝑢′′ = 0, this result still holds. In this situation, for any 𝜔𝜔, 

𝑒𝑒(𝜔𝜔) = 𝐸𝐸(𝜔𝜔). In case 3, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) becomes positive and in case 4, 

𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) becomes negative. Results for other cases remain the same. 

This completes the proof.   
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Claim 3: When 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) < 0, the first term of (4) is positive.  

Proof: First, by definition, 𝑄𝑄(𝑥𝑥,𝜔𝜔∗) = 0.9𝑄𝑄�. Therefore, 𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑄𝑄(𝑚𝑚,𝜔𝜔∗)
𝑄𝑄�

𝑎𝑎𝑥𝑥 > 

𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑎𝑎𝑥𝑥 and hence 𝑢𝑢 �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑄𝑄(𝑚𝑚,𝜔𝜔∗)
𝑄𝑄�

𝑎𝑎𝑥𝑥�> 𝑢𝑢(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔∗) − 𝑎𝑎𝑥𝑥). 

Second, totally differentiating 𝑄𝑄(𝑥𝑥,𝜔𝜔∗) = 0.9𝑄𝑄� with respect to 𝑥𝑥 and 𝜔𝜔∗ and 

rearranging terms gives 𝑑𝑑𝜔𝜔
∗

𝑑𝑑𝑚𝑚
= − 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔∗)

𝑄𝑄𝜔𝜔(𝑚𝑚,𝜔𝜔∗), which is positive as we assume 

𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔∗) < 0 and 𝑄𝑄𝜔𝜔(𝑥𝑥,𝜔𝜔∗) > 0. As a result, the first term of (4) is positive. This 

completes the proof.  

 

Claim 4: When 𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) < 0, the second term of (4) can be either positive or 

negative.  

Proof: The second term of (4) can be written as ∫ [𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔)]𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔, where 𝑒𝑒(𝜔𝜔) =  𝑢𝑢′ �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥�, 𝐷𝐷(𝜔𝜔) =

𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) − 𝑄𝑄𝑚𝑚(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥 − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎, 𝐸𝐸(𝜔𝜔) =  𝑢𝑢′[𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑎𝑎𝑥𝑥] and 𝐹𝐹(𝜔𝜔) =

 𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) − 𝑎𝑎. Therefore, the second term of (4) is a weighted sum of 

𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) with 𝜔𝜔 ∈ [𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝜔𝜔∗] and weights 𝑔𝑔(𝜔𝜔). Below we 

discuss the sign of 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) for a representative 𝜔𝜔 and show it can 

be either positive or negative. Then, ∫ [𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔)]𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔𝜔𝜔∗

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
 can 

either be positive or negative, depending on the specification of 𝑔𝑔(∙). This is because 

as long as 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is positive for some values of 𝜔𝜔 and negative 

for other values, then the weighted sum can be either positive or negative, depending 

on the weights assigned todifferent values of 𝜔𝜔.  

 We now show for a representative 𝜔𝜔, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) can be either 

positive or negative. First, note that by defnition, for 𝜔𝜔 ∈ [𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝜔𝜔∗], 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

< 0.9. 

As a result, 0 < 𝑒𝑒(𝜔𝜔) = 𝑢𝑢′ �𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑄𝑄(𝑚𝑚,𝜔𝜔)
𝑄𝑄�

𝑎𝑎𝑥𝑥�< 𝑢𝑢′(𝑝𝑝𝑄𝑄(𝑥𝑥,𝜔𝜔) − 𝑎𝑎𝑥𝑥) = 𝐸𝐸(𝜔𝜔) 

because 𝑢𝑢′ > 0, 𝑢𝑢′′ < 0. In addition, 𝐹𝐹(𝜔𝜔) =  𝑝𝑝𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) − 𝑎𝑎 < 0, as we assume 
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𝑄𝑄𝑚𝑚(𝑥𝑥,𝜔𝜔) < 0. Then, depending on the relationships among 𝐷𝐷(𝜔𝜔) and 0, we have the 

following two cases.   

Case 1: 0 < 𝐷𝐷(𝜔𝜔), then 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) > 0 and 𝐸𝐸(𝜔𝜔)𝐷𝐷(𝜔𝜔) < 0. So in this case, 

𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is positive.   

Case 2: 𝐷𝐷(𝜔𝜔) < 0, then 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) can be either positive or 

negative. If we have 𝐹𝐹(𝜔𝜔) < 𝐷𝐷(𝜔𝜔), 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is positive. If 

𝐹𝐹(𝜔𝜔) > 𝐷𝐷(𝜔𝜔), the sign of 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is ambiguous. 

 

These two cases show clearly that for a representative 𝜔𝜔, 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) −

𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) can be either positive or negative. Also, note that even when the 

farmer is risk neutral, that is, 𝑢𝑢′′ = 0, this result still holds. In this situation, for 

any 𝜔𝜔, 𝑒𝑒(𝜔𝜔) = 𝐸𝐸(𝜔𝜔). In case 2, if 𝐹𝐹(𝜔𝜔) < 𝐷𝐷(𝜔𝜔), 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) 

is positive. If 𝐹𝐹(𝜔𝜔) > 𝐷𝐷(𝜔𝜔), the sign of 𝑒𝑒(𝜔𝜔)𝐷𝐷(𝜔𝜔) − 𝐸𝐸(𝜔𝜔)𝐹𝐹(𝜔𝜔) is negative. 

Results for other cases remain the same. This completes the proof. 
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