
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Optimal Stopping Time, 
Consumption, Labour, and 
Portfolio Decision for a 
Pension Scheme

009.2019

Francesco Menoncin, Sergio Vergalli

May    2019

Working
Paper



Economic Theory 
Series Editor: Matteo Manera 
 
Optimal Stopping Time, Consumption, Labour, and Portfolio 
Decision for a Pension Scheme 
 
By Francesco Menoncin, Università degli Studi di Brescia 
Sergio Vergalli, Università degli Studi di Brescia 
  
 
Summary 
 
In this work we solve in a closed form the problem of an agent who wants to optimise the 
inter-temporal utility of both his consumption and leisure by choosing: (i) the optimal inter-
temporal consumption, (ii) the optimal inter-temporal labour supply, (iii) the optimal share of 
wealth to invest in a risky asset, and (iv) the optimal retirement age. The wage of the agent is 
assumed to be stochastic and correlated with the risky asset on the financial market. The 
problem is split into two sub-problems: the optimal consumption, labour, and portfolio 
problem is solved first, and then the optimal stopping time is approached. The martingale 
method is used for the first problem, and it allows to solve it for any value of the stopping 
time which is just considered as a stochastic variable. The problem of the agent is solved by 
assuming that after retirement he received a utility that is proportional to the remaining 
human capital. Finally, a numerical simulation is presented for showing the behaviour over 
time of the optimal solution.  
  
Keywords: Optimal Stopping Time, Retirement Choice, Labour Supply, Asset Allocation, 
Mortality Risk 
 
JEL Classification:  C61, D15, G11, J22 
 
 
 
 
 
 
 
 
 
 
 
Address for correspondence: 
Sergio Vergalli 
Università degli Studi di Brescia 
Department of Economic and Management  
Via S. Faustino 74/B  
25122 Brescia 
Italy 
E-mail: sergio.vergalli@unibs.it 
 
 



Optimal stopping time, consumption, labour, and
portfolio decision for a pension scheme

Francesco Menoncin∗and Sergio Vergalli†

22nd April 2019

Abstract
In this work we solve in a closed form the problem of an agent who

wants to optimise the inter-temporal utility of both his consumption and
leisure by choosing: (i) the optimal inter-temporal consumption, (ii) the
optimal inter-temporal labour supply, (iii) the optimal share of wealth to
invest in a risky asset, and (iv) the optimal retirement age. The wage of
the agent is assumed to be stochastic and correlated with the risky asset
on the financial market. The problem is split into two sub-problems: the
optimal consumption, labour, and portfolio problem is solved first, and
then the optimal stopping time is approached. The martingale method is
used for the first problem, and it allows to solve it for any value of the
stopping time which is just considered as a stochastic variable. The prob-
lem of the agent is solved by assuming that after retirement he received
a utility that is proportional to the remaining human capital. Finally, a
numerical simulation is presented for showing the behaviour over time of
the optimal solution.

1 Introduction
According to the Finnish Centre for Pensions (http://www.etk.fi/en), in the
EU15 states, the average retirement age is 65 years. Instead, in the other 12
EU countries, the retirement age is lower, but it is planned to be raised to the
same level over the next decade. Furthermore, Germany, Denmark, France, and
Spain have decided to increase the retirement age from 65 to 67 years, while the
goal is 68 years in UK and Ireland.

Most of the changes in retirement ages are scheduled for the 2020s. In
Italy, the Netherlands, Finland, Cyprus, Denmark, Greece, Portugal, UK and
Slovakia, the retirement age will be linked to the development of the expected
life expectancy.

∗francesco.menoncin@unibs.it – Department of Economic and Management, Università de-
gli Studi di Brescia, Via S. Faustino 74/B – 25122 Brescia – Italy

†sergio.vergalli@unibs.it – Department of Economic and Management, Università degli
Studi di Brescia, Via S. Faustino 74/B – 25122 Brescia – Italy
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“European pension systems are facing the dual challenge of remaining finan-
cially sustainable and being able to provide Europeans with an adequate income
in retirement” (European Commission, 2017). Both the recent and the sched-
uled increases in the retirement age answer precisely the first goal to keep the
pension systems financially sustainable.

Actually, life expectancy after the age of 70 has been constantly increas-
ing over the last decades, generating the so-called “longevity risk” (European
Commission, 2018b). Thus, without a counterbalance increase in the retirement
age, the level of contributions paid by the workers, could not be able to suitably
finance the pensions that will have to be paid for a longer and longer period of
time.

It is precisely because of this increasing longevity risk, that “the defined
contribution (DC) pension schemes are becoming more and more important in
the pension system and are replacing the defined benefit (DB) that were more
frequent in the past” (Francesco Menoncin and Elena Vigna, 2017)

The optimal investment strategy in the accumulation phase (i.e. prior to
retirement) in a DC framework has been derived in the literature with a variety
of objective functions and financial market structures, see, among many oth-
ers, Boulier, S. J. Huang and Taillard (2001), Haberman and E. Vigna (2001),
Deelstra, Grasselli and Koehl (2003), Devolder, Bosch Princep and Dominguez
Fabian (2003), Battocchio and F. Menoncin (2004), Cairns, D. Blake and Dowd
(2006) and Di Giacinto, Federico and Gozzi (2011). Nevertheless, setting a
statutory retirement target that is able to guarantee both the time financial
sustainability and an adequate income in old ages (that is macro and micro-
economic targets) is a very demanding task and it could result in an exogenous
target that may not be perfectly in line with a worker optimal choice.

Actually, in most countries the average effective age at which older workers
withdraw from the labour force (the so-called “effective age of retirement”) is
well below the level that could allow to finance a full old-age pension.1

The European services, EPC, show that “for men, 17 countries show effective
retirement ages that are on average 0.9 year lower than the estimated labour
exit ages. This difference amounts to more than 1.5 years for Bulgaria, the
Czech Republic, Portugal and Romania. In six countries, men enter the pension
system at a later age than they leave the labour market, with an average gap of 1
year. Only for the United Kingdom, the difference exceeds 1.5 years” (European
Commission, 2018b).

A market solution for managing the longevity risk is the issuance of longevity-
linked assets that could counterbalance the reduction of income after retirement.

Unfortunately, the market for such assets remain quite illiquid. In fact, a
branch of the literature has analysed this market, looking for the reasons that
may have contributed to undermine the market development, such as: (i) the
lack of standardisation, (ii) informational asymmetries, and (iii) basis risk.

Literature has recently modelled the systematic randomness in mortality
(e.g. Lee and Carter, 1992), the design and evaluation of hedging instruments

1http://www.oecd.org/els/emp/average-effective-age-of-retirement.htm
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(A. Blake D. C., Dowd and MacMinn, 2006; Denuit, Devolder and Goderniaux,
2007), and the management of longevity risk (Barrieu et al., 2012). Recently,
Francesco Menoncin and Regis (2017) found that individuals should optim-
ally invest a large fraction of their wealth in longevity-linked assets in the pre-
retirement phase, because of their need to hedge against stochastic fluctuations
in their remaining lifetime at retirement. Another manner to study the same
problem is to calculate, for each individual, the optimal timing of retirement
and understand how far it is from the exogenous target, taking into account
some budget and labour constraints, and the uncertainty of the market.

In line with the previous statements, in this paper we solve the problem of a
representative agent who must decide, at the same time: (i) how much to work,
(ii) how much to invest on financial market, (iii) how much to consume, and
(iv) when to retire. The agent’s time horizon coincides with his death time and
the optimisation problem is subject to some risks: (i) the market risk on the
financial market (mainly price risk), (ii) the mortality risk on his lifetime, and
(iii) the wage risk on his yield.

An extensive literature has explored consumption and investment decisions
when mortality contingent claims are present. In particular, H. Huang and
Milevsky (2008) analyse the decisions of households in the presence of income
risk and life insurance. Explicit solutions are also obtained by Pirvu and Zhang
(2012) with stochastic asset prices and inflation risk, and by Kwak and Lim
(2014) with constant relative risk aversion (CRRA) preferences. All these papers
consider a deterministic force of mortality, while in Francesco Menoncin and
Regis (2017) it is modelled as a stochastic process.

We model the risk through a Wiener process and we solve the problem to
maximise the expected utility of agent’s inter-temporal consumption and leisure
(non-working hours). After retirement, we assume the agent does not receive
the wage any longer, while he still has to finance consumption. Nevertheless,
at retirement he receives a utility which is proportional to his residual human
capital. Here, we define the human capital as the total expected discount value
of future wages.

This work builds on the same framework studied in F. Menoncin (2008) and
Francesco Menoncin and Regis (2017). In both these papers, a longevity-linked
security is listed on a complete arbitrage-free financial market. F. Menoncin
(2008) solves the problem of a representative agent that must finance his con-
sumption over his whole lifetime, without any labour income or pension scheme.
Instead, Francesco Menoncin and Regis (2017) consider an agent that wants to
maximise the utility of his inter-temporal consumption until the exogenously
fixed retirement age. At retirement, the agent wants to accumulate enough
wealth for financing the pension during his remaining lifetime. Again, in this
framework no labour income is considered.

In this paper we solve the problem of an agent that has a labour income and
must finance his inter-temporal consumption through the risky asset returns and
this labour income during his working lifetime, while he has just to rely on the
financial returns after retirement, when the other income is no more available.
Furthermore, the agent can optimally choice when to retire.

3



We solve the problem in two steps: first we find the optimal consumption,
labour supply, and portfolio for any possible (stochastic) stopping time, then
we compute the optimal stopping time that maximises the value function of the
first problem. This separability of the problem is achieved by solving it through
the so-called martingale approach.

The framework of an optimal stopping time problem is often applied to the
real options,2 when an irrevocable decision must be taken. Actually, also in
this case, the decision to retire cannot be called off and it permanently affects
the dynamics of agent’s problem. Bodie, Merton and Samuelson (1992) sugges-
ted that “one current research objective is to analyse the retirement problem
as an optimal stopping problem and to evaluate the accompanying portfolio
effects.” Also Kula (2003) wrote that “the retirement decision may be treated
as an investment process: first we collect capital / retirement wealth, and if
we have accumulated enough we invest / retire, depending on the actual and
expected prices / wages”. Finally, Farhi and Panageas (2007) extended Bodie,
Merton and Samuelson (1992) in a optimal stopping problem, also focusing on
the “importance of the real option to retire for portfolio choice”.

In solving our problem we must assume that the market is complete. This
means that the agent is able to borrow against his future wages (human capital)
and any risk on the financial market can be perfectly hedged through a suitable
portfolio.

The value function of the second problem, that is the optimal stopping prob-
lem, can be written in closed form as a function of a wage threshold. When this
threshold is crossed, then the agent finds it optimal to retire.

Finally, we calibrate our model to the US data and we present some nu-
merical results that allow to investigate the dynamic behaviour of the optimal
consumption, labour supply, and portfolio.

We show that the optimal retirement age should be between 50 and 65. Our
optimal retirement age is always below the statutory value with a minimum
deviation between 0 and 3 years.

Furthermore, we show that the optimal (relative) consumption increases
over time from a ratio of about 2.5%. Then, once the retirement is reached,
it becomes a constant percentage (5.5%) of the disposable wealth. Moreover,
we find that the percentage of disposable wealth invested in the risky asset is
increasing over time, but quite stable in a range between 57% and 58%, while
the portfolio volatility is more volatile at the beginning of the working life and
reaches a minimum at the retirement age.

Finally, the optimal average labour supply is decreasing over time. Between
zero and about 25 years after starting working, the agent supplies a stable
amount of hours per year. Then, this number of hours start decreasing and, on
average, it reaches zero after 50 years from the beginning of agent’s working life.

The remaining of the paper is organised as follows: Section 2 show the
framework, Section 3 presents the result of the first problem, i.e. the optimal
consumption, labour supply, and portfolio. Section 4 shows the optimal stop-

2For a summary of the literature see Dixit and Pindyck, 1994.
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ping problem, and solves it in closed form. Section 5 presents a numerical
simulation calibrated on the US data. Some technical results are gathered in
two appendices.

2 The model setup
2.1 Financial Market
On a continuously open and friction-less financial market over the time set
[t0,+∞[, one risky assets is traded, and its price St ∈ R+ follows a geometric
Brownian motion

dSt

St
= µdt+ σdWt, (1)

where both the expected return (µ) and the volatility (σ) are constant, and Wt

is a Wiener processes (with zero mean and variance t). The initial asset price
St0 is known. Also a risk-less asset is listed and its price Gt solves the ordinary
differential equation

dGt

Gt
= rdt, (2)

where r is the risk-less interest rate. We assume Gt0 = 1, i.e. the risk-less asset
is the numéraire of the economy.

This financial market is arbitrage free and complete. In other words, there
exists a unique market price of risk ξ such that σξ = µ− r.

Girsanov’s theorem allows us to switch from the historical (P) to the risk-
neutral probability Q by using dWQ

t = ξdt+ dWt. The value in t0 of any cash
flow Ξt available at time t can be written as

Ξt0 = EQ
t0

[
Ξt

Gt0

Gt

]
= EQ

t0

[
Ξte

−r(t−t0)
]
= Et0

[
Ξtmt0,te

−r(t−t0)
]
, (3)

where Et0 [•] and EQ
t0 [•] are the expected value operators under the historical

(P) and the risk neutral (Q) probabilities respectively, conditional on the in-
formation set at time t0, and the martingale mt0,t, such that mt0,t0 = 1, solves

dmt0,t

mt0,t
= −ξdWt. (4)

2.2 Agent’s wage
In this framework, we assume that the agent (household) works for the firm
whose stocks are listed on the financial market, and this firm pays an instantan-
eous wage wt to the agent. Thus, the risk source that drives the price St is the
same that drives the wage. Accordingly, we assume that wt solves the following
differential equation:

dwt

wt
= µwdt+ σwdWt. (5)
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The agent can choose how much to work (lt) at any instant and, accordingly,
his instantaneous wage will be ltwt. The agent optimally chooses when to retire
(at time T ), and after retirement he will not receive the wage wt any longer.

2.3 The mortality risk
The agent is aged x at t0 and he dies at a random time ω ∈ [t0,∞[. If we call
λt the force of mortality, the probability to be alive at time t, given that he is
alive at time t0, is

P {ω > t|ω > t0} = Et0 [Iω>t] = e
−

∫ t
t0

λudu, (6)

where Iε is the indicator function of the event ε whose value is 1 if the event
happens and 0 otherwise.

2.4 The human capital
In this framework, the human capital is defined as the expected present value
of future wages that the agent will obtain during his working life. If we define
Ψt0 such a human capital at time t0, we can compute it as follows:

Ψt0 (T ) := EQ
t0

[∫ ∞

t0

wtIt<T e
−

∫ t
t0

λsds−r(s−t0)dt

]
(7)

= Et0

[∫ ∞

t0

wtmt0,tIt<T e
−

∫ t
t0

λsds−r(s−t0)dt

]
.

The human capital is computed under the risk neutral probability since it
measures a kind of “market power” for the agent. In the complete market of our
framework, the agent can trade his human capital. Accordingly, his disposable
income is not only the current wage, but also the future flow of wages.

If we use the property of the indicator function It<T = 1− It≥T , the human
capital can be written as

Ψt0 (T ) =Et0

[∫ ∞

t0

wtmt0,te
−

∫ t
t0

λsds−r(s−t0)dt

]
− Et0

[∫ ∞

T

wtmt0,te
−

∫ t
t0

λsds−r(s−t0)dt

]
,

in which the subtrahend is the human capital which the agent renounces to
when he decides to retire.

2.5 The investor’s wealth
The investor holds a portfolio given by θG,t ∈ R quantities of the risk-less asset
and θt ∈ R quantities of the risky asset. Thus, at any instant in time the value
of his wealth Rt is given by

Rt = θG,tGt + θtSt. (8)
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Negative values of θG,t and θt indicate short selling. The differential of this
constraint is

dRt = θG,tdGt + θtdSt + (dθG,t (Gt + dGt) + dθt (St + dSt)) , (9)

where the term in brackets must:

• finance the agent’s consumption ctdt,

• be financed by the agent’s salary during his working life wtltIt<T dt,

• finance the loss in wealth due to death: λtRtdt.

Thus, the dynamic constraint can be written as

dRt = θG,tdGt + θtdSt − ctdt+ wtltIt<T dt+ λtRtdt,

and if θG,t, dSt, and dGt are substituted from (8), (1), and (2) respectively, we
obtain

dRt = (Rt (r + λt) + θtSt (µ− r)− ct + wtltIt<T ) dt+ θtStσdWt. (10)

Note that under the risk neutral probability, (10) can be written as

dRt = (Rt (r + λt) + θtSt (µ− r)− ct + wtltIt<T ) dt+ θtStσ
(
dWQ

t − ξdt
)

= (Rt (r + λt)− ct + wtltIt<T ) dt+ θtStσdW
Q
t ,

and it implies that the initial wealth must be

Rt0 = EQ
t0

[∫ ∞

t0

(ct − wtltIt<T ) e
−

∫ t
t0

r+λududt

]
,

and this is actually the constraint that we will use for solving the optimisation
problem of the agent.

2.6 Utility function
The utility of the agent is assumed to be additive in three components.

1. The inter-temporal utility of consumption (ct) that is obtained by the
agent over his whole lifetime. If the agent’s preferences belong to the
Hyperbolic Absolute Risk Aversion (HARA) family, then this utility com-
ponent can be written as

(ct − cm)
1−δ

1− δ
,

in which the parameter δ measures the (relative) risk aversion, and cm can
be interpreted as a minimum (subsistence) level of consumption.
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2. The inter-temporal utility of leisure, which is added to the previous utility
during the working lifetime. In particular, we assume that this component
can be written, at any instant in time, as

χA
(L− lt)

1−δ

1− δ
It<T ,

in which δ is the same risk aversion parameters as before, L is the max-
imum number of working hours that the agent can supply and, thus, the
difference L− lt is the leisure time. The constant parameter χA measures
the relative importance of the utility of leisure with respect to the utility
of consumption.

3. The utility obtained at retirement, that we assume to be proportional to
the remaining human capital of the agent. This utility component is given
by

χBEt0

[∫ ∞

t0

wtmt,sIt≥T e
−

∫ t
t0

λudu−r(t−t0)dt

]
,

in which χB measures the relative importance of the gain in utility due to
retirement. Here, the hypothesis is that the retirement is enjoyed as much
as the human capital that “remains”. If the agent chooses to retire when
he is still young (old), and so his remaining human capital is still high
(low), then he enjoys more (less) his leisure. Of course, the counterpart
of this choice is that he has to renounce to the future wages and thus the
wealth can accumulate at a lower speed and the consumption will have to
be reduced accordingly.

Finally, the optimisation problem can be written as follows:

max
{ct,lt,θt}t∈[t0,∞[,T

Et0

[∫ ∞

t0

(
(ct − cm)

1−δ

1− δ
+ χA

(L− lt)
1−δ

1− δ
It<T

)
e
−ρ(t−t0)−

∫ t
t0

λsdsdt

]
(11)

+Et0

[
χB

∫ ∞

t0

wtmt0,tIt≥T e
−

∫ t
t0

λudu−r(t−t0)dt

]
,

in which ρ is a subjective discount factor.

3 The optimal consumption, portfolio, and la-
bour

In order to compute the optimal solution to Problem (11), we split it into two
sub-problems. The idea is to follow a three step procedure.

1. Optimising with respect to consumption, labour supply, and portfolio,
given any possible pension time T . In optimising this part of the problem,
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we treat T as a stochastic variable. The last component in Problem (11)
does not depend on ct, lt, or θt, and, accordingly, it is neglected in solving
this first step.

2. Computing the value function of the problem as a function of the stochastic
variable T .

3. Optimising the value function with respect to T .

The solution of the first step is shown in the following proposition.

Proposition 1. Given the stochastic pension time T , the optimal consumption,
portfolio, and labour supply that solve Problem (11) given (5) and (10) are

c∗t = cm +
Rt −Ht

Ft
, (12)

l∗t = L−
(
χA

wt

) 1
δ Rt −Ht

Ft
, (13)

Stθ
∗
t =

Rt −Ht

δ

ξ

σ
+

σw

σ

(
∂Ht

∂wt
+

Rt −Ht

Ft

∂Ft

∂wt

)
, (14)

where
Ht := EQ

t

[∫ ∞

t

(cm − LwsIs<T ) e
−r(s−t)−

∫ s
t
λududs

]
, (15)

Ft := EQδ
t

[∫ ∞

t

(
χ

1
δ

Aw
1− 1

δ
s Is<T + 1

)
e−(

δ−1
δ r+ 1

δ ρ+
1
2

1
δ

δ−1
δ ξ2)(s−t)−

∫ s
t
λududs

]
,

(16)
and

dWQδ
t =

δ − 1

δ
ξdt+ dWt.

Proof. See Appendix A.

The optimal consumption (12) implies that it is always optimal to consume
more than the subsistence level. In fact, we have demonstrated in Appendix A
that the ratio Rt−Ht

Ft
is always positive.

Here, the function Ht measures the expected present value of all the future
subsistence consumption (cm) reduced by the expected present value of the
future maximum, or potential, wage (i.e. the wage that the agent would receive
if he supplied the maximum number of labour L). This result implies that if cm
is very high, then the optimal consumption will be close to this minimum level.
In fact, if the consumption is sufficiently low, the wealth can be accumulated at
a higher rate.

The optimal labour supply (13) is lower than the maximum level L and the
reduction is inversely proportional to the wage and directly proportional to the
ratio Rt−Ht

Ft
. The elasticity of the labour supply with respect to wt is not trivial,

since both function Ht and Ft depend on wt.
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Nevertheless, by combining (12) and (13) we can write

(l∗t − L) = −
(
χA

wt

) 1
δ

(c∗t − cm) ,

from which we obtain

∂ (l∗t − L)

∂wt

1

(l∗t − L)
=

∂ (c∗t − cm)

∂wt

1

(c∗t − cm)
− 1

δ

1

wt
,

where we can conclude what follows.

Corollary 2. The semi-elasticity of the optimal labour supply with respect to
wage is always lower than the same semi-elasticity of consumption.

The optimal portfolio (14) is formed by three components: (i) a speculative
component Rt−Ht

δ
ξ
σ which is proportional to the market price of risk ξ and

negatively depends on both the risk aversion δ and the volatility σ, (ii) a hedging
component that covers the agent against the stochastic changes in Ht due to
the change in the wage wt, and (iii) a hedging component that covers against
the stochastic changes in Ft due to the change in the wage wt.

We note that the function Ht can be simplified as follows

Ht = cm

∫ ∞

t

e−r(s−t)−
∫ s
t
λududs− LEQ

t

[∫ ∞

t

wsIs<T e
−r(s−t)−

∫ s
t
λududs

]
= cm

∫ ∞

t

e−r(s−t)−
∫ s
t
λududs− LΨt (T )

where only the second term depends on wt, and actually coincides with the
human capital defined in (7). Also the function Ft can be simplified in a similar
way:

Ft =χ
1
δ

AE
Qδ
t

[∫ ∞

t

w
1− 1

δ
s Is<T e

−( δ−1
δ r+ 1

δ ρ+
1
2

1
δ

δ−1
δ ξ2)(s−t)−

∫ s
t
λududs

]
+ EQδ

t

[∫ ∞

t

e−(
δ−1
δ r+ 1

δ ρ+
1
2

1
δ

δ−1
δ ξ2)(s−t)−

∫ s
t
λududs

]
,

and also in this case Ft depends on wt only through the first term.
Accordingly, the optimal portfolio can be alternatively written as

Stθ
∗
t =

Rt −Ht

δ

ξ

σ
− σw

σ
L
∂Ψt (T )

∂wt

+
σw

σ

Rt −Ht

Ft
χ

1
δ

A

∂EQδ
t

[∫ T

t
w

1− 1
δ

s e−(
δ−1
δ r+ 1

δ ρ+
1
2

1
δ

δ−1
δ ξ2)(s−t)−

∫ s
t
λududs

]
∂wt

.
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3.1 The value function
The value function of Problem (11) is obtained by substituting the optimal
consumption and labour supply (c∗t , l∗t ) into the objective function:

J (T | t0, wt0 , Rt0)

=Et0

[∫ ∞

t0

1

1− δ

(
Rt −Ht

Ft

)1−δ (
1 +

χA

1− δ
w

1− 1
δ

t It<T

)
e
−ρ(t−t0)−

∫ t
t0

λsdsdt

]
(17)

+ χBEt0

[∫ ∞

t0

wtmt0,tIt≥T e
−

∫ t
t0

λudu−r(t−t0)dt

]
.

The value of the ratio (Rt −Ht) /Ft can be written as a function of the
initial wealth

Rt −Ht

Ft
=

Rt0 −Ht0

Ft0

m
− 1

δ
t0,t

(
e−r(t−t0)

e−ρ(t−t0)

)− 1
δ

,

and, accordingly, the value function becomes

J (T | t0, wt0 , Rt0) = F δ
t0

(Rt0 −Ht0)
1−δ

1− δ
+χBEt0

[∫ ∞

t0

wtmt0,tIt≥T e
−

∫ t
t0

λudu−r(t−t0)dt

]
in which Ht0 and Ft0 do contain the pension time T (see (15) and (16)).

4 The optimal pension time problem
The optimal pension time can be found by solving the problem

max
T

J (T | t0, wt0 , Rt0) ,

where the value function J has been defined in (17).
The computation of the optimal stopping time can be crucially simplified is

we further assume that the force of mortality (λ) is constant. In this case, in
fact, we are able to find a closed form solution to the value function J .

The two stochastic processes that we need to compute the expected values
in the functions Ht and Ft are mt0,twt and (mt0,twt)

1− 1
δ . Given the stochastic

processes (4) and (5), we can immediately write:

dw
1− 1

δ
t

w
1− 1

δ
t

=

(
1− 1

δ

)(
µw − 1

2

1

δ
σ2
w

)
dt+

(
1− 1

δ

)
σwdWt,

while m
1− 1

δ
t0,t solves

dm
1− 1

δ
t0,t

m
1− 1

δ
t0,t

= −1

2

(
1− 1

δ

)
1

δ
ξ2dt−

(
1− 1

δ

)
ξdWt,
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from which

d (mt0,twt)
1− 1

δ

(mt0,twt)
1− 1

δ

=

(
1− 1

δ

)(
µw − 1

2

1

δ
σ2
w −

(
1− 1

δ

)
ξσw − 1

2

1

δ
ξ2
)
dt

+

(
1− 1

δ

)
(σw − ξ) dWt,

and, of course, by taking the limit for δ → ∞:
d (mt0,twt)

(mt0,twt)
= (µw − ξσw) dt+ (σw − ξ) dWt.

Accordingly, the functions Ht0 and Ft0 can be simplified as follows:

Ht0 = EQ
t0

[∫ ∞

t0

(cm − LwsIs<T ) e
−(r+λ)(s−t0)ds

]
=

cm
r + λ

− LEt0

[∫ T

t0

mt0,swse
−(r+λ)(s−t0)ds

]
,

and

Ft0 = EQδ
t0

[∫ ∞

t0

(
χ

1
δ

Aw
1− 1

δ
s Is<T + 1

)
e−(

δ−1
δ r+ 1

δ ρ+λ+ 1
2

1
δ

δ−1
δ ξ2)(s−t0)ds

]
=

1
δ−1
δ r + 1

δρ+ λ+ 1
2
1
δ
δ−1
δ ξ2

+ χ
1
δ

AEt0

[∫ T

t0

(mt0,sws)
1− 1

δ e−(
δ−1
δ r+ 1

δ ρ+λ)(s−t0)ds

]
.

Finally, the last part of the value function can be simplified as follows:

χBEt0

[∫ ∞

T

wtmt0,te
−(r+λ)(t−t0)dt

]
.

Since now all the implied stochastic processes are geometric Brownian mo-
tions, we can use standard techniques for rewriting the optimal stopping problem
into an optimal threshold problem. To this aim, we rely on the following result.

Proposition 3. Given the stochastic process
dXt

Xt
= αdt+ βdWt,

and a stopping time T , with XT = x, the following equations hold if ρ > α:

Et0

[∫ T

t0

Xse
−ρ(s−t0)ds

]
=

Xt0 − x1−γXγ
t0

ρ− α
,

Et0

[∫ ∞

T

Xse
−ρ(s−t0)ds

]
=

Xt0

ρ− α
− Et0

[∫ T

t0

Xse
−ρ(s−t0)ds

]
=

x1−γXγ
t0

ρ− α
,

in which

γ = −
(

µ

σ2
− 1

2

)
+

√(
µ

σ2
− 1

2

)2

+
2ρ

σ2
.
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Proof. See Appendix B.

As it is common in the literature about optimal stopping time, we have now
transformed the original optimal stopping problem into an optimal threshold
problem where we want to find a value of the state variable (the wage) such
that the value function is maximum. The optimal stopping time, then, is given
by the first moment when the wage crosses the threshold.

Given the above results, the value function can be further simplified as fol-
lows, where κ is the threshold of the wage (i.e. κ := wT ):

J (κ) = F δ
t0

(Rt0 −Ht0)
1−δ

1− δ
+ χB

κ1−γ1wγ1

t0

ρ+ λ− µw + ξσw
,

in which
Ht0 =

cm
r + λ

− L
wt0 − κ1−γ1wγ1

t0

r + λ− µw + ξσw
,

Ft0 =
1

δ−1
δ r + 1

δρ+ λ+ 1
2
1
δ
δ−1
δ ξ2

+ χ
1
δ

A

w
1− 1

δ
t0 −

(
κ1− 1

δ

)1−γ2
(
w

1− 1
δ

t0

)γ2

δ−1
δ r + 1

δρ+ λ− δ−1
δ

(
µw − 1

2
1
δσ

2
w −

(
1− 1

δ

)
ξσw − 1

2
1
δ ξ

2
) ,

and

γ1 :=
1

2
− µw − ξσw

(σw − ξ)
2 +

√√√√(1

2
− µw − ξσw

(σw − ξ)
2

)2

+ 2
r + λ

(σw − ξ)
2 ,

γ2 :=
1

2
−

µw − 1
2
1
δσ

2
w − δ−1

δ ξσw − 1
2
1
δ ξ

2

δ−1
δ (σw − ξ)

2

+

√√√√(1

2
−

µw − 1
2
1
δσ

2
w − δ−1

δ ξσw − 1
2
1
δ ξ

2

δ−1
δ (σw − ξ)

2

)2

+ 2
δ−1
δ r + 1

δρ+ λ(
δ−1
δ

)2
(σw − ξ)

2
.

The expected values in the functions Ft and Ht converge only if

r + λ− µw + ξσw > 0

and

δ − 1

δ
r +

1

δ
ρ+ λ− δ − 1

δ

(
µw − 1

2

1

δ
σ2
w −

(
1− 1

δ

)
ξσw − 1

2

1

δ
ξ2
)

> 0.
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5 The calibration of the model
5.1 The parameters
The parameters of the risky asset (µ and σ) are calibrated on the daily values of
S&P500 from 1970 to 2018. We apply the method of moments to the geometric
Brownian motion and we obtain

µ = 0.084, σ = 0.167.

The wage process is calibrated on the wages and salaries for US work-
ers (fred.stlouisfed.org series A576RC1A027NBEA) for the same period (1970–
2018). The same method of moment gives

µw = 0.0612, σw = 0.07.

The initial value of the wage is set to 20 dollars (per hour). Of course this
value can be changed without any loss of generality, cause it affects just the
level of the value function but not its shape.

The risk-less return is assumed to coincide with the average return on 3
month T-Bill from 1950 to 2018:

r = 0.0437.

For the sake of simplicity we further assume that the subjective discount
rate ρ coincides with this risk-less interest rate.

The force of mortality is calibrated on the data of the human mortality
database (www.mortality.org) for US, on the average of both males and females
aged 25:

λ = 0.0038.

Here, we have used all annual data (interest rates and growth rates), and
so the maximum number of working hours is set to L = 250 × 8, given by
the product between the number of working days in a year and the number of
working hours in a day.

The initial wealth is set to a level that coincides with the total amount that
could be received by working the maximum of hours in a year at the initial wage
(i.e. Lwt0).

The value of χB is crucial to the problem. In fact, its value strongly affects
the shape of the value function J (κ). In particular:

• if χB = 0, i.e. there is no incentive in retiring, then the value function is
constantly increasing over κ and, in fact, it is never optimal to retire;

• if χB is sufficiently high, then the value function is constantly decreasing
and it is optimal to retire as soon as possible, since the utility from retire-
ment is over-weighted with respect to the utility of leisure; of course, this
threshold of χB depends on the values of all the other parameters of the
model;

14



Table 1: Parameters of the model

Financial market Wage Subjective param. Survival

µ =0.084 µw =0.0612 ρ = r =0.0437 λ =0.0038

σ =0.167 σw =0.07 δ =2.5

r =0.0437 wt0 =20 cm =0

ξ = µ−r
σ =0.2413174 L =2000 Rt0 = wt0L =4× 104

χA = w1−δ
t0 =0.0111803

χB = 5× 10−9

• if χB is between 0 and the previous threshold, then the value function is
concave, and there exists a finite optimal stopping time. The value of χB

that we chose for our framework is 5×10−9, since it is consistent with the
other parameters and it allows to make a comparison between the units of
measure of both the total expected present value of all the future wages
and the inter-temporal utility function of consumption and leisure.

The values of all the parameters are gathered in Table 1.

5.2 The value function and the optimal wage threshold
The numerical values of the value function J (κ), in which κ is the wage threshold,
are drawn in Figure 1. The maximum of the function is obtained for

κ = 119.382,

which is the threshold of the wage above which the agent will decide to retire. If
we simulate some trajectories of the wage and we compare it with this threshold,
we obtain the graph shown in Figure 2.

The time zero in the graph represents the first period when the agent starts
receiving a wage. Thus, it should coincide with an age of about 25.

The main result is that, in our framework, it is optimal for an agent to retire
on average after about 30 years of work. Nevertheless, the volatility of the wage,
implies that this decision may be either anticipated to about 25 years of work or
postponed up to more that 40 years. Of course if the wage increases at a higher
(lower) rate, then it is optimal to retire earlier (later). Therefore, according to
our framework, the optimal retirement age should be between 50 and 65, with
an average value of around 55 years.

If we compare this result with the EU15 average retirement age of 65 years
and with the trend forecast for the next few years (towards 68 years for some
states), we can identify a misalignment between the statutory and the optimal
retirement age.
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Figure 1: Value function J (κ) given the parameters shown in Table 1
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Figure 2: Optimal stopping time as the moment when the wage (simulated in
light-grey with 100 trajectories) goes above the (dotted) threshold κ. In light-
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In our framework, we do not take into account any pension scheme and, thus,
we do not have to comply with the related sustainability issue. Instead, in our
both public and private pension systems in Europe, such an issue is becoming
more and more relevant over time, especially in the face of an ageing population
and a reduced birth rate trend

Another hypothesis relates instead to the growth rate of wages. Indeed, if
the wages increase at a lower rate, as shown, among others, by IMF (2018),
European Commission (2018a), and Astrov et al. (2018), then it is optimal to
retire later. A trend reduction in the average growth rate o wages could lead
to a slow increase and alignment between the statutory and optimal retirement
age.

5.3 The auxiliary functions
Under the hypotheses of our framework, the function Ht is always negative (or
zero) and has the following value

Ht = −L
wt − κ1−γ1wγ1

t

r + λ− µw + ξσw
Iwt<κ. (18)

We recall that this function measures the (opposite of the) expected present
value of the future wages. The value, over time, of this function is drawn in
Figure 3.

The function Ft is always strictly positive and has the following value

Ft =
1

δ−1
δ r + 1

δρ+ λ+ 1
2
1
δ
δ−1
δ ξ2

(19)

+ χ
1
δ

A

w
1− 1

δ
t −

(
κ1− 1

δ

)1−γ2
(
w

1− 1
δ

t

)γ2

δ−1
δ r + 1

δρ+ λ− δ−1
δ

(
µw − 1

2
1
δσ

2
w −

(
1− 1

δ

)
ξσw − 1

2
1
δ ξ

2
) Iwt<κ.

The value, over time, of this function is drawn in Figure 4.

5.4 The optimal wealth, consumption, labour, and port-
folio

In Figure 5 we draw the optimal wealth. We check that the optimal wealth is
increasing over time, but before retirement the growth rate is a bit higher than
the growth rate after retirement. This obvious result is due to the fact that,
after retirement, the agent does not receive a wage any longer.

In Figure 6 we draw the optimal labour supply. We see that the average
labour supply is stable over a period of about 25 working years. After this
period, for some simulated paths the agent starts retiring and so the average
labour supply reduces over time. The stable value of 500 working hours per year,
which may seem low, depends on two crucial hypotheses on financial market
and agent’s preferences: (i) the market does not suffer any credit risk, in other
words, the asset prices have some volatility, but they never go to zero, and the
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Figure 3: Result of 100 simulations of function Ht over time in (18). The grey
curves are the 5 and the 95 percentiles
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Figure 4: Result of 100 simulations of function Ft over time in (19). The grey
curves are the 5 and the 95 percentiles
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Figure 5: Result of 100 simulations of the optimal wealth. In light-grey the area
between the 5 and 95 percentiles of the simulations
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Figure 6: Result of 100 simulations of the optimal labour supply l∗t . The grey
curves are the 5 and the 95 percentiles
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Figure 7: Result of 100 simulations of the optimal consumption as a percentage
of disposable wealth c∗t

Rt−Ht
. The grey curves are the 5 and the 95 percentiles
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financial market is always able to fully recover from any fall, (ii) the agent has
a subsistence consumption cm = 0, which means that he is able to take utility
even from a very low consumption.

The optimal consumption of the agent can be expressed in different ways:
(i) as a total amount of money spent, (ii) as a percentage of the optimal wealth
Rt, or (iii) as a percentage of the disposable wealth Rt −Ht. This last way to
represent consumption seems to be the best since it suitably takes into account
the implicit hypothesis that the agent is able to borrow against his future wage.
Figure 7 shows the result of 100 simulations of the ratio c∗t

Rt−Ht
.

We see that the optimal (relative) consumption increases over time and once
the retirement is reached, it becomes a constant percentage of the disposable
wealth. The optimal consumption ratio starts from a value of about 2.5% and
reaches, after retirement, its asymptotic value of about 5.5%.

The optimal portfolio can be drawn, again, as a percentage of the disposable
wealth θ∗

t

Rt−Ht
. The corresponding plot is shown in Figure 8.

We can see some interesting behaviours of the optimal portfolio share:

• the percentage of disposable wealth invested in the risky asset is increasing
over time, but quite stable in a range between 57% and 58%

• the optimal portfolio is more volatile at the beginning of the working life
and this is due to the need to hedge against the volatility of future wage
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Figure 8: Result of 100 simulations of the optimal portfolio as a percentage of
disposable wealth θ∗

t

Rt−Ht
. The grey curves are the 5 and the 95 percentiles

0 10 20 30 40 50 60 70

0.
56

5
0.

57
0

0.
57

5
0.

58
0

years

O
pt

im
al

 p
or

tfo
lio

Mean
5−95 Percentiles

• the volatility of the portfolio is at its minimum close to the retirement age

• this volatility starts increasing again until the last agent (of the simulated
paths) retires

• after retirement there is no more need for hedging against wage volatil-
ity, and the optimal portfolio share can become a constant percentage of
disposable wealth.

6 Conclusion
In our work we study the problem of a representative agent who wants to max-
imise the expected present value of his inter-temporal utility by choosing the
retirement age, the inter-temporal consumption, the labour supply, and the
portfolio allocation.

If we assume that an agent starts working at about 25, our main results
show that the optimal retirement age should be between 50 and 65, with an
average value of around 55 years. Comparing these results with the EU15
average retirement age (65 years), we find that this optimal retirement is below
the statutory value. The minimum deviation goes from 0 to 3 years compared
to an average between 7 and 10 years.
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A possible explanation of this misalignment is that, while the statutory value
is chosen to guarantee the financial sustainability of the pension system at macro
level, the optimal value derives from an optimal choice at the micro level.

A second hypothesis relates instead to the growth rate of wages. Indeed, if
the wages increase at a lower rate, then it is optimal to retire later. A trend
reduction in the average wage growth rate could lead to a slow increase and
alignment between the statutory and optimal retirement age.

In our model the ratio between the optimal consumption and the disposable
wealth increases over time from 2.5% to about 5.5% and, after retirement, it
remains constant over time. Moreover, we find that the percentage of disposable
wealth invested in the risky asset is increasing over time, but quite stable in a
range between 57% and 58%. Finally, the portfolio volatility is higher at the
beginning of the working life and it reaches a minimum at the retirement age.

A Proof of Proposition 1
In solving the first step of Problem (11), we neglect the last term containing
only the choice variable T . The Lagrangian of the problem is

L :=Et0

[∫ ∞

t0

(
(cs − cm)

1−δ

1− δ
+ χA

(L− ls)
1−δ

1− δ
Is<T

)
e
−ρ(s−t0)−

∫ s
t0

λududs

]

+ ϕ

(
Rt0 + Et0

[∫ ∞

t0

(lswsIs<T − cs)mt0,se
−r(s−t0)−

∫ s
0
λududs

])
,

where ϕ is the (constant) Lagrangian multiplier. The F.O.C. on consumption
for any time s is:

(cs − cm)
−δ

e
−ρ(s−t0)−

∫ s
t0

λudu − ϕmt0,se
−r(s−t0)−

∫ s
t0

λudu = 0,

from which

c∗s = cm +

(
ϕmt0,s

e−r(s−t0)

e−ρ(s−t0)

)− 1
δ

,

while the F.O.C. on labour for any time s is:

l∗s = L−
(
ϕ
ws

χA
mt0,s

e−(s−t0)r

e−ρ(s−t0)

)− 1
δ

.

Once c∗s and l∗s are substituted into the constraint, rewritten at any time t,
we have

Rt + Et

[∫ ∞

t

(l∗swsIs<T − c∗s)mt,se
−r(s−t)−

∫ s
t
λududs

]
= 0,

22



or

0 = Rt − Et

[∫ ∞

t

(cm − LwsIs<T )mt,se
−r(s−t)−

∫ s
t
λududs

]

− ϕ− 1
δEt

[∫ ∞

t

(
χ

1
δ

Aw
1− 1

δ
s Is<T + 1

)(
mt0,s

e−r(s−t0)

e−ρ(s−t0)

)− 1
δ

mt,se
−r(s−t)−

∫ s
t
λududs

]
.

Now we use the property of the price kernel mt0,s = mt0,tmt,s for all t0 ≤
t ≤ s and we write(

mt0,s
e−r(s−t0)

e−ρ(s−t0)

)− 1
δ

=

(
mt0,t

e−r(t−t0)

e−ρ(t−t0)
mt,s

e−r(s−t)

e−ρ(s−t)

)− 1
δ

,

so that the previous equation can be simplified as follows

0 = Rt − Et

[∫ ∞

t

(cm − LwsIs<T )mt,se
−r(s−t)−

∫ s
t
λududs

]

− ϕ− 1
δ

(
mt0,t

e−r(t−t0)

e−ρ(t−t0)

)− 1
δ

Et

[∫ ∞

t

(
χ

1
δ

Aw
1− 1

δ
s Is<T + 1

)
m

1− 1
δ

t,s e−(
δ−1
δ r+ 1

δ ρ)(s−t)−
∫ s
t
λududs

]
.

The power m
1− 1

δ
t,s is not a martingale, and, accordingly, we cannot use it

for change the probability. Nevertheless, the process m
1− 1

δ
t,s e

1
2

1
δ

δ−1
δ ξ2(s−t) is a

martingale. In fact, given the dynamics (4) we have

d
(
m

1− 1
δ

t,s e
1
2

1
δ

δ−1
δ ξ2(s−t)

)
m

1− 1
δ

t,s e
1
2

1
δ

δ−1
δ ξ2(s−t)

= −δ − 1

δ
ξdWt.

Accordingly, we can use Girsanov’s theorem for defining a new probability
Qδ such that

dWQδ
t =

δ − 1

δ
ξdt+ dWt.

Finally, for simplifying the notation we can define the following functions:

Ht := EQ
t

[∫ ∞

t

(cm − LwsIs<T ) e
−r(s−t)−

∫ s
t
λududs

]
,

Ft := EQδ
t

[∫ ∞

t

(
χ

1
δ

Aw
1− 1

δ
s Is<T + 1

)
e−(

δ−1
δ r+ 1

δ ρ+
1
2

1
δ

δ−1
δ ξ2)(s−t)−

∫ s
t
λududs

]
,

and so

Rt = Ht + ϕ− 1
δm

− 1
δ

t0,t

(
e−r(t−t0)

e−ρ(t−t0)

)− 1
δ

Ft. (20)
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The value of the Lagrangian multiplier must be found in such a way that it
satisfies the constraint:

Rt0 =Et0

[∫ ∞

t0

(c∗s − l∗swsIs<T )mt0,se
−r(s−t0)−

∫ s
t0

λududs

]
=Et0

[∫ ∞

t0

(cm − LwsIs<T )mt0,se
−r(s−t0)−

∫ s
t0

λududs

]
+ ϕ− 1

δEt0

[∫ ∞

t0

m
1− 1

δ
t0,s

(
1 + χ

1
δ

Aw
1− 1

δ
s Is<T

)
e
−( δ−1

δ r+ 1
δ ρ)(s−t0)−

∫ s
t0

λududs

]
.

Thus, we see that
Rt0 = Ht0 + ϕ− 1

δFt,

from which

ϕ =

(
Rt0 −Ht0

Ft0

)−δ

.

This means that (20) can be written as a function of the initial wealth as
follows:

Rt −Ht

Ft
=

Rt0 −Ht0

Ft0

m
− 1

δ
t0,t

(
e−r(t−t0)

e−ρ(t−t0)

)− 1
δ

.

Given the stochastic differential equations for the wage (5) and for the price
kernel (4), the differential of Rt is

dRt =(...) dt+

(
∂Ht

∂wt
+ ϕ− 1

δm
− 1

δ
t0,t

(
e−r(t−t0)

e−(t−t0)ρ

)− 1
δ ∂Ft

∂wt

)
σwdWt

−

(
−1

δ
ϕ− 1

δm
− 1

δ−1
t0,t

(
e−r(t−t0)

e−(t−t0)ρ

)− 1
δ

Ft

)
mt0,tξdWt,

and, since
Rt −Ht

Ft
= ϕ− 1

δm
− 1

δ
t0,t

(
e−r(t−t0)

e−(t−t0)ρ

)− 1
δ

,

it becomes

dRt = (...) dt+

(
∂Ht

∂wt
+

Rt −Ht

Ft

∂Ft

∂wt

)
σwdWt +

Rt −Ht

δ
ξdWt.

The optimal portfolio is then

Stw
∗
t =

Rt −Ht

δ

ξ

σ
+

σw

σ

(
∂Ht

∂wt
+

Rt −Ht

Ft

∂Ft

∂wt

)
,

while the optimal consumption and labour are those presented in the proposi-
tion.
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B Proof of Proposition 3
Given a geometric Brownian motion

dXt

Xt
= αdt+ βdWt,

whose solution is (with Wt0 = 0)

Xt = Xt0e
(α− 1

2β
2)(t−t0)+βWt ,

we want to compute the expected value Et0

[∫ T

t0
Xse

−ρ(s−t0)ds
]

that can be
simplified as follows

Et0

[∫ T

t0

Xse
−ρ(s−t0)ds

]

=Et0

[∫ ∞

t0

Xse
−ρ(s−t0)ds−

∫ ∞

T

Xse
−ρ(s−t0)ds

]
=Et0

[∫ ∞

t0

Xse
−ρ(s−t0)ds

]
− Et0

[∫ ∞

T

Xse
−ρ(s−t0)ds

]
=

∫ ∞

t0

Et0 [Xs] e
−ρ(s−t0)ds− Et0

[
e−ρT

∫ ∞

T

Xse
−ρ(s−T )ds

]
=

∫ ∞

0

Xt0e
−(ρ−α)sds− E0

[
e−ρT

∫ ∞

T

ET [Xs] e
−ρ(s−T )ds

]
=

Xt0

ρ− α
− Et0

[
e−ρTXT

∫ ∞

T

e−(ρ−α)(s−T )ds

]
=

Xt0

ρ− α
− Et0

[
e−ρT XT

ρ− α

]
=
Xt0 − Et0

[
XT e

−ρT
]

ρ− α
.

Then, it is now sufficient to compute the remaining expected value Et0

[
XT e

−ρT
]
.

If we call x the value of the process at the stopping time T (i.e. x = XT ), then

Et0

[
XT e

−ρT
]
= x1−γXγ

t0 ,

where

γ =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+ 2
ρ

σ2
.

Finally, we can write

Et0

[∫ T

t0

Xse
−ρ(s−t0)ds

]
=

Xt0 − x1−γXγ
t0

ρ− α
.
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These same results allow us to write also

Et0

[∫ T

t0

e−ρ(s−t0)ds

]
=

1− Et0

[
e−ρT

]
ρ

=
1− x−γXγ

t0

ρ
.
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