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Abstract: This paper examines the long-run relationship between income and urban air 

pollution using a joint distribution dynamics approach. This approach enables to estimate 

the transition process and long-run distribution and to examine the mechanisms behind the 

evolution process. The approach is applied to a unique panel data of  CO2, SO2 and PM2.5 

(particulate matter smaller than 2.5μm) for 286 Chinese cities over the period 2002-2014. 

Strong persistence in the transition dynamics suggests that this convergence process may 

require a long time. The distribution dynamics analyses indicate that multiple equilibria are 

the major characteristics in the long-run relationship between income and urban air 

pollution in China, which implies that inter-regional technology spillover may be an 

important way to accelerate convergence. Our results further support the existence of  

poverty-environmental trap in PM2.5 concentrations. Thus, new environmental models are 

expected to be developed to explain this new stylized fact. The findings provide strong 

support for taking more aggressive measures that consider income and urban environment 

simultaneously to reduce poverty and air pollutions together in the Chinese cities.  
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1. Introduction  

During the past two decades, the income-pollution relationship has attracted the 

attention of  policymakers, theorists, and empirical researchers. Stern (2017) indicates that 

economic growth has increased both pollution emissions and concentration in the past 

decades. The income-pollution nexus has been examined in several strands of  literature. 

The environmental Kuznets curve (EKC) has been the dominant approach among 

economists to model aggregate pollution emissions and ambient concentrations over the 

last decades. Since the EKC might mislead policy-makers to incorrectly de-emphasize 

environmental policy and instead pursue economic growth as a solution, thus more and 

more studies have thrown doubt on the idea that economic growth may eventually reduce 

environmental impacts (Carson, 2010; Kaika and Zervas, 2013; Chow and Li, 2014; Wagner, 

2015). In recent years, convergence approaches provide further insight in the 

income-pollution nexus. A convergence effect predicts that higher initial levels of  pollution 

are generally associated with slower growth in pollution. However, empirical studies have 

failed to reach conclusive results to reconcile the EKC and convergence literature (Stern et 

al., 2017). There is no theoretical or empirical consensus in the existing studies on the 

relationship between economic development and pollutant emissions (Jaforullah and King, 

2015; Sanchez and Stern, 2016; Stern et al., 2017 ).  

As the world second largest economy, China is confronting serious environmental 

deterioration in the last decades. China is now the largest greenhouse gas emitter in the 

world. Chinese cities have long been entangled with SO2 emissions and acid rain. In 2013, 

99.6 percent of  China’s population was exposed to PM2.5 air pollution levels above the 

guidelines of  the World Health Organization (WHO) (Brauer et al., 2016). According to a 

report from the Asian Development Bank, more than 99 percent of  the 500 county-level 

cities in China cannot meet the air quality standards of  the WHO (Zhang and Crooks, 

2012). However, the causes and consequence of  urban air pollution in China are quite 

complicated. There is no consensus on the drivers of  changes in urban pollution emissions 

and ambient concentrations in China. Different from most studies using a simple indicator 

of  environmental pollution emissions or ambient concentrations, this paper uses CO2 

emissions, SO2 emissions, and PM2.5 concentration as environmental variables. This enables 

us to provide a comprehensive examination of  the urban income-environment relationship.   

This paper aims to examine the relationship between income and urban air pollution 

using a novel dataset for 286 Chinese prefectural-and-above (PAA) level cities over the 

period 2002-2014, which has never been used previously in any existing literature. We 

employ a combination of  a new nonparametric joint distribution dynamics approach to 

provide a comprehensive picture of  the relationship in the long-run.  

This study contributes to the income-environment nexus in several important ways. 

First, the nonparametric approach enables us not only to reveal divergence/convergence 

trend among Chinese cities in the long-run, but also the formation of  multiple equilibria, 

such as poverty and/or environmental traps, which are examined in a few theoretical and 

empirical studies (John and Pecchenino, 1994; Xepapadeas, 1997; Ikefuji and Horii, 2007; 

Mariani et al., 2010; D'Alessandro et al., 2010; Varvarigos, 2010; Bassetti et al., 2013). 

Understanding the future distribution of  urban air pollution can help policy-makers design 

better policy to accelerate convergence in urban air pollution. Second, this paper constructs 
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a novel dataset for 286 Chinese PAA level cities. Due to the unavailability of  urban air 

pollution data, most studies in the existing literature use provincial dataset, which is only 

approximately one tenth of  the size of  the PAA level cities. Large sample size guarantees 

the robustness of  our parametric and nonparametric estimation results. Thus, our data set 

provides more research opportunities in a broad context. Third, given the fact that air 

pollution in Chinese cities is extremely high, our research on the heterogeneous 

relationship between income and three pollutions, namely CO2, SO2 emissions and PM2.5 

concentrations, provides valuable information for both the general public and 

policymakers.  

We arrive at several interesting conclusions. First, our results show strong evidence for 

the existence of  multiple equilibria in the long-run relationship between income and urban 

air pollution. Moreover, to the best of  our knowledge, this paper is the first one that 

empirically proves the existence of  poverty-environment trap (low income and high 

pollution), which has been predicted by some theoretical studies (John and Pecchenino, 

1994; Xepapadeas, 1997; Ikefuji and Horii, 2007; Mariani et al., 2010; D'Alessandro et al., 

2010; Varvarigos, 2010). Second, global and local pollutants show significant difference in 

the distribution dynamics in relation to income. This suggests that different environmental 

policies should be imposed upon these pollutants. Third, our results show strong 

persistence in the transition dynamics, indicating that this convergence process towards the 

stead state is very slow.   

The remainder of  the paper is organized as follows. Section 2 provides a brief  review 

of  the related literature. Section 3 outlines the empirical methodology. Section 4 introduces 

data used in the paper. Section 5 presents the empirical results. Section 6 provides 

concluding remarks and policy implication.  

 

 

2. Review of  the related literature 

The relationship between income and pollutions has been examined in three strands 

of  closely related literature. This section provides a brief  review of  these literature.  

The first strand is the EKC literature. The EKC is hypothesized to be an inverted 

U-shaped relationship between various environmental pollutions and income per capita. 

The EKC has been the dominant approach among economists to modeling pollution 

emissions and ambient concentrations after Grossman and Krueger (1991) first introduced 

the EKC concept in their study of  the potential environmental impacts of  the NAFTA 

(North American Free Trade Agreement). The drivers of  the EKC can be decomposed 

into three effects, namely, scale, composition, and technique effects. These three proximate 

factors may be driven by variables such as environmental regulation, innovation policy, and 

even more fundamental variables. For example, Auffhammer et al. (2016) examine the 

channels through which the inflow of  FDI and environmental regulations affects CO2 

emissions after decomposing CO2 emissions into scale, composition and technique effects. 

However, the empirical evidence for the EKC effect is quite mixed. Many studies have 

found evidence for the EKC†, while some other studies find a monotonically increasing 

                                                             
† Such as Stern and Common (2001), Brannlund and Ghalwash (2008), Halicioglu (2009), Iwata et al. (2010), Tamazian 
and Rao (2010), Jalil and Feridun (2011), Jayanthakumaran and Liu (2012), Ozturk and Acaravci (2013), Kasman and 
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impact of  income on pollution.‡ There are also some studies that examine the existence of  

EKC in China. Yin et al. (2015) examined the EKC hypothesis in CO2 emissions using a 

panel date for the period 1999-2011. Their results support the existence of  EKC in China. 

Hao and Liu (2016) analyze the EKC in PM2.5 using a dataset of  73 Chinese cities in 2013. 

They find evidence for the existence of  EKC. Song et al. (2008) examined the EKC 

hypothesis using Chinese provincial data for the period 1985-2005. The results support the 

existence of  EKC in waste water, waste gas and solid waste. In fact, the evidence for the 

EKC is sensitive to the selection of  samples and econometric techniques (Stern, 2017). 

Relatively, local pollutants (PM2.5, SO2, etc.) are more likely to display an EKC relationship 

than global pollutants (CO2 emissions, etc.) (Sanchez and Stern, 2016; Stern, 2017).  

The second strand is the convergence analysis of  pollution emissions and 

concentration. In recent years, convergence approaches to modeling pollution emissions 

and concentrations become more and more popular. The research on environmental 

convergence has been inspired by the economic convergence literature. The economic 

convergence hypothesis supposes that high income countries have low economic growth, 

while low income countries have high economic growth. This leads to the convergence in 

income level in the long-run. Similarly, the environmental convergence hypothesis proposes 

that pollution declines faster in high pollution countries than in low pollution ones. In 

some cases, high pollution countries have a decline trend, while low pollution countries 

have an increase trend. In the long-run, all countries would converge into similar 

environmental quality level. Bulte et al., (2007) and Brock and Taylor (2010) provide basic 

theoretical frameworks for environmental convergence. The EKC hypothesis postulates an 

inverted U-shaped relationship between income and environmental pollutions. This implies 

that low income countries have a positive pollution growth, while high income countries 

have negative pollution growth. Thus the EKC hypothesis also predicts convergence in 

pollution emissions and ambient concentration. Correspondingly, the drivers of  EKC are 

also the important factors that drive the convergence in pollution emissions and ambient 

concentration. Three types of  convergence, namely, sigma-convergence, beta-convergence, 

and stochastic convergence, are most popularly examined in existing studies. Sigma 

convergence examines the dispersion of  a variable in question over time using variance, 

coefficient of  variation, or Gini coefficient. Bata convergence examines whether the 

growth rate of  a variable in question is negatively correlated with the initial level. The 

stochastic convergence examines the evolution trend of  the variable in question using 

cointegration approach.  

The earliest studies (List, 1991; Strazicich and List, 2003) examine the environmental 

convergence, followed by many studies on both cross-national and cross-regional analysis 

on the convergences of  various pollution emissions and ambient concentrations 

(Pettersson et al., 2013). The empirical research on the convergence of  cross-national CO2 

emissions shows evidence of  convergence among developed countries, while evidence of  

persistence or divergence is found at the global level (Westerlund and Basher, 2008). Similar 

to the studies of  the EKC, the results on the convergence of  environmental variables are 

also affected by the choice of  econometric approaches, samples, and statistical tests. 

Therefore, this empirical literature is far from being conclusive. Pettersson et al. (2013) 
                                                                                                                                                                                   
Duman (2015), Linh and Lin (2015), Tang and Tan (2015). 
‡ Such as Shafik (1994), Akbostanci et al. (2009), Jaunky (2011), Esteve and Tamarit (2012a), Alkhathlan and Javid (2013), 
Azlina et al. (2014), and Jaforullah and King (2015). 
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provide a comprehensive review of  the studies of  convergence of  CO2 emissions. 

Although the convergence of  CO2 emissions is the most popularly studied topic in this 

literature, the environmental convergence analyses are also applied to a wide range of  

issues from NOx (Bulte et al., 2007; Ordás Criado et al., 2011; Camarero et al., 2013a), SO2 

(List, 1991; Bulte et al., 2007; Nourry, 2009; Payne et al., 2014), PM2.5 (Stern and Zha, 2016; 

Stern and Van Dijk, 2017; Stern, 2017) and energy intensity (Markandya et al., 2006; Mulder 

and de Groot, 2012; Herrerias, 2012). There are also some studies that focus on the 

environmental convergence in China. For example, Hao et al. (2015) examine the 

convergence of  SO2 emissions using a city-level panel data for the period 2002-2012. They 

find absolute and conditional convergence in per capita SO2 emissions. Huang and Meng 

(2013) investigate the convergence of  per capita CO2 emissions for the period 1985-2008. 

They find convergence among provincial urban areas. Similarly, Zhao et al. (2015) find 

convergence in CO2 emission intensity among 30 Chinese provinces for the period 

1990-2010. Using a dataset of  50 Chinese cities for the period 2013-2014, Stern and Zha 

(2017) examine the convergence of  PM2.5 and PM10. They find clear evidence of  

convergence with concentrations falling faster in more highly polluted cities.  

Differing from the EKC and convergence literature, the third strand of  literature 

focuses on the multiple equilibria in the long-run relationship between pollution emissions 

and income per capita. Many studies have shown that convergence clubs or multiple 

equilibria may exist in pollution emissions or ambient concentrations (Panopoulou and 

Pantelidis, 2009; Ordás Criado and Grether, 2011; Camarero et al., 2013b; Wu et al., 2016). 

Convergence clubs may be formed on geographical factors, income levels or a combination 

of  several factors. Many studies found environmental convergence clubs among 

countries/regions with similar income levels (Ordás Criado and Grether, 2011; Bassetti et 

al., 2013). Moreover, some studies (John and Pecchenino, 1994; Xepapadeas, 1997; Ikefuji 

and Horii, 2007; Mariani et al., 2010; D'Alessandro et al., 2010; Varvarigos, 2010) further 

indicate that there may exist a poverty-environment trap, in which countries remain 

persistently trapped in a state of  low income and low environmental quality. Empirically, it 

is difficult to test the existence of  a poverty-environment trap using traditional parametric 

approaches. The study of  Bassetti et al. (2013) is one of  few studies that examine the 

existence of  poverty-environment trap using a discrete distribution dynamics approach. 

However, their results provide evidence for the existence of  multiple steady states, namely, 

a poverty trap (low income and low pollution) and an environmental trap (high income and 

high pollution). They found no evidence for the existence of  a poverty-environment trap in 

the long-run stationary state.  

No conclusive results have been reached on the income-pollution nexus both 

theoretically and empirically in existing literature. There is still much scope for developing 

more reasonable dynamic models of  the joint-evolution of  the economic growth and 

pollution emissions. There is also scope for the empirical work to test alternative theoretical 

models and even to find new stylized fact.  

 

 

3. Research methodology 

Most early studies on the EKC and convergence have suffered from various statistical 
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pitfalls (Wagner, 2008; Vollebergh et al., 2009; Carson 2010; Kaika and Zervas 2013; Chow 

and Li, 2014; Wagner, 2015; Stern, 2010; Stern et al., 2017; Stern, 2017). The conventional 

econometric techniques only provide information on the convergence behavior of  an 

average or representative economy (Quah, 1996). However, they provide little information 

on how air pollutions of  different cities evolve relative to each other in the long-run. They 

are silent on many crucial questions in the long run distribution of  air pollutions in Chinese 

cities. For example, they shed little light on the catch-up and convergence among cities. It 

provides little information on the stratification and polarization in the long run steady 

distribution. In addition, traditional approaches seldom focus on the mechanisms behind 

the transition process and long-run steady distribution. To address these questions, one 

needs to know the entire shape of  distribution dynamics of  air pollution in the sample.  

The distribution dynamics approach is developed mainly by Quah in a series of  papers 

(Quah, 1993, 1996, 1997) to examine the long-run evolution behavior of  income across 

countries. The distribution dynamics approach has several advantages over the traditional 

econometric approaches. First, the distribution dynamics approach is completely 

data-driven and thus can avoid the possible estimation bias due to model specification 

errors, which are common in traditional econometric approaches. Second, it uses a 

nonparametric kernel density approach to estimate the transition process and long-run 

distribution and thus can provide more insights on the law of  motion in an entire 

distribution shape of  the air pollution. Third, it can also be used to examine the 

mechanisms behind the evolution process, such as the formation of  convergence clubs, 

EKC hypothesis, and policy effects. Thus it can provide comprehensive information on the 

multiple equilibria, polarization, persistence and poverty-environmental traps.  

Let us use  and   to denote the cross-city distribution of  air pollution 

at time t and t+τ. Assuming that the evolution of  the distribution is time-invariant and 

first-order, that is, the distribution of  air pollution  at time t will evolve into the 

-period-ahead distribution of   at time t+τ, where > 0. The relationship 

between the two distributions  and  can be described as follows: 

                            (2) 

where  is the conditional density function mapping the transition process of  the 

distribution of  air pollution across cities from time t to time . For any x, we 

have . 

The long-run stationary (ergodic) distribution (denoted by ) can be estimated as 

the solution to:  

                             (3) 
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Most early studies in the literature use discrete distribution dynamics approach, which 

discretizes the variables into several state spaces (normally 5 or 7). As indicated in Quah 

(1997), Bulli (2001) and Johnson (2005), the process of  discretizing the state space of  a 

continuous variable is inevitably arbitrary and can change the revealed probabilistic 

properties of  the data. Differing from the discrete distribution dynamics approach, this 

paper adopts a continuous distribution dynamics approach. This continuous approach 

estimates the transition probability and its ergodic distribution using a stochastic kernel 

density method. The joint natural kernel estimator of   and marginal kernel 

 can be defined as follows:  

                   (4) 

                                 (5) 

where  and  are the air pollution of  the cities at time t and time .  is the total 

number of  cities. We use  and  to denote the bandwidth of  x and y respectively, 

which are estimated with the adaptive method proposed in Silverman (1986). Then the 

conditional density can be estimated as follows: 

                                       (6) 

In the continuous distribution dynamics approach, the transition probability can be 

presented with three-dimensional surface plots and contour plots, in which the 

intra-distribution mobility is measured by the deviation from the 45 degree diagonal. Thus 

it can provide important information on convergence and persistence. In many cases, the 

aggregate transition tendency at each air pollution level is more informative. To provide 

information on the aggregate transition tendency of  the distribution at each point, we 

further estimate the net transition probability (NTP)  as follows:  

                        (7) 

The net transition probability (NTP) provides the precise values of  net upward 

probability at each point. Intuitively, a positive value of  net transition probability at a given 

point suggests the increase of  air pollution, while a negative value at the point implies the 

decline of  air pollution. Thus a downward sloping NTP curve indicates net convergence of  

air pollution in the long-run, while an upward sloping NTP curve implies divergence of  air 

pollution across cities. As the distribution dynamics approach examines the 

intra-distribution behavior, following common practices in this literature, this paper uses 

the relative value of  air pollution (RAP), which is the air pollution of  each city divided by 

its yearly average in the analysis. This normalization approach allows for results to be 

directly comparable from period t to period t , even if  the cross-sectional mean of  

RAPs has changed over the two periods. That is, the distribution of  the normalized urban 

air pollution shows how dispersed the urban air pollution values are from their mean 
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regardless of  the level of  the cross-sectional mean.  

The distribution dynamics approach enables us to investigate the long-run behavior of  

the relationship between urban air pollution and income per capita. If  the ergodic 

distribution shows only one peak, we can conclude that the variable in question is 

converging towards a unique stationary equilibrium. On the contrary, the existence of  

multiple peaks in the ergodic distribution indicates the existence of  multiple equilibria.  

 

 

4. Data 

This paper constructs a unique panel data of  286 Chinese PAA level cities for the 

period 2002-2014. There are 288 PAA level cities in total in China by the end of  2014. As 

most data for Lasa and Rikaze, the two cities in Tibet, are missing, our data set thereby 

includes 286 out of  288 PAA level cities (excluding Lasa and Rikaze). A substantial effort 

has been made to compile a consistent set of  PAA-level data of  gross city product (GCP), 

population, CO2 emissions, SO2 emissions, and PM2.5. Nominal GCP is deflated to 

constant 2002 Renminbi Yuan using province-specific GCP deflators. Nominal GCP, 

population, and SO2 emissions of  each PAA city are directly sourced from China City 

Statistic Yearbook (NBSC, 2003-2015a)§. GCP deflators by province are taken from China 

Statistic Yearbook (NBSC, 2003-2015b). 

PM2.5 is very hazardous air pollution to human health (WHO, 2013). As indicated by 

Guan et al. (2014) and Zheng et al. (2017), PM2.5 is the major air pollutant in Chinese cities. 

Thus this paper uses PM2.5 as one of  the air pollution indicators in Chinese cities. The 

official PM2.5 data at the PAA city level are only reported after 2013 for partial cities. More 

importantly, the official data for particulate matters concentration is entangled with the 

problem of  data manipulation (Ghanem and Zhang, 2014). Therefore, this paper uses the 

PM2.5 data extracted from the grid data of  global annual PM2.5 grid from MODIS and 

MISR Aerosol Optical Depth.  

No CO2 emissions data are directly available for Chinese PAA level cities. Following 

Glaeser and Kahn (2010) and Zheng et al. (2011), we estimate total PAA level CO2 

emissions from four main sources: electricity, coal gas and liquefied petroleum gas, 

transportation, and heating. The China City Statistical Yearbook (NBSC, 2003-2015a) 

provides statistics on the consumption of  electricity, coal gas and liquefied petroleum gas. 

However, it does not report energy consumed in transportation and heating.   

Transportation accounts for a large share of  energy consumption and CO2 emissions 

in Chinese cities. No energy consumption or CO2 emissions data of  transportation is 

directly available at the PAA level cities. But China City Statistical Yearbooks provide data 

for freight traffic (ton-kilometer) and passenger traffic (passenger-kilometer) by road, 

railway, waterway, and aviation. Thus the total energy consumed in the transportation 

sector at the PAA level cities is estimated from freight traffic (ton-kilometer) and passenger 

traffic (passenger-kilometer) by road, railway, waterway, and aviation. The China Statistical 

Yearbook (NBSC, 2003-2015b) provides nationally aggregated data of  energy consumption 

and traffic volume by transportation mode, which allows us to calculate the energy intensity 

                                                             
§ The industrial SO2 emissions are the only available SO2 emissions data at the PAA city level and they account for the 
majority of  total SO2 emissions. Thus we use industrial SO2 emission as a replacement for total SO2 emissions in a city. 
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of  each transportation mode. Following Li et al. (2013), we can further estimate the 

PAA-level energy consumption data by transportation mode assuming uniform energy 

intensity by transportation mode nation-wide.  

Heating is an important source of  CO2 emissions in China’s total CO2 emissions in the 

northern Chinese cities, especially in winter. In China, winter heating is officially provided 

between November 15 and March 15 in the following year in all cities northern to the 

Qinling Mountains–Huai River line. Winter heating is primarily provided through 

centralized heating systems that rely mostly on burning coal. The data on central heating by 

cities are collected from the China Urban Construction Statistical Yearbook (NBSC, 

2003-2014c). Coal consumption for winter heating at the PAA-level is then estimated 

assuming a 70% thermal efficiency rate (AQSIQ, 2009).  

With the energy consumption estimated above, we can further estimate the PAA-level 

CO2 emissions from the consumption of  coal gas, liquefied petroleum gas (LPG), fuel 

(transportation), coal (heating) and electricity using the IPCC reference approach (IPCC, 

2006). Standard emission factors for coal gas, LPG, fuel, and coal were directly sourced 

from IPCC (2006). However, Chinese cities differ greatly with respect to natural resources 

that are used to supply electricity. Following Zheng et al. (2011), we thus use region-specific 

baseline emission factors to estimate CO2 emissions from electricity consumption (NDRC, 

2014). This approach takes into consideration the different portfolios of  energy sources 

used in electricity generation across regions. 

 

Table 1 Summary statistics 

Variable Obs. Mean Std. Dev. Min Max 

CO2 emission intensity 

(ton/ten thousand RMB) 
3718 1.314 1.265 0.200 25.045 

pm25 (μg/m
3) 3718 53.481 22.929 6.500 118.600 

SO2 emission intensity 

(ton/ten thousand RMB) 
3718 0.128 0.179 0.000 2.439 

Income (ten thousand RMB 

per capita) 
3718 2.000 1.597 0.169 12.833 

Source：Authors own estimation.  

 

 

5. The empirical results 

5.1 The static distribution of  urban air pollution in China 

To examine the evolution trend of  urban air pollution over time, Figure 1 presents the 

kernel density distribution of  the three relative air pollution (RAP) variables in 

representative years. The distributions of  CO2 and SO2 emission intensity are significantly 

right-skewed unimodal in our sample period. Most cities (87% for CO2 emissions and 90% 

for SO2 emissions) collect in the region with below 2 times of  mean pollution level; and 

only a small number of  cities scatter around the region between 2 to 10 times of  mean 

pollution level. Strong persistence can be observed in the distributions of  CO2 and SO2 
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emissions in the representative years. However, significant bimodality can be observed in 

the distributions of  PM2.5 concentrations in most of  the representative years, implying the 

possible existence of  convergence clubs at different PM2.5 concentration levels. 

Approximately two-thirds of  the cities cluster into the peak at 0.8 times mean value, while 

the remaining one-third situates around the peak at 1.5 times mean pollution value. In 

general, the distribution of  CO2 and SO2 emissions are much more dispersed than that of  

PM2.5 concentrations. 
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Figure 1 The distribution of  air pollution in representative years for the period 

2002–2014 

 

Figure 2 presents the three-dimensional and contour plots of  the joint distribution of  

the relative income (RI) and RAP for the 286 Chinese cities in the initial and final years in 

the sample period. We can observe that a major peak and a small peak exist in all three air 

pollution variables. Interestingly, the small peaks of  CO2 and SO2 emission intensity locate 

in the high-income region with low pollution, while those of  the PM2.5 concentrations 

locate in the low-income region with high pollution. This may imply the existence of  rich 

and clean city clubs in terms of  CO2 and SO2 emission intensities, and 

poverty-environment trap in terms of  PM2.5 concentrations. This unveils the fact that 

cannot be revealed using the traditional econometric approach.  
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Figure 2 The joint-distribution of  income and urban air pollution in 2002 and 2014 

 

5.2 The distribution dynamics of  urban air pollution over time 

Figure 3 presents the distribution dynamics of  three urban air pollution variables for 

the period 2002-2014. The contour plots in the first column of  Figure 3 show the 

transition probability from t period to t+1 period. To provide intuition, suppose that we 

choose a point 4 in axis marked t and slice the contour plot parallel to axis marked t+1, this 

slice indicates the probability density distribution of  this city transition to other positions in 

the period t+1. Therefore, if  the transition probability mass distributes along the 45 degree 

diagonal, this indicates a strong tendency of  persistence in relative position changes. The 

distributions of  urban air pollution for the cities tend to remain where they begin. On the 

other hand, the deviation from the diagonal indicates high mobility. The distribution of  

transition probability density parallels to the axis marked t indicates a tendency of  

convergence. This implies that the ‘clean’ cities become dirtier and the dirty cities get 

cleaner, and finally all cities cluster to the similar pollution level. We can observe that strong 

persistence existence in the transition probability of  PM2.5 concentration. However, for CO2 

and SO2 emission intensity, the low pollution cities show strong persistence, while high 

pollution cities have high mobility in the intra-distribution dynamics.  
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Figure 3 The distribution dynamics of  urban air pollution, 2002-2014 

 

The second column of  Figure 3 shows the net transition probability (NTP) plot of  the 

three urban air pollution variables. According to the NTP definition, the decline slope of  

the NTP curve indicates convergence of  the variables in question. However, the NTP 

curves of  CO2 and SO2 emissions are much complicated. No significant tendency can be 

implied from these two NTP curves. Therefore, net convergence exists only in PM2.5 

concentrations. Considering the strong persistence in the transition probability distribution, 

this convergence may require a long time.  

The third column of  Figure 3 presents the long-run (ergodic) distribution of  the three 

pollution variables. The three pollution variables differ greatly in the shape of  the long-run 

stationary distributions. Significant multimodality exists in the long-run stationary 

distribution of  CO2 emission intensity. This implies that keeping the current transition 

dynamics remains unchanged, Chinese cities will finally evolve into several distinctive clubs 

at different CO2 emission intensity levels. However, the long-run stationary distribution of  

SO2 emission intensity is unimodal, implying catch-up effect in SO2 emission intensity. The 

long-run distribution of  PM2.5 is right-skewed bimodality, which is quite similar to the 

current distributions in Fig.1c. 

 

5.3 The joint distribution dynamics of  income and urban air pollution  

In this subsection, we divide the 286 Chinese cities into three broadly equal groups 

according to the income in the final years, namely low-income cities (96), middle-income 
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cities (95), and high-income cities (95).** Then we estimate the distribution dynamics 

results of  the three pollution variables in the three income groups separately.  

Figure 4 presents the distribution dynamics of  CO2 emission intensity in the three 

income groups. Salient heterogeneity exists in the distribution dynamics of  CO2 emissions 

among the three income city groups. Significant net convergence can be observed from the 

contour plots and NTP plots of  the low- and middle-income cities. However, no evidence 

of  net convergence can be observed from the transition dynamics of  the high-income 

cities. This suggests the existence of  multiple equilibria in the long-run stationary 

distribution of  CO2 emission intensity with respect to income.  

Right skewed unimodality can be observed in the long-run stationary distribution of  

CO2 emission intensity for the low-income cities (see Fig.4c). The mass of  the long-run 

distribution of  low-income cities concentrates in relatively low pollution region. The 

long-run distribution of  CO2 emission intensity for the middle-income cities (see Fig.4f) is 

significantly bimodal. Approximately 62 percent of  the middle-income cities collect in the 

low pollution peak, and the remaining cities collect in the high pollution peak around 4 

times average. The long-run distribution of  the high-income cities (see Fig.4i) is 

multimodal, most cities (approximately 71 percent) cluster in the middle peak. However, a 

considerable number of  high-income cities (approximately 26 percent) collect into the low 

pollution region around the average emission intensity level. This is consistent with the 

static joint distribution of  income and CO2 emission intensity in Figure 2. The results of  

long-run distribution in the three income city groups show that income is an important 

factor in the formation of  convergence clubs in CO2 emission intensity.  

                                                             
** The income range for three city groups are, low income, [0.661-2.178], 96 cities; middle income, [2.178-3.552], 95 cities; 
high income, [3.552-12.833], 95 cities, respectively. The incomes here are the real income based on 2002 prices.  
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Figure 4 The distribution dynamics of  CO2 emission intensity in the three income 

city groups 

 

Figure 5 presents the distribution dynamics of  SO2 emission intensity in the three 

income city groups. The contour plots show that there is more persistence in the low 

pollution cities than in the high pollution cities in all three income city groups. However, 

NTP plots for all the three income city groups have no simple decline or increase trend. 

Thus no evidence of  net convergence or divergence can be implied from the NTP plots of  

the three income city groups. Multimodality can be observed in the long-run distribution 

of  the low- and high-income city groups (see Fig.5c and Fig.5i). However, though two 

small peaks exist in the low pollution region, the long-run distribution of  the 

middle-income cities is broadly right-skewed unimodal (see Fig.5f). Keeping the current 

distribution dynamics remains unchanged, the high-income cities will have relative low 

pollution in the long-run stationary state, while the middle-income cities will have high SO2 

emission intensity, and the low-income cities will be relatively more equally distributed. In 

general, the high-income cities tend to have lower SO2 emission intensity than the other 

two city groups in the future. The middle-income cities tend to collect into high SO2 

emission intensity level. SO2 emissions are local pollutant that affects most Chinese cities in 

the past decades. To reduce SO2 emissions, the Chinese government has imposed stringent 

SO2 emission and acid rain control policy (two control zones, TCZs) on the high SO2 

emission and acid rain regions. This policy has reduced SO2 emissions in most high-income 

cities. However, the implication of  this policy in the middle-income cities is much less 
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stringent than in the high-income cities to reduce its impact on economic growth. Thus, 

future SO2 regulation policy should focus on middle income cities and high SO2 emissions 

cities in the low income group.  

 

Figure 5 The distribution dynamics of  SO2 emission intensity in the three income 

city groups 

 

Figure 6 presents the distribution dynamics of  PM2.5 concentration in the three income 

city groups. Strong persistence can be observed in the contour plots of  PM2.5 

concentrations for all the three income city groups. The NTP plots in Figure 6 indicate that 

the three income city groups show significant evidence of  net convergence in PM2.5 

concentration. Because the transition dynamics of  the three income city groups show 

much less difference, the corresponding long-run stationary distributions of  the three 

income city groups are similar to each other. This indicates that the distribution of  PM2.5 

concentration may be less affected by income levels. More importantly, the high pollution 

in low-income cities in the long-run distribution of  PM2.5 concentrations and strong 

persistence in relative position changes may indicate the existence of  poverty-environment 

trap among Chinese cities. Differing from the global pollutants such as CO2 emissions, 

PM2.5 concentrations are local pollutions that can easily scatter around with the wind. 

Unlike SO2 emissions, the formation of  PM2.5 concentrations in China is much complicated 

and remains unknown. Poor cities may suffer heavily from their rich but high pollution 

emission neighbors. In fact, 32.9 percent of  low-income cities have above average PM2.5 in 

the long-run stationary distribution, while this number for the middle- and high-income 
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groups are 39 and 35.3 percent, respectively. This result also indicates that PM2.5 

concentration may be a better measure of  actual urban air pollution quality than CO2 and 

SO2 emissions.    

 
Figure 6 The distribution dynamics of  PM2.5 concentrations in the three income 

city groups 

 

 

6. Conclusions and policy implications 

This paper examines the long-run relationship between income and urban air pollution 

using a new nonparametric joint distribution dynamics approach. This facilitates us to 

provide more insights on the co-evolution behavior of  income and urban air pollutions. We 

also construct a unique panel data set of  three main urban air pollutions, namely CO2, SO2, 

and PM2.5, for 286 Chinese PAA level cities for the period 2002–2014.  

The results of  distribution dynamics approach show that multiple equilibria exist in 

the relationship between income and urban air pollutions in Chinese cities. Chinese cities 

with different income levels show salient heterogeneity in the long-run evolution behavior 

in CO2 and SO2 emission intensity, but show little difference in PM2.5 emissions. Rich and 

clean city club exists in terms of  CO2 and SO2 emission intensities, while 

poverty-environment trap exists in PM2.5 concentrations. This result has important 

theoretical implication. The existence of  multiple equilibria suggests that environment 

theory faces the task of  explaining this new stylized fact, and this is drawing attention anew 
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to models of  multiple equilibria rather than the traditional EKC paradigm.  

Our results also have important policy implications. Urban air pollutions in China 

differ greatly in their evolution behavior with respect to income levels. First, the existence 

of  poverty-environment trap in terms of  PM2.5 concentrations suggests that policy 

intervention must be taken to promote the economic growth and to reduce PM2.5 

concentrations in these cities. PM2.5 is a pollutant that can easily spread to neighbor regions 

by the wind. Thus inter-regional coordination efforts should be made to combat PM2.5 

concentrations. Second, the existence of  multimodality and poverty-environment trap in 

the long-run distribution suggests an unbalanced development. This is consistent with the 

judgment in the report of  the 19th National Congress of  the Central Committee of  the 

Communist Party of  China, which recognizes that, in the new era, the principal 

contradiction facing Chinese society is the contradiction between unbalanced and 

inadequate development and the people’s ever-growing needs for a better life. However, the 

multimodality in the income and pollution distribution also shows a large potential for 

future air pollution reduction. This also underlines the urgent need for systematic and 

intense efforts towards less-polluting production technology. Moreover, encouraging 

inter-regional technological spillover may help reduce disparity in both income and air 

pollution.  
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