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Do forests relieve crop thirst in the face of drought?  

Empirical evidence from South China 

Abstract 

Although the importance of forests in climate change mitigation has been widely recognized, 

there has been a lack of empirical research regarding the role of forests in agricultural 

adaptation to climate change. This paper uses a careful designed household survey in South 

China that considers an exogenous shock of drought, to determine whether the presence of 

natural and planted forests near rice-producing villages can reduce the adverse effects of 

drought on rice yield. After controlling for local climate and water infrastructure, we find 

robust evidence that natural forests and not planted forests have significant positive effects on 

rice yield, due to their influence on the availability of water for irrigation. Although drought 

hinders farmers’ access to irrigation, which negatively affects rice yield, forests near villages 

provide protection for rice against drought. These findings support the adoption of forest 

ecosystem-based adaptation (EBA) to cope with climate change and enhance food security. 
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1. Introduction 

Climate change will affect human well-being in many parts of the world, and effective 

adaptation is needed even under the most stringent mitigation scenarios (Adger and Barnett 

2009; IPCC 2014). In particular, climate change is expected to increase the frequency and 

intensity of extreme weather events (Dai 2013). As a type of extreme weather event, the 

occurrence of droughts is projected to become more frequent with global climate change 

(Jentsch et al. 2007). It is predicted that the total global area that suffers from drought will 

expand by 15-44% from now until the end of the 21st century (IPCC 2012). These changes 

will have a direct effect not only on rain fed crops but also on water storages and will cause 

increased stress on water availability for irrigation (Verchot et al. 2007). The UN’s 

Intergovernmental Panel on Climate Change (IPCC 2014) has specifically emphasized the 

vulnerability of the agricultural sector to extreme events and the need for society to be 

proactive in adapting to them. 

In the face of severe climatic variability, the role of forest ecosystem services in societal 

adaptation has received renewed recognition (Millennium Ecosystem Assessment 2005; 

World Bank 2010; Doswald et al. 2014; Locatelli 2016). Ecosystem-based adaptation (EBA) 

is an anthropocentric approach (Pramova et al. 2012a). The idea behind this approach is that 

the ecosystem services that are provided by forests have the potential to enhance the adaptive 

capacity of society to climate change across sectors and scales (Locatelli et al. 2008; Chong 

2014). Therefore, several international and nongovernmental conservation and development 

organizations have promoted EBA by stressing its effectiveness in reducing the vulnerability 

of the people who face extreme weather threats (Vignola et al. 2009; Lukasiewicz et al. 2016). 

The extreme drought that occurred in Yunnan, China during 2009-2010, for example, 

emphasizes the need to understand the key ecological effects that may allow forests to 
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overcome severe drought stress (Wang and Meng 2013). 

However, the current level of knowledge is insufficient to support the implementation of 

EBA. The major problem is that forests have mostly been considered in the framework of 

climate change mitigation solely in the context of carbon storage and sequestration and of 

reducing emissions from degradation and deforestation (Sheeran 2006; Canadell and Raupach 

2008; Soares-Filho and Defries 2010; Alemu 2014). These studies have largely ignored forest 

ecosystem services concerning adaptation to climate change (IUFRO 2009; Pramova et al. 

2012a; Pasquini and Cowling 2015). Although there exists a large amount of literature that 

investigates the ecosystem services of forests (Martínez et al. 2009; Klemick 2011), the 

hydrological role of forests remains a subject of debate (IUFRO 2007; van Dijk and Keenan 

2007; FAO 2008). In addition, most of the previous work on valuing watershed ecosystem 

services has focused on the relation between forests and water (Rosenqvist et al. 2010; 

Ellison et al. 2012, 2017; Brogna et al. 2017) and seldom considers the role of forests in 

adapting local farmers’ agricultural production to climate variability. As indicated in the 

UNFCCC (2011), EBA should never be implemented in an isolated manner but rather, should 

be complemented by integrating local people’s livelihood strategies. Thus, despite the rich 

information provided by hydrological analysis, it is difficult to provide robust evidence to 

support the implementation of forest EBA policies.  

With the increasing significance of drought from climate change, several questions need 

to be answered to expand the implementation of EBA. How do drought events affect farmers’ 

crop production? Can forests help to alleviate the pressure of drought? If so, how can farmers 

benefit from forests to adapt to drought? Answering these questions is critical not only to 

better understand the role of forests in adaptation to climate change but also to provide 

empirical evidence for policy makers to help them to formulate EBA policies.  

In order to address these questions, the overall goal of this study is to examine the role 
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of forests in adapting farmers’ crop production to drought. In particular, we focus on the 

impact of forests on farmers’ rice yields. Because rice production is heavily dependent on 

water resources and is especially sensitive to drought events (Pandey and Shukla 2015), 

studying rice crops enables us to better understand the role of forests in adapting to water 

stresses that coincide with drought. 

To achieve this objective, the authors conducted a household and community survey in 

86 villages from 23 counties across five provinces in South China. Our design is unique 

because it exploits an exogenous variation in drought events through a careful design of the 

field survey and then addresses how forests impact rice yield under an exogenous drought 

shock. In the field survey, all the selected counties in our sample experienced the most severe 

drought shock in one of the three years that preceded the survey (2010-2012) and a relatively 

normal year in one of the same three years. This sampling approach allows us to investigate 

the extent to which the differential effects of drought on rice yield in a county are contributed 

to by the forests that are near a community (within a 5-km radius).  

Another core innovation relates to the measurement of forests, which previous studies 

have measured primarily via land cover and land use data (e.g., Fiquepron et al. 2013; 

Vincent et al. 2015). The key land-use variables in this approach is mostly measured in the 

macroscale area and modeled at larger spatial scales, lack of enough spatial variation in small 

scale, as well as the detailed ecological knowledge held by rural households (Gray and 

Mueller 2012). Instead, we draw on household self-reports of forests status in the field survey, 

and satellite measure of forest cover rate to build two alternative measures of forests near a 

village and to test the robustness of our findings. Unlike the satellite-based forest cover 

information, the field survey can distinguish the natural forests from the planted forests, 

enabling us to investigate the roles of different types of forests. This study thus adds to a 

small number of previous studies of EBA which have drawn on both survey and spatial 
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measures of forests. 

Our identification strategy entails two major challenges. First, in addition to forests, 

many other factors can confound the identification of this effect; therefore, isolating the 

impacts of forests on rice yield is a perennial challenge. To circumvent this problem, we use a 

rich dataset on forests and rice production from a survey in South China. The detailed and 

large coverage of information from this survey enables us to control for many potentially 

confounding factors. Moreover, we use plot-level fixed effects to control for much of the 

unobserved heterogeneity that may affect rice yield. Second, changes in land use may result 

in selective sorting, that is, farmers with better education or more farming experience may 

plant rice plots closer to forests, and these farmers may be more likely to obtain good 

harvests. To account for the probability of bias from selective sorting, we test for it by using 

information on land transfers and demographic characteristics. We do not observe increased 

land lease activity near forest land. We also conduct robustness checks where we exclude the 

samples with land transfers, and the conclusions of this study do not change.  

We find robust evidence that rice yields that are in close proximity to forests suffer less 

damage from drought events than rice yields that are further away from forests. We also find 

that natural forests, rather than planted forests, have a positive effect on farmers’ irrigation 

applications, even when the local climate and water infrastructure conditions are both 

controlled. This result is consistent with the findings in the hydrological science literature that 

emphasize that the conservation of dry season stream flows is essential for agricultural 

irrigation systems in drought conditions (Aylward 2005). These findings suggest that forests’ 

regulating services can be enhanced and deliberately chosen as options for climate change 

adaptation in the agricultural sector. Mainstreaming forest EBA into the National Adaptation 

Programme of Action to address extreme drought should be emphasized in developing 

countries.  
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This paper contributes to the literature in two important ways. First, to the best of our 

knowledge, our study constitutes the first attempt to rigorously assess forest ecological 

productivity effects on adapting farmland production to drought stress in the developing 

world. Most existing studies on forest ecosystem services are usually based on hydrological 

analysis. Our study, however, is an econometric analysis based on field survey data that 

empirically examines the role of forests in alleviating droughts that affect farmers’ crop 

production. Second, our study goes beyond identifying the forest effect; despite the existing 

literature that emphasizes that forest EBA is critical for preserving human well-being in 

response to climate change, the complex relations between forests and water continue to be a 

matter of debate (IUFRO 2007; Ellison et al. 2012; van der Ent et al. 2012). In this paper, we 

use information on forests and exploit farmers’ irrigation behavior under an exogenous 

drought event to identify the connection between forests and the availability of irrigation. 

This study attempts to broaden the understanding of EBA, which could provide us with more 

insights and evidence concerning the role of forests in climate change adaptation.  

2. Integrated assessment of forest-water interactions 

Hydrological services or the water-related services provided by forests are considered crucial 

for human well-being (MEA, 2005). As defined by Brauman et al. (2007), hydrological 

services encompass the benefits to people derived from the regulation of water flows by 

forests. Water supply is one of the key services that might impact the irrigation water 

availability of crop yields, especially in the face of drought (Carvalho-Santos 2014). However, 

the potentially beneficial relation between forest cover and water yield is hotly contested 

(Andréassian 2004; van der Ent et al. 2012).  

A large body of literature has provided evidence of the controversial effect of forests on 

water availability. As Ellison et al. (2012), the forest-water debate was divided into two 

schools of thought: the ‘demand-side’ and the ‘supply-side’ schools. The ‘demand-side’ of the 
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forest–water debate see forests as consumers of available water and competitors for other 

downstream water uses (agriculture, energy, industry, and households). For example, 

according to a number of small-scale studies, the demand-side school findings suggest that 

forests may reduce available water supply due to the increased evapotranspiration (e.g., 

Zhang et al., 2001; Brown et al., 2005; Farley et al., 2005; Bredemeier 2011). In these 

empirical studies, the presence of forest vegetation typically removes water from the local 

hydrologic cycle, reducing local water supply.  

Conversely, the supply-side school findings support the beneficial impact of forests on 

the hydrologic cycle, emphasizing that forests raise water yield. The climate regulatory 

function of forests has a beneficial impact on the water regime and the availability of water 

resources. For example, forests promote infiltration, increasing soil moisture content and 

groundwater recharge, contributing to the gradual release of water (Sheil and Murdiyarso 

2009; Brogna et al. 2017). Many previous studies have pointed out the importance of local 

forest benefits such as supporting the water supply for households and communities (e.g., 

Schaafsma et al. 2012, 2014; Fiquepron et al. 2013; Sisak et al. 2016).  

Other literature points to more ambiguous findings. D’Almeida et al. (2007) note, for 

example, that while a large number of large-scale modeling predictions suggest deforestation 

leads to reduced runoff, many local-scale observations find reduced evapotranspiration and 

increased runoff. This means that the magnitude of forests influencing hydrological service 

provision is very site/scale dependent and varies as a function of local and regional 

biophysical conditions (Calder 2002; Carvalho-Santos et al. 2014).  

Overall, forests may or may not reduce water flow depending on their relative effects on 

water demand versus water supply (FAO 2009; Ellison et al. 2012). Based on the literature, 

it’s not clear which direction the effect of forest goes with respect to yields. The offsetting 

effects imply that the overall impact of forests on crop yields is an empirical question. In this 
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paper, we estimate a net forest effect and do not disentangle demand from supply. 

China is of particular interest in the study of the role of forests in agricultural adaptation 

to climate change because of its deep reliance on agriculture and long history of forest 

deterioration. Our research builds on three previous studies which have examined local 

adaptation in China in context of climate change. Chen et al. (2014) used a large-scale 

household and village survey data to show that, adaptation measures applied by farmers and 

communities increased during periods of drought shocks but were more likely to be affected 

by government policy. Wang et al. (2014) used a similar approach to show that irrigation 

infrastructure significantly increased farmers’ adaptation capacity against drought. Finally, 

Huang et al. (2015) used retrospective adaptation data for the period 2010-2012 described 

below to investigate the relation between farmers’ adaptation measures and rice yield and 

risks. 

3. Data 

This study employs the following three datasets: (1) a field survey that was conducted from 

late 2012 to early 2013 in rice planting areas in the southern part of China; (2) a 

meteorological record dataset at the village level in five provinces; and (3) the land use and 

land cover change (LUCC) database in five provinces. The survey shows the forests and 

irrigation infrastructure statuses of the community and rice production under extreme weather 

events such as drought, while the meteorological data and the LUCC data are used to measure 

the weather (e.g., temperature and precipitation) and forest coverage, respectively. Merging 

the two datasets allows us to identify the impacts of forests on rice yield in times of drought. 

3.1 Survey areas and data 

The data that are used in this study are part of a large-scale household and community survey 

on the impacts of and adaptation to climate change on agriculture in China. Based on regional 

crop production systems and climate conditions, the survey included nine provinces: Jilin in 
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northeast China, Hebei in northern China, Henan in central China, Shandong and Jiangsu in 

the coastal area of eastern China, Anhui and Jiangxi in the inland area of eastern China, 

Yunnan in southwest China, and Guangdong in southern China. Previous studies using this 

dataset have investigated farmers’ adaptation to extreme weather events (e.g., Huang et al. 

2015), perceptions of climate change (e.g., Hou et al. 2015), and the risk management in 

agriculture (e.g., Huang et al. 2014), among other topics. Our analysis, described below, 

draws on the data collected in five provinces in south China, because forest resources are 

mainly distributed in the southern regions of China (NBSC 2012). 

The five surveyed provinces have households that produced rice during 2010-2012. Rice 

is typically planted in humid regions where the availability of irrigation water is more certain. 

Although these five provinces may not fully represent China’s subtropical forest resources, 

the characteristic vegetation of most of these regions consists of seasonally humid, evergreen 

and deciduous broadleaf mixed forests. Specifically, Jiangxi, Yunnan, and Guangdong are 

located in the subtropical humid monsoon climate regions with richer forest resources. For 

example, the forest coverage in Jiangxi, Guangdong and Yunnan reaches 63.1%, 51.3%, and 

50.0%, respectively. In Henan and Jiangsu, the forest coverage is lower and is 21.5% and 

15.8%, respectively (NBSC 2015). 

In each province, we followed three steps to select counties to analyze the effects of 

extreme weather events. First, in each province, we selected all counties that had experienced 

the most severe category of drought or flood in any of the past three years (2010-2012). 

According to China’s national standard for natural disasters, the severity of a drought or flood 

has four categories: most severe, severe, moderate, and small (CMA 2007). Second, from the 

counties that were identified in the first step, we kept only the counties that also experienced 

a “normal year” in any of the past three years. Because crop production often faces various 

weather shocks during any growing season, the term “normal year” is relative and describes 
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an average year with no more than moderate weather shocks. Finally, from the list of counties 

that were identified in step two, three counties in each province except for Jiangxi (10 

counties) and Guangdong (6 counties) were randomly selected for the study. This sampling 

approach allowed us to examine the differences in the two distinct years (a severe disaster 

year and a normal year) and returned a sample of 25 counties. 

Townships and villages (communities) were further selected before we interviewed 

households. In each of the 25 selected counties, all townships were divided into three groups 

based on the condition of the agricultural production infrastructure, and one township was 

randomly selected from each group. The same approach was used to select three villages 

from each township. Finally, we randomly selected 10 households for face-to-face interviews 

in each sampled village. A total of 2,250 households were identified in the five studied 

provinces. In each household, two plots with grain production were randomly selected, which 

resulted in 4,500 plots. However, because some households either did not plant rice or only 

planted one rice plot, the total sample includes 1,653 households with rice production and 

2,571 plots from 185 villages in the 63 townships of 23 counties in five provinces. 

In this study, we only refer to a subsample of the locations that experienced drought. In 

the total sample, 12 counties reported extreme drought events, and the other 11 counties 

reported extreme flood events. As a result, a subsample with drought used in our analysis 

includes 693 households, 1,449 plots from 86 villages in the 30 townships of 12 counties. 

Because some farmers in our samples also planted double-season rice (early- and late-season 

rice), we analyzed the data by the type of rice, specifically early-, middle- (single-season rice), 

and late-season rice. For each observation in each plot, we collected the data for two time 

periods during 2010-2012, namely, the severe drought year and the normal year, because the 

time (or year) differs across counties. We thus arrive at the final number of 2,898 

observations. 
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One of the survey instruments was specifically designed to capture the status of forests 

that were in proximity to the studied villages. Questions were included to investigate whether 

there were forests near the villages, what type of forest they were (natural or planted) and the 

distance from the nearest forest to the village.1 Based on this information, we defined a 

sampled village as a forested village when there were forests located within a 5-km radius of 

the village. We set the indicator variable forest equal to 1 if the sampled village belonged to a 

forested village and set it to 0 if it did not belong to a forested village. Note that the field 

survey enables us to further explore the effects of different types of forests, namely, natural 

(undisturbed) forests and planted forests, on yields. In our study areas, planted forests are 

mainly economic plantations. It is necessary to note that during our short-term survey period 

of 2011-2013, there were nearly no changes in forest status, which means that the forest 

variable was invariable across the survey years. 

To confirm the robustness of the effects of forests and address the potential limitations 

of reported forest status, we also developed a second measure of forests. We draw on satellite 

measures of forest cover from a 1-km raster LUCC dataset in 2010 in China (Liu et al. 2014). 

These data were then linked to the study villages using Global Positioning System (GPS) 

points collected in the field. We measured the average forest cover within 5-km of the village, 

which we refer to as the village-specific forest cover. The mean value of this measure is 0.14, 

and can be interpreted as representing 14% forest coverage surrounding our sampling villages. 

This measure is positively correlated with reported forests at r = 0.21 with p < 0.001. In the 

robustness checks, we also measured the village-specific forest cover separately within 3-km 

and 7-km of the village. 

Furthermore, the survey covers a wide range of other information. Given the research 

objectives of this article, in addition to the forest information, our analysis uses only the 

                                                                 
1 For more than one forest, we asked the nearest distance. If there were both natural forests and planted forests near a village, 

we recoded it as natural forests. 
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following data: 1) characteristics of the village (e.g., number of households, wealth, market 

condition, the concentration and continuity of the residential area, land area, land terrain and 

soil quality); 2) detailed plot-level rice production data in both the severe drought year and 

the normal year (e.g., rice yield and yield loss); 3) irrigation measures that may relate to 

adaptations to extreme drought at the plot level (e.g., the number of irrigation applications per 

season and the source of irrigation water); and 4) irrigation infrastructure conditions in 

villages. 

3.2 Geographic data  

Meteorological information was obtained from the National Meteorological Information 

Center. The dataset contained daily minimum, maximum, and average temperatures and 

precipitation measurements from 1960-2012 from national ground-based meteorological 

stations. We use village specific rainfall and temperature data generated by a spatial 

interpolation method proposed by Thornton et al. (1997). Their method has been widely used 

and is based on the spatial convolution of a truncated Gaussian weighting filter with a set of 

station locations (Zhang et al. 2013; Hou et al. 2015). The required inputs include digital 

elevation data and observations of maximum temperature, minimum temperature, and 

precipitation. The elevation data for each analyzed village were collected by GPS device 

when we surveyed the village. The LUCC data set is provided by Data Center for Resources 

and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn). We then 

merged these geographic data with the survey data to identify the effects of forests on rice 

yield. The basic descriptive statistics are presented in Table A1 of the appendix. 

4. Descriptive analysis of drought, forests, and rice irrigation 

4.1 Drought trends 

The severity of drought in the studied provinces has increased. Historical records document 

that from the 1980s to the beginning of this century, the annual average crop area that 
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suffered from drought has expanded from 2.8 million hectares to 3.4 million hectares, which 

is an increase of 22%. Over the same period, the proportion of crop area hit by drought 

increased from 36% to 66% (NBSC 2012). Moreover, the share of seriously damaged areas (a 

yield loss of at least 30%) to drought-hit areas (a yield loss of at least 10%) increased from 

11% in the 1980s to 23% in the first ten years of the 21st century (NBSC 2012). 

The household surveys also demonstrate the severity of drought that is reported by the 

farmers in the study areas. As shown in Table 1, the percentage of sampling plots affected by 

drought reached 47% when the farmers were faced with a severe drought. However, the 

percentage of sampling plots greatly declined to 19% in the relatively normal year. The 

difference is statistically significant at the 1% level (row 1). Furthermore, we find a negative 

relation between average rice yield and the severity of drought. For instance, the actual 

average yield was 6,927 kg/ha in slight drought conditions. However, in severe drought 

conditions, the actual average yield decreased to 6,454 kg/ha, which is a significant reduction 

of 6.8% (row 2). Likewise, the yield losses caused by drought also increased from 16% in the 

normal year to 24% in the severe drought year, which represents a significant 50% reduction 

(row 3). Because these results were reported by farmers, the values that are presented in Table 

1 have obviously already accounted for the farmers’ response to drought. 

4.2 Forest status and irrigation in forested villages 

The survey results demonstrate that forest cover differs among villages, which provides good 

empirical data for us to examine the relation between forests and the availability of water for 

crop irrigation under drought conditions. Among the studied villages, approximately 12% of 

the villages belong to forested villages as we define them (row 1, Table 2). This information 

suggests that in our sampling areas, the land use that surrounds most villages is non-forest 

cover.  

Was farmers’ availability of irrigation water related to the nearby forest cover? The 
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number of irrigation applications during the rice growing season is used to measure the 

availability of irrigation water. More irrigation instances may imply that farmers are more 

likely to access water for irrigation. According to the hydrological literature (e.g., Aylward 

2005; Sheil and Murdiyarso 2009), ecosystems provide watershed services that regulate the 

quantity of water that is available for human activities. We propose that forests may increase 

rice yield by enhancing farmers’ access to irrigation water. Therefore, relating the forest cover 

near villages to the farmers’ access to irrigation water could test this theory. For each 

household, we collected detailed, plot-level irrigation water information including both 

irrigation frequency and water sources.  

The descriptive analysis provides evidence that there is a positive relation between 

farmers’ access to irrigation and the forest cover nearby. As shown in the second row in Table 

2, the farmers in forested villages are more likely to increase irrigation frequency. For 

example, in the non-forested villages, the average irrigation frequency was approximately 5.6 

times per season, which was significantly lower than the average irrigation frequency of 6.4 

times per season in the forested villages. 

The analysis of irrigation water sources for rice plots provides further evidence for the 

positive association between forests and irrigation. As presented in Table 2, there are 

considerable differences in irrigation water sources between the forested and non-forested 

villages. We find that compared with the farmers in non-forested villages, the farmers in 

forested villages were more dependent on irrigation water from creeks or streams (57.1%) 

and mountain springs (5.3%) (rows 3 and 4). However, the inverse is true for irrigation 

facilities such as ponds and lateral canals; water from these sources was used less (38.2%) in 

forested villages than in non-forested villages (44.3%) (row 5). These differences are 

statistically significant at the 5% level. In rural China, irrigation facilities are generally 

created through investments by villages and/or local governments (Boyle et al. 2014). Given 
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their ecosystem service function in regulating water flow, forests may supplement the role of 

irrigation infrastructure in enhancing the availability of irrigation water, which reduces the 

impact of droughts on crop yield.  

Because the descriptive statistics do not account for other factors that may also 

determine irrigation and crop yield, it is still difficult for us to isolate the impact of forests on 

irrigation and the subsequent influence on rice yield. In the next section, we quantitatively 

explore this effect.  

5. Empirical framework 

5.1 Reduced-form model 

To formally investigate the impacts of forests on rice yield, we begin with a reduced-form 

model that is expressed as follows: 

iktiktvctvcctctikt eaγXαFDαDααy ++++×++= 3210                  (1)   

where the subscripts k and i represent the kth plot in the ith household, v and c represent 

village and county, respectively, and t represents the year (2010-2012). The dependent 

variable, yikt, represents the log-transformed rice yield, and Dct is a drought dummy variable 

measured at the county level. This dummy variable equals 1 if the county experienced a 

severe drought year and equals 0 if the county experienced a relatively normal year. Fvc 

represents the forest indicator variable that we previously defined, which equals 1 if there 

were forests located within a 5-km radius of the sample village and is 0 otherwise. As 

mentioned before, another measure of forests is forest cover rate within 5-km of the village. 

Because Fvc is invariable across years (2010-2012), in the estimation of the fixed effects 

model, it will be dropped as a time-invariant variable. To capture the impact of forests, we 

incorporate an interaction term between Dct and Fvt in Eq. (1), which is the most frequently 

employed approach in the relevant literature. Xvct is a set of the exogenous determinants of 
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rice yield (which are presented in the next section). 

Furthermore, Eq. (1) includes a full set of plot fixed effects, aik, and year fixed effects, tγ . 

The plot fixed effects (aik) capture time-invariant unobserved plot characteristics, such as 

local water resource volume, watershed size, topography, soils, and geology, as well as the 

forest tree species, location, age, and many more.2 For example, there are important 

distinctions between the likely impact of conifers and broadleaf trees in the uplands and 

lowlands due to their different ecosystem service functions (Brauman et al. 2007). All of 

these forest characteristics vary geographically across the provinces but not over time in the 

short term, which can be controlled by fixed effects in Eq. (1). The ability to control for these 

characteristics is crucial because natural forests tend to form in areas where water resources 

are generally abundant, and any omitted variables could bias the estimation of the true forest 

effects. The year fixed effects ( tγ ) control for the plot-invariant annual characteristics in the 

dependent variable that are common across plots, including climate trends, changes in state 

and national environmental and natural resource policies. eikt is the error term. jα (j = 0, 1, 2, 

3) is a parameter vector to be estimated. The key parameters of interest are 1α  and 2α , 

which capture the differential drought effects in villages with forest land versus other villages 

where the land use is non-forest cover. 

Thus, by using plot and year fixed effects, the adaptation parameters are identified from 

the plot-specific deviations in adaptation decisions after we control for the drought shock that 

is common to all farms in a county. That is, the estimates are identified by comparing the 

plots that are located in forested villages with the plots that are not located in forested villages 

after we control for similar experiences of drought shock. If forests near the village help to 

                                                                 
2 As a robustness check, in a separate set of regressions (which are not reported here for purposes of brevity), 

household-level fixed effects, instead of plot-level fixed effects, are also used. The signs, levels of statistical significance and 

magnitudes of the estimates’ coefficients are largely consistent between the plot-level fixed effects models and the 

household-level fixed effects models. 
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reduce exposure to drought and enhance the farmers’ rice production, we expect the 

coefficient of Dct×Fvt (that is,
2α ) to be positive. Here, we implicitly assumed that 2α is the 

same for all types of forests. In section IV, we relax this assumption and allow the effects of 

drought to differ across natural (undisturbed) forests and planted forests. 

5.2 Structural-form model 

The reduced-form estimates from Eq. (1) provide the total effects of forests on rice yield and 

set aside the farmers’ adaptation to drought. The estimated total marginal effects of forests on 

rice yield can be interpreted as the sum of the direct effects of forests on yield (through 

forests’ effects on crop physiology) and the indirect effects of forests on yield (through 

forests’ influence on farmers’ climate adaptation actions such as irrigation) (Welch et al. 

2010). Controlling for farmers’ adaptation strategies in the regression model may absorb 

some of the overall effects of the impacts of forests on rice yield. 

Here, we are also interested in examining whether and how rice yield responds to the 

changes in farmers’ adaptive irrigation practices in addition to the crops’ proximity to forests. 

Accordingly, we draw on the recent work by Di Falco et al. (2011) and Huang et al. (2015) 

and estimate a production function by controlling for farmers’ irrigation frequency as follows: 

iktiktiktvctvcctctikt uaγIβXβFDβDββy +++++×++= 43210             (2)   

where Iikt, as we defined earlier, denotes the number of irrigation applications (times) during 

the rice growing season. The remaining variables in Eq. (2) are the same as in Eq. (1). A 

consistent estimation of 
4β  requires that E[Iikt •uikt∣Dct, Fvc, Xvct, aik, tγ ]=0. The inclusion 

of plot fixed effects implicitly controls for any time-invariant determinants of yield that also 

covary with irrigation application frequency. However, the least squares estimation of
4β will 

be biased if there are time-varying influences on both rice yield and irrigation (e.g., farmers’ 

farming skill) and/or if there is measurement error in Iikt. Because we use the number of 
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irrigation applications in a plot during a given year as a proxy for the availability of irrigation 

water, measurement error may be substantial (i.e., farmers’ actual access to irrigation water 

may differ from the access that is self-reported). 

Instrumental variables (IVs) provide a convenient solution to the bias from the omitted 

variables and the bias introduced from the measurement error in the independent variable 

(Huang et al. 2017). We use village- level irrigation infrastructure as an instrument variable 

for irrigation applications in the following first-stage regression equation:  

iktiktvctvtctvcctctikt εaγXθZDθFDθDθθI ++++×+×++= 43210            (3) 

where the actual number of irrigation applications, Iikt, is jointly predicted by drought, 

interactions with forests (Fvt) and irrigation infrastructure (Zvt), and other control variables 

(Xvct). Similar to Eq. (1), the interaction Dct×Fvt is used to identify the role of the surrounding 

forests in drought events. Infrastructure, Zvt, is the vector of the instruments for irrigation that 

includes 1) the water storage capacity of the ponds per hectare of cultivated land in villages 

(cubic meters/ha) and 2) the number of lateral canals per hectare of cultivated land in villages.  

Logically, the irrigation infrastructure satisfies the exclusion restriction of appropriate 

instruments; it affects the endogenous variable, irrigation, but not rice yield, except through 

its impact on irrigation. The interaction terms, Dct×Zvt, can measure the role of infrastructure 

in determining the farmers’ irrigation practices during drought. iktε  is the error term. 

One concern about the IVs is that there might be some other connections between rice 

yield and nature of a village’s irrigation infrastructure in our sample. For example, the water 

storage capacity of the ponds in a village could reflect the landscape and geography of that 

village, which could be related to the robustness of the rice to a drought. Similarly, the 

number of lateral canals in a village could reflect the water resource in that village; thus, a 

village with more canals has better water resource so it is less impacted by a drought. To 
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address this, as mentioned earlier, we have included the fixed effects into the model, which 

can control for all of these village characteristics that vary geographically across villages but 

not over time during the short term period of three years (e.g., water resource endowment, 

landscape and geography of villages, and other fixed characteristics). Importantly, as we 

illustrate below, the validity of the instruments was also scrutinized by statistical tests.  

The first-stage regression in Eq. (3) estimates the degree to which infrastructure predicts 

farmers’ irrigation applications. The second stage in Eq. (2) uses the predicted values from 

the first stage to estimate the impact of forests on rice yield in nearby villages. The 

estimations of Eqs. (1) and (2) provide a way to test the extent to which irrigation can account 

for the positive indirect effects of drought in forested villages. If the relation between drought 

and rice yield is different for forested villages only because of irrigation, once we control for 

the effect of irrigation on yield in Eq. (2), there should no longer be a differential effect of 

drought. 

A final econometric issue concerns the standard errors of the coefficients. Conventional 

robust standard error estimations can underestimate the true standard errors and exaggerate 

significance when an explanatory variable varies at a higher level than the dependent variable 

varies (Moulton 1986). To address potential heteroscedasticities, we report the robust 

standard errors and cluster the standard errors at the household level.  

6. The differential effect of drought  

As a first step in our empirical analysis, the baseline estimates of Eq. (1) are given in Table 3 

where the control variables are plot fixed effects and year fixed effects. By looking first at 

column 1, when we estimate Eq. (1) by regressing rice yield against drought while allowing 

for a differential effect in the forested villages, we find that the coefficient for drought is 

negative and statistically significant. On average, in the non-forested villages, drought events 

led to an average decrease in rice yield of 9.4%, which is significant at the 1% level. This 
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finding is consistent with our descriptive statistics that demonstrate that the severity of 

drought impacts crop production. However, the positive and statistically significant 

coefficient estimate for drought interacted with the forest variable, means that rice yield in the 

forested villages increases sharply compared with the rice yield in the non-forested villages. 

This result confirms the significance of having forests near communities in adapting farmland 

to drought.  

6.1 Do other forest or geographic characteristics explain the differential effect of 

drought? 

When interpreting our primary results regarding the role of forests in adapting rice crops to 

drought, a possible source of concern is that the estimated differential effect of drought is not 

really a forest effect. Perhaps the effect occurs because the impacts of drought on crop yield 

differ for the villages with some unidentified geographic characteristics that are prevalent in 

forested areas. For instance, in areas where a large fraction of the territory experiences warm 

climates, forested areas may tend to be cooler and wetter. If warm climates are particularly 

prevalent in forested areas, perhaps the interaction between drought and the forest indicator is 

a proxy for the interaction between drought and local climates. Similarly, in some areas, a 

large portion of the territory could be covered by infertile soils, including saline soils. If 

villages with fertile soils are particularly prevalent in forested areas, perhaps the interaction 

between drought and the forest indicator is a proxy for the interaction between drought and 

high soil quality.  

We consider these possibilities in columns 2 and 3 of Table 3, where we add the 

interactions of the climate variables and the soil variables with the drought indicator variable 

to our baseline estimating equation. We use the average temperature and total precipitation 

over the rice growing season at the village level to measure the local changes in climate.3 To 

                                                                 
3 We used the season between March 1 and October 31, which covered all the three growing seasons of early-, middle-, and 

late-season rice in our sampling.  
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capture the effects of soil quality, we use soil types that are measured at the village level, 

which are either high fertile soil (yes=1, no=0) or medium fertile soil (yes=1, no=0) 

compared with poor quality soil. The coefficients of interest, which measure the differential 

effects for the forested villages, change little and remain statistically significant (the effects 

are statistically significant even when we include the sets of interactions together with other 

controls as shown in column 6). 

We next rule out the possible confounding geographic effect by including directly 

interactions of forests with elevation and terrain, respectively. As discussed in Saulnier et al. 

(2015), the environmental conditions at mid-high altitudes are usually beneficial for the 

establishment of forests for long periods as pre-climax ecosystems. Moreover, the forests in 

areas with a rugged landscape tend to perform better with fewer disturbances than forests in 

flatter landscapes (Deng et al. 2011).4 The differential effect of drought in forested areas may 

be biased by a differential effect of drought in villages that are located at high altitudes or on 

rugged terrain. We control for this possibility in columns 4 and 5 of Table 3. In column 4, we 

include the interaction of the elevation of the village with the drought indicator. Our results 

remain robust. Column 5 adds a terrain indicator variable (measured at the village, where flat 

land equals 1 and is 0 otherwise) interacted with drought. The differential effect of drought in 

the forested villages remains positive and statistically significant. Finally, in column 6, we 

include all of the above interaction terms. We again find that our baseline results from 

column 1 are robust when controlling for other geographic characteristics that could 

confound the true forest effect. 

In Table 4, to test the robustness of these findings, we present alternative specifications 

of the forest effects on crop yield. The estimation pattern here is indistinguishable from that 

in Table 3, excluding the forest variable replaced with the village-specific forest cover rate. 

                                                                 
4 In our studied areas, all the forested villages were located in rugged terrain. Among the non-forested villages, 

approximately 47% of them were located in rugged terrain. 
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We see, as we did with the reported forest data, that forests still significantly mitigate the 

negative impact of drought on crop yields. Moreover, the choice of 5-km might be arbitrary 

for the definition of the forest variable. To address this, we also estimate Eq. (1) using 

alternative measures based on 3-km and 7-km, respectively. The results are reported in Table 

A2 of the appendix, and the effects of forests remain unaffected. Overall, the results indicate 

the forest effects described above are quite robust to alternative specifications and measures 

of forests. 

6.2 Robustness regarding self-selection 

A second concern when estimating these effects is that land transfer activities in rural China 

may result in selective sorting. For example, forests may have influenced migration patterns 

into the forested areas that had improvements in rice yield. Specifically, more educated or 

experienced farmers may have chosen to move to forested areas for rice production by 

renting cultivated land from other famers; these experienced farmers would be more likely to 

obtain good harvests. The presence of this self-selection close to forests could cause us to 

overestimate the forest effect. This upward bias would be large if the farmers who moved 

composed a large share of our sampling households.  

To account for the probability of bias from self-selection, we test whether there were 

more changes in the farmers’ land tenure in forested areas than in non-forested areas. In our 

survey, we collected the status of each plot that was cultivated by a given farmer. Specifically, 

we asked the farmer “whether the plot is your own or rented from others”. The plots owned 

by farmers are allocated to households by the villages based on the number of family 

members (not for a fee but rather, given to a farmer because of the farmer’s residency in the 

village), and they are cultivated by the farmer himself/herself (Gao et al. 2012). This 

information enables us to classify all the sampling plots as one of two types, namely, 

self-owned plots and rented plots. However, we find that self-owned plots accounted for 
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nearly 89% of the total cultivated plots in the sample. In forested villages, only 14% of the 

plots were rented from others, while this percentage was 20% in non-forested areas. This 

result may imply that self-selection is not a serious problem in our sample.  

In addition, we further restrict our regressions to a subsample in which we exclude the 

samples with land transfer activities during 2010-2012. We re-estimated Eq. (1) with the full 

set of controls—the specification in column 6 in Table 3— using reported forests and forest 

coverage separately, and results are presented in columns 1 and 2 of Table 5, respectively. 

The estimate on the interaction term of drought and forests is positive and statistically 

significant in both columns. Thus, we are confident that selective movement is not leading us 

to overestimate the forest effect. 

6.3 Robustness concerning influential observations and collinearity 

Next, we first check whether the results from Table 3 are driven by particularly influential 

outliers. In the first two columns of Table 6, we present the corresponding results using a 

sample that removes observations with large (and implausibly high) values of rice yield. For 

the purposes here, we estimate our baseline specification, with our full set of control variables, 

after we drop the top 5% of rice yield observations from our sample. The results suggest that 

the previous results are somewhat influenced by outliers. Relative to the full sample, the 

drought effects in non-forested areas here are insignificant though negative (column 1). 

However, as before, the coefficient estimates for drought interacted with each measure of 

forests are both statistically significant positive.  

Second, there is concern regarding the potential collinearity between the year dummy 

and the drought variables. As we explained earlier, our drought indicator variable is actually 

designed as a year dummy variable that is equal to 1 if the year was a severe drought year and 

is 0 otherwise. To test this probable impact on the estimation results, as shown in columns 3 

and 4, we exclude all the year fixed effects and re-estimate Eq. (1). The estimated results 
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show that the differential effect of drought remains positive and statistically significant (row 

2). Therefore, it is unlikely that our results are confounded by a collinearity issue.  

6.4 Differential effects of drought across the types of forests 

After we have determined that the differential effect of drought is specific to the forested 

villages, we examine whether the strength of this effect differs across the types of forests. As 

mentioned earlier, we mainly examine two types of forests, namely, natural forests and 

planted forests. 

We construct an indicator variable for each forest type and then include each indicator 

variable and its interaction with drought in Eq. (1). The estimates are reported in Table 7. In 

columns 1 and 2, we include each of the two sets of variables one at a time with the control 

variables. The estimates show that the coefficient of the interaction between drought and 

natural forests is significantly positive. The coefficient of the interaction between drought and 

planted forests, however, is not significant. In column 3, we include these forest variables 

together and obtain a very similar pattern when we repeat the estimations. The results 

demonstrate that only natural forests, rather than planted forests, have ecological productivity 

effects in adaptation to drought. Compared with natural forests, planted forests generally have 

less capacity to regulate and conserve water and subsequently fail to resist the impacts of 

drought shock. In their analyses on the role of ecosystems, Locatelli and Vignola (2009) 

found significantly lower total flows or base flows under planted forests than under even 

non-forest land uses. 

Our finding that the magnitudes of the differential effects of drought align closely with 

forest type provides evidence to suggest that the differential effect of drought in forested 

areas is intimately linked to water provision. In the following sections, we examine this link 

directly and provide additional evidence that this is in fact the case.  
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7. Does irrigation provision account for the forest effect? 

7.1 Determinants of rice irrigation  

We now examine whether access to irrigation water can account for the differential effect of 

drought in forested areas. Our first step is to check for direct evidence that drought increased 

the farmers’ adaptation by adjusting their irrigation application frequency. Using the survey 

data on the farmers’ irrigation information, we estimate Eqs. (2) and (3) from section 5.  

The first stage estimate is reported in column 2 of Table 8. The estimate shows that 

drought was negatively related to farmers’ irrigation frequency. However, the positive and 

statistically significant relation between the number of irrigation times and the interaction of 

drought and forest indicates that forests enabled farmers to enhance irrigation when they were 

faced with drought conditions. Moreover, consistent with our expectations, irrigation 

infrastructure also contributed to farmers’ irrigation capacity under drought stress even after 

accounting for the differences in local climate and terrain characteristics. In column 4, when 

we used the alternative measure of forests, we obtained a similar result as we had done with 

the measure of reported forests. 

We also checked the validity of the IVs (two infrastructure variables interacted with 

drought variable) by conducting the following tests. First, we made a balance test on the 

pre-treatment characteristics of villages that have different scale of irrigation infrastructure. 

We explore variables on village demographic characteristics (e.g., number of households, 

land area, the concentration and continuity of the residential area, and wealth), proxies for 

topography and climate (e.g., land terrain, elevation, rice growing season temperature and 

precipitation), and market condition (e.g. distance to the nearest county road, distance to the 

county government, distance to the nearest farmers market). The results are presented in 

Table A3. Out of the 22 coefficients we estimate, 2 (or 9%) are statistically significant, which 

is consistent with chance. This would help to convince us that these villages are similar in 
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most other pathways. 

Second, similar to Di Falco et al. (2011), we establish the admissibility of these 

instrumental variables by performing a simple falsification test: if a variable is a valid 

instrument, it will affect the irrigation decision, but it will not affect the rice yield among the 

farmers who did not irrigate. As indicated in the second column of Table 8, the IVs are jointly 

statistically significant drivers of the irrigation frequency under drought (Chi2 =8.38, p = 

0.000). We also rejected the null hypothesis of weak instruments (the Wald test statistic is 

19.9 and exceeds the critical value even if we are willing to tolerate a relative bias of 5%). 

However, these instrument variables are not statistically significant drivers of the rice yield 

by the farmers who did not irrigate (Table A4, Chi2 =1.54, p = 0.218). We conclude from 

Tables A3 and A4 that the infrastructure variables can be considered to be valid instruments. 

7.2 Impact of irrigation on rice yield 

After we have established that forests contributed to the farmers’ irrigation frequency, we 

now show that irrigation is positively related to rice yield and that this relation largely 

accounts for the differential effect of drought in forested villages.  

In column 1 of Table 8, we estimate Eq. (2). This equation is identical to Eq. (1) (for 

which we reported the estimates in column 6 of Table 3), except that irrigation times are also 

included in the estimating equation. With the full set of controls, farmers’ irrigation 

applications led to a positive effect on rice yield, which was significant at the 5% level. More 

importantly, when irrigation frequency is controlled, the differential effect of drought in 

forested villages disappears. The estimated coefficient of DroughtForest is close to 0 and is 

no longer statistically significant. In column 3, while the coefficient of the interaction is 

statistically significant when the measure of forest coverage is used, its magnitude has 

reduced largely compared with that in column 6 of Table 4. This result provides support for 

the explanation that the role of forests in drought conditions arises because of the increase of 
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irrigation water availability. Overall, the effects of the satellite-based measure of forests are 

qualitatively similar to those of reported forests, with a few notable differences. 

We also run the IV analysis for the natural and planted forests separately to see if there 

are differential effects. The estimated results are presented in Table 9. The results for the first 

stage in column 2 show that only natural forests, rather than planted forests, have 

significantly positive impact on rice irrigation frequency. The results are again consistent with 

the underlying suggestion that in small catchments, newly established forests will demand 

more water and reduce water flow (Brown et al. 2005). Column 1 reports the second stage 

results showing that both natural forests and planted forests have no impact on rice yield 

when irrigation frequency has been controlled.  

7.3 The economic magnitude of the effects 

Up to this point, we have focused on the statistical significance of our estimated coefficients 

and have ignored the economic magnitude of their effects. By using the estimates from Table 

8, we now undertake many counterfactual calculations to show that the economic magnitudes 

of the impact of forests, which are operated by increasing the access to irrigation water, are 

substantial.  

We first consider the estimated magnitude of the impact of increased irrigation 

frequency on rice yield. According to the estimates from columns 1 and 3 of Table 8, an 

increase of 1 in the frequency of irrigation is associated with an average increase of 

11.2-12.6% in rice yield. As shown in Table A1, the average frequency of irrigation 

application was 5.72 per growing season in the five studied provinces. In 2013, the planting 

area for rice was approximately 9,391,773 hectares with a total output of 62,024,250 tons, 

which resulted in an average yield of 6,604.11 kg/ha in these provinces. Holding the total rice 

yield constant, this finding would suggest that there was an increase of approximately 6.9-7.8 

million tons of rice output in these provinces in 2013 in response to an increase of 1 in the 
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frequency of irrigation.  

We next consider the magnitude of the benefit of forests, which occurs largely through 

the increased availability of irrigation. According to the estimates from column 2 (or column 

4) of Table 8, when they suffered from severe drought, the farmers in forested villages 

increased their irrigation frequency by 0.93 (or 0.30), which is a 69.7% (or 27.9%) increase 

compared with the irrigation frequency in non-forested villages. This increase in irrigation 

frequency, in turn, increased rice output by 2.3-6.4 million tons in these five provinces. If we 

extrapolate this impact to the national level, it implies that China could increase its rice 

output by 7.7-21.2 million tons, which is equivalent to 2.8-7.7 billion USD. These effects are 

substantial, particularly given that we are considering the impact of one very specific 

ecosystem, forests, that work mainly through one channel, the increased availability of 

irrigation water.  

8. Conclusions 

Based on unique field surveys conducted in five provinces in South China, this study 

provides evidence that shows that forests can have important effects on farmland productivity 

through their interactions with drought events. By focusing on a single dimension of forest 

status, whether forests were present near a community, which varies throughout communities, 

and on an exogenous drought event, we can investigate how the presence of forests affects 

crop yield when there is a drought shock and to identify the role of forest ecosystem services 

in adaptation to climate change. We find that the drought event significantly reduces rice 

yield. However, the negative impacts of drought can be significantly mitigated by 

surrounding forests. Forests protect the water supply for crop irrigation, a resource that is 

seriously hindered by drought stress under non-forest land uses. We also find that this 

differential effect of drought is found in natural forests only, not in planted forests. Overall, 

the results provide one example of the importance of forests, in particular, natural forests, and 
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EBA to climate change. 

These results are particularly important for designing effective adaptation polices to 

manage the impacts of climate variability. First, in addition to climate change mitigation, the 

natural forest management provides an important adaptation option to enhance food 

production in responding to drought events. Forest EBA should therefore be mainstreamed 

into the national development plan on climate change adaptation. Forests are usually not a 

priority in the current National Adaptation Programme of Action (Pramova et al. 2012b). For 

example, agricultural adaptation plans mostly focus on yield-related adaptation strategies in 

the sector, with little consideration of the associated systems such as forests. Forests provide 

not only general ecosystem regulating services but also significant ecological productivity 

through these services, especially when there are severe drought shocks. The government 

should consider these forest ecosystem services when it plans adaptation policies and 

practices in the areas of the economy beyond the forest sector. Moreover, the government 

could build infrastructure to take water from natural forested watersheds uphill and move it to 

non-forested watersheds downhill (e.g., California) to deal with droughts.  

Second, China may need to continue to expand its policy that implements the Natural 

Forest Protection Project. In many places in China (e.g., Yunnan and Guangxi provinces), the 

vast bulk of the forests that lie outside of the reserves, which are far from being protected, are 

often felled. For example, in our study area, in recent years, most of the villages 

(approximately 88%) were located in non-forest lands. With the nation’s dramatic economic 

growth, agricultural encroachment and deforestation have cleared most forests and have 

replaced them with the cultivation of high-value crops or plantations of fast-growing tree 

species. Compared with natural forests, however, these artificial plantations cannot generally 

resist extreme weather events.  

Third, we believe that developing a better understanding of the role of forests in climate 
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change adaptation is especially important in other developing countries. The rate of 

deforestation and forest degradation, and thus the threats to human well-being and increased 

social vulnerability, in many developing countries are still much higher than in developed 

countries (FAO 2009). Given the increasing challenges posed by climate change and extreme 

events and the significant contribution of forests to reduce negative impacts on food 

production and improve local adaptive capacities, forest EBA practices in developing 

countries should be explored in more detail. 

Fourth, our results also suggest pathways for future research. First, one could employ 

our methodology that compares crop yield in areas suffering from drought shocks using both 

field survey data and LUCC data to shed light on the forest–water debate; examining, for 

example, how the large-scale afforestation affect water resources due to potential ‘demand 

effects’, and how this in turn affects the water availability and local adaptive capacity. Second, 

due to issues of data availability, our reduced-form model only documents a net effect of 

nearby forests on crop yield. A more meaningful model of water supply and demand and its 

interaction with forests could lead to a more clear understanding of the role of forest EBA. 

Moreover, subsequent works could build on our analysis regarding the declining impact of 

drought in areas with natural forests and explore the effect of other geographic, physical, or 

community-specific features that may attenuate or strengthen the impact of climate change on 

local development. Finally, our analysis suggests that research on the role of forests on 

agricultural adaptation to climate change should move beyond average effects and examine 

the delicate interplay between forests of different tree species, climate, and adaptive capacity. 
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Table 1. Rice Plots Affected by Extreme Drought, Actual Average Rice Yield and Yield 

Loss Reported by Farmers, 2010-2012 

 

Drought year 

(1) 

Normal year 

(2) 

Difference 

[(1)-(2)]/(2)*100 

Plots affected by drought 

(%) 
47 19 147*** 

Actual average yield 

(kg/ha) 
6,456 6,927 -6.8*** 

Yield loss when suffered 

from drought (%) 
24 16 50*** 

Source: Authors’ survey.  

Note: Sample includes 1,449 observations in both normal and drought years. *** denotes 

statistical significance at the 1% level. 
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Table 2. Relationship between Forests in Villages and Farmer’s Irrigations, 2010-2012 

 

All samples 

(%) 

Non-forested villages  

(%) 

Forested villages 

 (%) 

Share of villages 100 88 12 

Irrigation applications (times) 5.72 5.63 6.42*** 

Irrigation water directly from    

Creeks or streams 50.9 50.1 57.1*** 

Mountain springs 3.9 3.7 5.3* 

Facilities 43.6 44.3 38.2** 

Others 6.4 6.3 7.4 

Source: Authors’ survey.  

Note: The sampling villages are defined as forested villages when they were forests located 

within a 5-km radius of the village, defined as non-forested villages otherwise. In our survey, 

the average, minimum, and maximum distance of forests from the community was 0.79 km, 0 

km, and 5 km, respectively. The comparing base is column 2 (non-forested villages).  ***, **, 

and * indicate significance at the 1%, 5%, and 10% level. 
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Table 3. The Differential Effect of Drought in Villages with Forests 

 Dependent Variable: Log Rice Yield 

 (1) (2) (3) (4) (5) (6) 

Drought -0.094*** -0.433** -0.082** -0.089*** -0.088* -0.329** 

 (0.024) (0.178) (0.037) (0.024) (0.046) (0.139) 

Drought  

Forest 

0.055** 0.066** 0.056** 0.059** 0.055** 0.067** 

 (0.026) (0.027) (0.027) (0.028) (0.026) (0.028) 

Drought  

Temperature  

 0.015**    0.013** 

  (0.007)    (0.006) 

Drought  

Precipitation  

 0.003    0.000 

  (0.007)    (0.006) 

Drought  

High fertile 
soil  

  -0.024   -0.022 

   (0.041)   (0.040) 

Drought  
Medium 

fertile soil  

  -0.011   -0.006 

   (0.035)   (0.034) 

Drought  
Elevation 

   -0.073  -0.047 

    (0.084)  (0.086) 

Drought  

Flat terrain  

    -0.007 -0.008 

     (0.042) (0.041) 

Plot fixed 
effects 

Yes Yes Yes Yes Yes Yes 

Year fixed 

effects 

Yes Yes Yes Yes Yes Yes 

R-squared 0.051 0.054 0.051 0.053 0.051 0.055 

Observations 2,898 2,898 2,898 2,898 2,898 2,898 

Note: Robust standard errors clustered by households are in parentheses. ***, **, and * 
indicate significance at the 1%, 5%, and 10% level. 
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Table 4. The Differential Effect of Drought in Villages with Alternative Measure of 

Forests 

 Dependent Variable: Log Rice Yield 

 (1) (2) (3) (4) (5) (6) 

Drought -0.151*** -0.465*** -0.140*** -0.147*** -0.153*** -0.361*** 

 (0.030) (0.174) (0.041) (0.030) (0.050) (0.137) 

Drought  
Forest 

0.353*** 0.365*** 0.358*** 0.354*** 0.353*** 0.373*** 

 (0.059) (0.062) (0.060) (0.060) (0.060) (0.063) 

Drought  

Temperature  

 0.017**    0.014** 

  (0.007)    (0.006) 

Drought  

Precipitation  

 -0.001    -0.004 

  (0.007)    (0.006) 

Drought  
High fertile 

soil  

  -0.031   -0.030 

   (0.041)   (0.039) 

Drought  
Medium 

fertile soil  

  -0.007   -0.004 

   (0.035)   (0.034) 

Drought  
Elevation 

   -0.072  -0.052 

    (0.083)  (0.086) 

Drought  

Flat terrain  

    0.002 -0.002 

     (0.042) (0.041) 

Plot fixed 
effects 

Yes Yes Yes Yes Yes Yes 

Year fixed 

effects 

Yes Yes Yes Yes Yes Yes 

R-squared 0.067 0.071 0.068 0.069 0.067 0.072 

Observations 2,898 2,898 2,898 2,898 2,898 2,898 

Note: Robust standard errors clustered by households are in parentheses. ***, **, and * 
indicate significance at the 1%, 5%, and 10% level. 
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Table 5. Robustness with Respect to the Potential Self-selection Effect 

 Dependent Variable: Log Rice Yield 

(1) (2) 

Drought -0.315** -0.338** 

 (0.148) (0.146) 

Drought  Forest 0.066** 0.419*** 

 (0.030) (0.065) 

Temperature  Forest 0.011* 0.012* 

 (0.006) (0.006) 

Precipitation  Forest -0.001 -0.006 

 (0.007) (0.007) 

High fertile soil  Forest -0.025 -0.036 

 (0.047) (0.046) 

Medium fertile soil Forest -0.014 -0.015 

 (0.038) (0.038) 

Elevation  Forest -0.054 -0.059 

 (0.088) (0.088) 

Flat terrain  Forest -0.011 0.000 

 (0.049) (0.048) 

Plot fixed effects Yes Yes 

Year fixed effects Yes Yes 

R-squared 0.078 0.100 

Observations 2,344 2,344 

Note: In column 1, forest variable is measured as the reported forests, which is a dummy 
variable. In column 2 it is a continuous measure of forest coverage instead of forest dummy. 

Robust standard errors clustered by households are in parentheses. ***, **, and * indicate 
significance at the 1%, 5%, and 10% level. 
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Table 6. Robustness with Respect to Influential Observations and Colinearity 

 Dependent Variable: Log Rice Yield 

 
Omit 5% highest yield 

 
Excluding year dummies 

  (1) (2)   (3) (4) 

Drought 
-0.241 -0.305** 

 
-0.232* -0.162 

 

(0.155) (0.151) 
 

(0.133) (0.133) 

Drought  Forest 
0.074*** 0.371*** 

 
0.069** 0.356*** 

 

(0.029) (0.063) 
 

(0.030) (0.061) 

Temperature  Forest 
0.010 0.013** 

 
0.010 0.008 

 

(0.006) (0.006) 
 

(0.007) (0.006) 

Precipitation  Forest 
-0.003 -0.007 

 
-0.002 -0.009 

 

(0.007) (0.007) 
 

(0.006) (0.007) 

High fertile soil  Forest 
-0.022 -0.029 

 
-0.023 -0.030 

 

(0.039) (0.039) 
 

(0.040) (0.039) 

Medium fertile soil  Forest 
-0.004 -0.002 

 
-0.009 -0.009 

 

(0.034) (0.034) 
 

(0.034) (0.034) 

Elevation  Forest 
-0.061 -0.060 

 
-0.052 -0.054 

 

(0.087) (0.086) 
 

(0.068) (0.067) 

Flat terrain  Forest 
-0.003 0.001 

 
-0.008 -0.002 

 

(0.042) (0.041) 
 

(0.041) (0.041) 

Plot fixed effects Yes Yes  Yes Yes 

Year fixed effects Yes Yes  No No 

R-squared 
0.056 0.073 

 
0.055 0.070 

Observations 2,728 2,728  2,898 2,898 

Note: In columns 1 and 3, forest variable is measured as the reported forests, which is a 

dummy variable. In columns 2 and 4 it is a continuous measure of forest coverage instead of 

forest dummy. Robust standard errors clustered by households are in parentheses. ***, **, 

and * indicate significance at the 1%, 5%, and 10% level. 
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Table 7. Differential Effects of Natural Forests and Planted Forests  

 (1) (2) (3) 

Drought -0.352** -0.287** -0.348** 

 (0.138) (0.138) (0.136) 

Drought  Natural forest 0.178***  0.177*** 

 (0.032)  (0.033) 

Drought  Planted forest  -0.028 -0.018 

  (0.033) (0.033) 

All controls Yes Yes Yes 

Plot fixed effects Yes Yes Yes 

Year fixed effects Yes Yes Yes 

R-squared 0.061 0.053 0.061 

Observations 2,898 2,898 2,898 

Note: Robust standard errors clustered by households are in parentheses. ***, **, and * 

indicate significance at the 1%, 5%, and 10% level. 
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Table 8. The Impact and Determinants of Farmer’s Irrigation  

 (1) (2)  (3) (4) 

  
Log rice 

yield 

Irrigation 

applications 

(times)  
 

Log rice 

yield 

Irrigation 

applications 

(times)  

Irrigation applications  0.112**   0.126**  

 (0.046)   (0.049)  

Drought -0.188 -1.328  -0.231 -1.082 

 
(0.163) (1.245)  (0.171) (1.228) 

Drought  Forest -0.033 0.925***  0.204** 1.412*** 

 
(0.053) (0.277)  (0.095) (0.504) 

Storage capacity of ponds in 

village  Drought  

0.003*** 
 

 0.003*** 

  
(0.001)   (0.001) 

Number of lateral canals per 

hectare of cultivated land in 

village  Drought 
 

0.767*** 

 

 0.739*** 

  
(0.251)   (0.256) 

All controls Yes Yes  Yes Yes 

Plot fixed effects Yes Yes  Yes Yes 

Year fixed effects Yes Yes  Yes Yes 

Observations 2,898 2,898  2,898 2,898 

Note: In columns 1 and 2, forest variable is measured as the reported forests, which is a 

dummy variable. In columns 3 and 4 it is a continuous measure of forest coverage instead of 

forest dummy. Robust standard errors clustered by households are in parentheses. ***, **, 

and * indicate significance at the 1%, 5%, and 10% level. 
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Table 9. The Impact and Determinants of Farmer’s Irrigation - by forest type  

 (1) (2) 

  Log rice yield 
Irrigation applications 

(times)  

Irrigation applications  0.108**  

 (0.049)  

Drought -0.199 -1.432 

 (0.163) (1.231) 

Drought  Natural forest 0.010 1.534*** 

 (0.088) (0.407) 

Drought  Planted forest -0.060 0.453 

 (0.047) (0.348) 

Storage capacity of ponds in village  

Drought 
 

0.003*** 

  (0.001) 

Number of lateral canals per hectare of 

cultivated land in village  Drought 
 

0.667*** 

  (0.258) 

All controls Yes Yes 

Plot fixed effects Yes Yes 

Year fixed effects Yes Yes 

Observations 2,898 2,898 

Note: Robust standard errors clustered by households are in parentheses. ***, **, and * 

indicate significance at the 1%, 5%, and 10% level. 
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Appendix  

Table A1. Descriptive Statistics of Variables 

Variables Mean SD 

Rice yield (km/ha) 6,691.63 2,683.60 

Reported forests (yes = 1, no = 0) 0.12 0.32 

Forest coverage 0.14 0.16 

Natural forests (yes = 1, no = 0) 0.05 0.22 

Planted forests (yes = 1, no = 0) 0.07 0.25 

Irrigation applications (times) 5.72 4.31 

Drought (yes = 1, no = 0) 0.50 0.50 

Growing season average temperature (°C) 18.27 2.05 

Growing season total precipitation (100 mm) 15.35 5.04 

High soil quality (yes = 1, no = 0) 0.25 0.43 

Medium soil quality (yes = 1, no = 0) 0.59 0.49 

Elevation of the village (km) 0.10 0.33 

Plain land (yes = 1, no = 0) 0.50 0.50 

Water storage capacity of the ponds per hectare of cultivated land in 

villages (cubic meters/ha) 

34.99 188.66 

Number of lateral canals per hectare of cultivated land in villages 0.08 0.17 

Middle-season rice (yes = 1, no = 0) 0.27 0.45 

Late-season rice (yes = 1, no = 0) 0.36 0.48 

Note: The total observations are 2,898. 
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Table A2. Estimates with alternate measures of forest coverage 

 Dependent Variable: Log Rice Yield 

(1) (2) 

Drought -0.333** -0.385*** 

 (0.137) (0.137) 

Drought  Forest 0.323*** 0.415*** 

 (0.073) (0.063) 

Temperature  Forest 0.015** 0.013** 

 (0.006) (0.006) 

Precipitation  Forest -0.006 -0.003 

 (0.007) (0.006) 

High fertile soil  Forest -0.030 -0.033 

 (0.039) (0.039) 

Medium fertile soil Forest -0.004 -0.005 

 (0.034) (0.034) 

Elevation  Forest -0.056 -0.052 

 (0.086) (0.086) 

Flat terrain  Forest -0.005 0.002 

 (0.041) (0.041) 

Plot fixed effects Yes Yes 

Year fixed effects Yes Yes 

R-squared 0.065 0.077 

Observations 2,898 2,898 

Note: In columns 1 and 2, forest variable is measured as the forest coverage within 3-km and 

7-km of the village, respectively. Robust standard errors clustered by households are in 

parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% level. 
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Table A3. Balance Test on the Pre-treatment Characteristics of Villages  

 
Number of 
households 

Land area  
(100 ha) 

Whether 
residential 

areas are 
concentrated 

and continued  
(yes=1, no=0) 

Wealth  
(10,000 
yuan) 

Plain land 
(yes = 1, 
no = 0) 

Elevation 
(km) 

 
(1) (2) (3) (4) (5) (6) 

Storage 
capacity of 
ponds in 

village 

-0.148 
(0.154) 

-0.004 
(0.002) 

-0.0001 
(0.0001) 

-0.0005 
(0.002) 

0.0001 
(0.0001) 

-0.0003 
(0.0002) 

Number of 
lateral canals 

per hectare of 
cultivated 

land in village 

-180.731 
(149.831) 

-5.520 
(3.820) 

0.189 
(0.112) 

0.746 
(3.680) 

0.325 
(0.164) 

-0.133 
(0.161) 

Joint test 0.97 2.46 1.51 0.05 2.77 1.57 

P-value 0.389 0.131 0.238 0.949 0.176 0.251 

 Growing 

season 
average 

temperature 
(°C) 

Growing 
season total 
precipitation 

(100 mm) 

Distance to the 
nearest county 

road (km) 

Distance to 
the county 
government 

(km) 

Distance to 

the nearest 
farmers 

market 
(km) 

 

 (7) (8) (9) (10) (11) 
 

Storage 
capacity of 
ponds in 

village 

0.0003 
(0.001) 

0.007*** 
(0.001) 

-0.0003 
(0.001) 

0.005 
(0.010) 

-0.0001 
(0.001)  

Number of 
lateral canals 
per hectare of 

cultivated 
land in village 

0.059 

(0.470) 

1.646 

(3.510) 

-0.335 

(0.330) 

-11.046 

(11.276) 

-9.489** 

(4.092)  

Joint test 0.30 13.04 0.62 0.32 2.18 
 

P-value 0.741 0.000 0.546 0.731 0.120 
 

Note: Each cell in columns 1 to 11 corresponds to an estimate from a separate regression, 

where each of the village characteristics is regressed on an infrastructure variable. The joint 
test and accordingly P-value are test results for the joint estimation of both infrastructure 
variables. All regressions are estimated using OLS. Robust standard errors clustered by 

townships are in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% 
level. The total observations are 172. 
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Table A4. Test on the Validity of the Instrumental Variables 

  
Log rice yield by households that did not 

irrigate 

 (1) (2) 

Drought 1.378 0.148 

 
(1.223) (0.747) 

Drought  Forest 
0.166 0.819*** 

 
(0.109) (0.294) 

Storage capacity of ponds in village  

Drought 

5.567 6.102 

 
(3.805) (3.752) 

Number of lateral canals per ha of cultivated 

land in village  Drought 

0.163 0.189 

 
(0.144) (0.135) 

All controls Yes Yes 

Plot fixed effects Yes Yes 

Year fixed effects Yes Yes 

Wald test on instrumental variables Chi2 = 1.54  

(p = 0.218) 

Chi2 = 2.05 

(p = 0.133) 

R-squared 0.166 0.193 

Observations 305 305 

Note: In column 1, forest variable is measured as the reported forests, which is a dummy 

variable. In column 2 it is a continuous measure of forest coverage instead of forest dummy. 

Robust standard errors clustered by households are in parentheses. ***, **, and * indicate 

significance at the 1%, 5%, and 10% level. 

 


