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Abstract 

Agricultural extension to improve yields of staple food crops and close the yield gap in Sub-

Saharan Africa often entails general recommendations on soil fertility management that are 

distributed to farmers in a large growing area. Site-specific extension recommendations that are 

better tailored to the need of individual farmers and fields, and enabled by digital technologies, 

could potentially bring about yield and productivity improvements. In this paper, we analyze 

farmers‟ preferences for site-specific nutrient management recommendations provided by an 

ICT-based extension tool that is being developed for extension services in the maize belt of 

Nigeria. We use a choice experiment to provide ex-ante insights on the adoption potentials of 

site-specific advisory services from the perspective of farmers. We control for attribute non-

attendance and account for class as well as scale heterogeneity in preferences using different 

models, and find robust results. We find that farmers have strong preferences to switch from 

general to ICT-enabled site-specific soil fertility management recommendations which lend 

credence to the inclusion of digital technologies in agricultural extension. We find heterogeneity 

in preferences that is correlated with farmers‟ resource endowments and access to services. A 

first group of farmers are strong potential adopters; they are better-off, less sensitive to risk, and 

have higher preferences for investing in farm inputs. A second group of farmers are weak 

potential adopters; they have lower incomes and fewer productive assets, are more sensitive to 

yield variability, and prefer less capital and labor intensive production techniques. Our empirical 

findings have implications for the design, targeting and potential uptake of ICT-based extension 

tools to meet the needs of different farmers. 
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Farmers’ preferences for site-specific extension services: Evidence from a choice 

experiment in Nigeria 

 

1   Introduction 

The yields of major food crops, such as maize, are lagging behind in Sub-Saharan Africa (SSA), 

and are often far below their potential (Tittonell et al., 2013; Vanlauwe et al., 2015a; Guilpart et 

al., 2017). This contributes to persistent poverty among smallholder farmers, slow agricultural 

growth and dependency on food imports, and food insecurity among a rapidly growing 

population (Barrett and Bevis, 2015; van Ittersum et al., 2016; Komarek et al., 2017; Ragasa and 

Mazunda, 2018).  Poor soil fertility is a major biophysical factor limiting maize yields in SSA in 

general (Kihara et al. 2016) and in Nigeria in particular (Shehu et al., 2018). Nutrient-related 

constraints in maize production include macronutrient (nitrogen (N), phosphorus (P) and 

potassium (K)) deficiencies, especially N, as well as secondary nutrient and micronutrient 

deficiencies and soil acidity (Kihara et al., 2016; Vanlauwe et al., 2015b).  

Improving soil fertility is challenging because of the large spatio-temporal heterogeneity 

in biophysical and socio-economic conditions of smallholder farming systems (Tittonell et al., 

2010; Vanlauwe et al., 2015b; Njoroge et al., 2017; MacCarthy et al., 2018). Given an average 

low level of input use, it is often argued that smallholder farmers in SSA need to intensify the 

use of external inputs, especially inorganic fertilizer, in order to improve yields and productivity 

(Chianu and Tsujii, 2005; Duflo et al., 2011; Wiredu et al., 2015; Sheahan and Barrett, 2017). 

Yet, empirical findings for Nigeria (Liverpool-Tasie et al., 2017), Kenya (Sheahan et al., 2013) 

and Zambia (Burke et al., 2017) show that the profitability of intensified fertilizer use in maize 

production is low in some areas, primarily because of poor maize yield response to fertilizer. 

These studies argue that a low marginal physical product of applied N is a more important factor 

limiting the profitability and the use of fertilizer in some regions than market-related and 

institutional constraints such as high transaction costs, and imperfections in credit and input 

markets. Improving the yield response to fertilizer and the marginal physical product of applied 

fertilizer requires extension services on soil fertility management to be adapted to the local 

context of farmers (Vanlauwe et al., 2015b).  
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Yet, in SSA, and elsewhere, agricultural extension most often entails general 

recommendations for improved soil fertility management that are disseminated to farmers in a 

large growing area, covering e.g. a region, a district or a province (Tittonell et al., 2013; Kihara 

et al., 2016; Shehu et al., 2018). Such agricultural extension practices fail to take into account the 

heterogeneous and complex biophysical and socio-economic conditions of smallholder farming 

(MacCarthy et al., 2018; Kihara et al., 2016). Site-specific agricultural extension, on the other 

hand, includes recommendations that are tailored to the situation of an individual farmer or field. 

Such recommendations might be more effective to bring about yield and productivity 

improvements than conventional extension practices (Ragasa and Mazunda, 2018). To improve 

the capacity of agricultural extension providers in the delivery of site-specific extension 

recommendations to farmers, information and communication technology (ICT) driven decision 

support tools (DSTs) offer great potential (Kragt and Llewellyn, 2014; Vanlauwe et al., 2015b; 

Vanlauwe et al., 2017).  The role of digital technologies in agriculture in developing countries is 

increasing (Bernet et al., 2001; Fu and Akter, 2016; Verma and Sinha, 2018) and these 

technologies might provide a cost-effective and innovative way to providing site-specific 

fertilizer recommendations to smallholder farmers (Njorege et al., 2017).  

In this paper, we analyze farmers‟ preferences for site-specific nutrient management 

(SSNM) recommendations for maize provided by an ICT-based extension tool called Nutrient 

Expert (NE) (Pampolino et al., 2012). The NE tool is being developed for extension in the maize 

belt of Nigeria and ex-ante insights on farmers‟ preferences for the expected information content 

and recommendation alternatives from the tool can contribute to its development. We use a 

choice experiment to provide ex-ante insights on the adoption potentials of site-specific advisory 

services enabled by digital tools from farmers‟ perspectives, identify heterogeneous preference 

classes and the drivers of farmers‟ preferences.  

We contribute to the general literature on agricultural technology adoption, and 

specifically to the literature on DSTs for improved soil fertility management. Our findings add 

insights to the R4D literature and are relevant for the development community. The current 

empirical literature includes ex-post studies that analyze farmers‟ adoption behavior after 

technologies have been introduced (e.g. Lambrecht et al., 2014; Mponela et al., 2016; Morello et 

al., 2018) and a growing number of ex-ante studies that use choice experiments to analyze 

farmers‟ adoption behavior in the design stage of a technology (e.g. Lambrecht et al., 2015, 
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Mahadevan and Asafu-Adjaye, 2015; Dalemans et al., 2018; Tarfasa et al., 2018). However, 

none of the available studies focuses on farmers‟ adoption of site-specific extension 

recommendations and also farmers‟ willingness to accept such recommendations from ICT-

based extension tools has not been researched (Fu and Akter, 2016; Verma and Sinha, 2018). 

The only available empirical study on preferences for ICT-based extension tools focuses on the 

extension providers rather than the ultimate beneficiaries (farmers) (Kragt and Llewellyn, 2014). 

Building on Kragt and Llewellyn (2014), we also contribute to the choice experiment literature 

by extending the application of the methodology in optimizing design of DSTs but with a more 

rigorous empirical estimation. We specifically take into account both farmers‟ response error and 

attribute non-attendance using different econometric models, which is an advancement in 

comparison with previous choice experiment studies that address only one of these issues.   

The remainder of the paper is organized as follows. In Section 2 we provide some 

background on maize production, soil fertility and conventional extension in Nigeria as well as 

the development of a nutrient expert tool. In Section 3 we explain the methodological approach 

of the paper. In Section 4 we report the results of the empirical analysis and provide a discussion 

of the results in section 5. Section 6 concludes the paper.  

2  Background 

2.1  Maize production in Nigeria 

A crop of notable interest for food security and the most widely grown in SSA is maize (van 

Ittersum et al., 2016). As in other countries in SSA, maize is a very important crop in Nigeria, 

where it is largely cultivated by smallholder farmers (Abdoulaye et al., 2018). Yet, on-farm 

yields are low and far below attainable yields in experimental stations, leading to a substantial 

yield gap (Shehu et al., 2018). Maize yields in Nigeria have consistently lagged behind those in 

the rest of the world – with maize yield in Nigeria being only one fourth of the average global 

yield in 2016 – and are currently even lagging behind on the average yield in Africa (Fig. 1).  
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Fig. 1: Maize yield trend in Nigeria, Africa and the world at large (FAOSTAT, 2018).  

2.2  Soil fertility and conventional extension 

The average low maize yield in Nigeria is related to inherent poor soil fertility, and continuous 

cropping and mining of soil nutrients (Tarfa et al., 2017; Ande et al., 2017). Soil nutrient 

deficiencies are common with N as the most limiting nutrient for maize production in the 

Nigerian savannas (Chianu and Tsuji, 2005; Shehu et al., 2018). Fertilizer use to address nutrient 

deficiencies is low. Average fertilizer use on arable land is estimated to be 8.3 kg nutrient per ha 

in 2015 (FAO, 2017). This is despite the commitment of Nigeria and other African countries to 

increase fertilizer use from 8 to 50 kg nutrients per ha by 2015 (Sanginga and Woomer, 2009; 

Vanlauwe et al., 2015b). Low fertilizer use has been attributed to market constraints such as a 

lack of fertilizer availability during the season and high transportation costs, as well as to a poor 

yield responses to fertilizer applications (Chianu and Tsuji, 2005; Ande et al., 2017; Tarfa et al., 

2017). Although the agricultural extension system is generally weak in Nigeria, considerable 

extension services are directed to maize production because of its importance for food security 

(Ande et al., 2017). The extension system provides general fertilizer recommendations, which is 

120 kg N, 60 kg P2O5 and 60 kg K2O per ha for maize in the Northern guinea savanna of Nigeria 

(Shehu et al., 2018; Tarfa et al., 2017). Yet, maize farmers use on average only between 40 to 45 

kg N per ha (Liverpool-Tasie et al., 2017), which is less than half the recommendation of 120 kg 

N per ha. The use of this general recommendation is not consistent with the principle of 

dynamically adjusting fertilizer application based on crop need, and field- and season-specific 
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conditions (Pampolino et al., 2007), and likely does not result in fertilizer use that is 

economically optimal.    

2.3  Nutrient expert tool  

Promoting the right dose of inorganic fertilizer to farmers is only possible if extension service 

providers are able to offer site-specific rather than one-size-fits all recommendations (Bernet et 

al., 2001). The project „Taking Maize Agronomy to Scale (TAMASA)‟ is co-developing a user-

friendly, scalable nutrient management extension tool, known as Nutrient Expert (NE), with the 

aim of providing site-specific soil fertility management recommendations to maize farmers in 

Nigeria, Tanzania and Ethiopia
6
. This effort is expected to result in a mobile phone-based, easy-

to-use and interactive tool that enables extension agents to generate fertilizer and management 

recommendations adapted to the specific situation of an individual farmer‟s field in real-time 

(Pampolino et al., 2012). The tool is based on SSNM principles of applying fertilizer according 

to crop needs by promoting the right fertilizer source (i.e. the type of fertilizer needed), at the 

right rate (i.e. the amount of fertilizer), at the right time (i.e. the timing of fertilizer application), 

in the right place (i.e. the availability of nutrients) (4R‟s of nutrient use). The tool relies on the 

quantitative evaluation of the fertility of tropical soils (QUEFTS) model to predict the yield 

responses. The inputs required to generate recommendations include a target maize yield, 

farmer‟s current crop management practices (inorganic and organic fertilizer use, variety type, 

yield etc.), characteristics of the growing environment (water availability, risk of flood/drought 

etc.), soil characteristics (soil texture, soil color, history of manure use etc.) and price of inputs 

and maize. The outputs of the tool include information on SSNM (N, P, K application guide and 

associated crop management practices) to achieve the target maize yield and a simple profit 

analysis to compare farmers‟ current practice and the recommended practices. The tool allows 

farmers to adjust recommendations according to their available budget. The tool development 

process is expected to consist of data collection (multi-location nutrient omission trials), model 

development (algorithm, decision rules and programming) and field validation (model testing 

and refining) (Pampolino and Zingore, 2015).  In this paper, we examine farmers‟ preferences 

for fertilizer recommendations and thereby generate insights for optimizing tool design.  

                                                 
6
 Development of NE tool is a collaborative effort of IPNI, CIMMYT, IITA, extension service providers, national 

institutes, government agencies, input dealers and farmers with IPNI leading the process.  
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3  Methodology 

3.1  Research area and sampling  

The research was conducted in Kaduna, Katsina and Kano states in the maize belt of Nigeria, 

where maize is mainly grown under a smallholder rain-fed system across diverse agro-ecological 

conditions. These states were purposively selected because of their strategic position in maize 

production and to pilot research activities for the development of the NE tool. A two-stage 

sampling design was used to sample households in these states. In the first stage, 22 sampling 

grids of 10 x 10 km were randomly generated across the primary maize areas in the three states 

with geospatial inputs to ensure spatial representativeness. These 22 sampled grids include 99 

randomly selected villages belonging to 17 local government authorities (LGAs), the 

administrative unit below the state. All these villages were included in the sample. In the second 

stage, a sampling frame of maize-producing farm-households was constructed for each of the 

selected 99 villages. In each of the villages, eight households were randomly selected from a 

village listing of maize-producing farm-households, which results in a total sample of 792 

households.  
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 Fig. 2: Map of the study area  

 

3.2  Design and implementation of a choice experiment 

In this research area, we implemented a discrete choice experiment (CE) with the 792 sampled 

farmers during the maize harvest period of 2016 and complemented the CE data with a farm-

household survey. A discrete CE is a survey-based method for eliciting preferences of 

respondents. These preferences are derived from respondents‟ repeated choices between two or 

more discrete alternatives of a „good‟, „service‟ or „course of action‟ described by various levels 

of specific attributes of these products (Pouta et al., 2014). This approach makes it possible to 

evaluate farmers‟ preferences for SSNM recommendations prior to the development of the NE 

tool and take into account these preferences in designing, fine-tuning and delivering the tool. 

CEs first emerged in marketing studies and now cut across several disciplines, including 

agricultural sciences where CEs are increasingly applied in ex-ante agricultural technology 
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adoption studies (Mahadevan and Asafu-Adjaye, 2015; Lambrecht et al., 2015; Coffie et al., 

2016; Kassie et al., 2017; Tarfasa et al., 2018; Dalemans et al., 2018). Theoretically, the CE 

method is based on Lancaster‟s economic theory of value (1966) and random utility theory 

(McFadden, 1974). Practically, collecting CE data entails the identification of relevant attributes, 

the identification of levels for each of these attributes, an experimental design into different 

choice sets, the construction of choice cards with these choice sets, and the implementation of 

the CE among respondents. We discuss these steps below.  

3.2.1  Identification of attributes and attribute levels   

To identify relevant attributes or technology traits associated with SSNM, we consulted scientists 

within and outside the project team and conducted focus group discussions with farmers. Ten 

relevant attributes were identified, of which the six most important as revealed from the 

consultations were included in the CE in order to reduce the complexity of the choice tasks and 

limit the occurrence of random non-deterministic choices (Beck et al., 2013). The attributes and 

their levels are summarized in table 1. The first two attributes directly relate to fertilizer use in 

the context of SSNM. The first attribute is „fertilizer application rate‟, defined as the quantity of 

inorganic fertilizer required to supply the necessary nutrients to achieve a target maize yield on a 

specific field. This is described by three levels: the current application rate (not site-specific), a 

site-specific rate below the current rate, and a site-specific rate above the current rate. The 

second attribute is „fertilizer application method‟, which relates to how fertilizer is applied to 

guarantee optimal uptake of nutrients by maize plants and ensure that desired maize yields are 

attained. The levels of this attribute are broadcasting and dibbling/spot application.  

The third and fourth attributes relate to returns in terms of yield and variability in yield 

associated with using SSNM. The third attribute is „expected yield‟, expressed as average yearly 

maize yield expected on a hectare over a production period of 5 years. This attribute is defined 

by five levels, ranging from 1 to 6 tons/ha, carefully selected within the range of attainable maize 

yields in the research area. The fourth attribute is „yield variability‟ or yield risk, i.e. the 

probability of a bad production year. This attribute is described by five levels expressing the 

number of production years, ranging from 0 to 4 out of 5, maize yield will be below one ton per 

hectare.  
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The fifth attribute „seed type‟ relates to type of maize seed, a vital complementary input 

in addition to fertilizer to improve maize yields. Fertilizer recommendations are often combined 

with recommendations on improved seed in extension services due to interaction effects of 

fertilizer and improved seeds, especially as promoted in integrated soil fertility management 

(Vanlauwe et al., 2015b). The levels of this attribute are improved seed variety and traditional 

seed variety.  

The last attribute is a monetary attribute defined as the „cost of fertilizer and seed‟ in 

local currency (Nigerian Naira - NGN) per hectare. This represents the fertilizer and seed 

investment cost associated with adopting a given extension recommendation. This attribute is 

defined by five levels, ranging from 35,000 to 85,000 NGN per hectare, that were determined 

based on a range of actual costs incurred on fertilizer and seed during the 2016 growing season, 

for which information was obtained through focus group discussions and a pilot survey.  

Table 1: Attributes and attribute levels  

Note: 305 NGN (Nigerian Naira) is equivalent to 1 USD at the survey time. 

 

3.2.2  Experimental design and choice cards 

For the experimental design we use a fractional factorial design; more specifically a Bayesian D-

efficient design which minimizes the D-error and improves efficiency. As proposed by Scarpa et 

al. (2013), and to improve efficiency, we conducted a pilot version of the CE prior to the actual 

design. For this pilot CE we used an orthogonal design. With the data from this pilot CE, a 

multinomial logit model was estimated and parameter estimates were used as Bayesian priors 

(random priors distribution) in generating the ultimate D-efficient design. This design resulted in 

Attributes Attribute levels 

Fertilizer application rate  Current rate (not site-specific) 

Site-specific fertilizer rate (SSFR): below current rate  

Site-specific fertilizer rate (SSFR): above current rate 

Fertilizer application method (FAM) Broadcasting, Dibbling  

Expected yield 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6 tons/ha 

Yield variability (yield risk) 

 

0 (0 in 5 years), 1 (1 in 5 years), 2 (2 in 5 years), 

3 (3 in 5 years), 4 (4 in 5 years) 

Seed type (ST) 

Cost of fertilizer and seed (CFS) 

Traditional variety, Improved variety  

35000, 45000, 55000, 65000, 75000, 85000 NGN/ha 
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12 paired choice sets that were randomly blocked into two blocks of six choice sets. The 

blocking facilitates the implementation among farmers and improves the quality of responses.  

Twelve laminated choice cards were constructed for the 12 paired choice sets – see an 

example in figure A1 in appendix. In order to make the CE more comprehensible among less 

educated farmers in the sample, we include pictures for different attributes in the choice cards. 

Each choice card consists of two generic scenarios (options A and B) of SSNM 

recommendations. A status quo option which represents the current practice of farmers is 

included in all choice cards as option C. This makes the CE more realistic as farmers have the 

option of choosing their current practice if it appears superior and reduces potential bias arising 

from forced choices (Lancsar et al., 2017). 

3.2.3  CE and survey implementation 

In the CE implementation, each farmer was offered six choice cards and asked to repeatedly 

make a choice between the three options on each card. Prior to the CE, farmers were sensitized 

on its purpose, contents and how to correctly participate. We used a short cheap talk script 

(Cummings and Taylor, 1999) to explain to farmers the importance of making truthful choices 

and thereby limit hypothetical bias arising from divergence between choices made in the 

hypothetical CE scenarios and (unobserved) actual choices when exposed to site-specific 

recommendations from ICT-based tools. After the introductory session, the choice cards were 

presented to each farmer by an enumerator and each farmer freely made a choice between the 

three options on each of the six cards. The CE was complemented with a farmer survey. The 

survey questionnaire consists of plot-, household- and community-level components. The 

modules of the questionnaire include household demographics, access to services, assets, 

income, fertilizer use, crop production and community infrastructure. To improve the quality and 

timely availability of the data, the survey was implemented using computer-assisted personal 

interviewing software and tablets.  

3.3  Econometric framework 

The random utility theory behind CEs assumes that the utility of farmer i of choosing alternative 

  among all alternatives offered in a choice set   is given by an indirect or unobservable utility 

which consists of deterministic (explainable) and random (unexplainable) components as 

follows:  
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                      ∑      

 

   

                                                

Where      is the     farmer‟s indirect or latent utility,      is the systematic part of the utility 

function,      is a vector of attributes describing alternatives   with associated preference 

parameters   ,      is an unobserved random term that is independently and identically 

distributed (iid) across individuals and alternatives,     is an alternative-specific constant  

which represents preferences for the status quo option. 

Drawing upon this model, we estimate a latent class model (LCM) with our empirical 

data. In the context of this study, the LCM assumes that a heterogeneous population of farmers 

belongs to a discrete number of preference classes, known as latent classes, with each farmer 

having a positive probability of membership of each class (Kragt and Llewellyn, 2014). The 

preference parameters in equation 1 become class-specific parameters   . This implies that 

preferences are homogeneous within each latent class   but heterogeneous across classes. Hence, 

the probability of farmer   choosing alternative   in choice set   is conditional on the farmer‟s 

membership of latent class  .  

         
           

∑            
 
   

                                                                                                                  

The class membership probability is modeled using a multinomial logit specification as a 

function of farmer-specific characteristics
7

 known to be relevant for soil fertility-related 

technology adoption from theory and the empirical literature (Feder et al., 1985; Foster and 

Rosenzweig, 2010; Chianu and Tsuji, 2005; Lambrecht et al., 2014; Wiredu et al., 2015; 

Mponela et al., 2016; Morello et al., 2018). The selected variables are age and education level of 

the farmer, household labor (human capital), membership in a farmer association (social capital), 

access to off-farm income, access to agricultural credit (financial capital), the value of assets 

(physical capital), access to extension services and distance to a tarmac road (access to 

institutions and infrastructure).  

                                                 
7
 Some authors advocate the estimation of LCMs without a class membership function (Van den Broeck et al., 2017; 

Dalemans et al., 2018). With our data, this results in convergence problems and less intuitive results – the results of 

models without a membership functions are shown in Table A1 in appendix but are not discussed in the text.   
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∑       
    

 
   

                                                                                                                                  

Where    is a vector of farmer-specific characteristics and   
  is a vector of parameters of   . Both 

choice and membership probabilities are jointly estimated with the assumption that scale 

parameters are normalized to one, as required for identification (Boxall and Adamowicz, 2002).  

The ASC is dummy-coded as 1 if a farmer chooses the current practice and 0 otherwise. 

A negative coefficient for the ASC implies a positive utility of moving away from the current 

practice to following ICT-enabled SSNM. The categorical attributes are dummy-coded for ease 

of interpretation of coefficients (Van den Broeck et al., 2017). To improve the explanatory power 

of the model, we use farmer-specific status quo attribute levels in the estimation (Kings et al., 

2007).  

A growing body of literature shows that choice modeling can produce biased estimates of 

preferences if scale and preference parameters are confounded (Louviere and Eagle, 2006). The 

implication is that the LCM can yield spurious classes with heterogeneity largely an issue of 

scale (random choices) and less of taste (preference) (Vermunt and Magidson, 2014). As a 

robustness check, we estimate a scale-adjusted LCM (SALCM) to address this issue of potential 

confounding of scale (  ) and preference (  ) parameters. The choice probability then becomes 

conditional on an individual farmer‟s membership of latent preference class   and scale class  .  

           
             

∑              
 
   

                                                                                                             

Another source of bias is violation of the continuity axiom of choice. This axiom implies 

that respondents consider all the attributes of the alternatives in their choice process (Kragt, 

2013; Coffie et al., 2016). Violation of this axiom is commonly referred to as attribute non-

attendance (ANA) and implies non-compensatory decision making behavior of respondents. In 

the context of this study, farmers may not make the expected full trade-offs between all attributes 

of the various alternatives. We rely on self-reported or stated ANA responses of farmers elicited 

at the end of the CE (Serial-based ANA) and estimate two stated ANA models to check the 

robustness of our results. The first approach referred to as the conventional ANA model involves 

constraining parameters of ignored attributes to zero in the utility function, implying that failure 

to attend to an attribute by a respondent leads to zero marginal utility for that attribute (Kragt, 

2013; Campbell et al., 2018; Caputo et al., 2018).  
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           ∑      

   

   

                                                                                                                   

Where   are ignored attributes, as self-reported by farmers. The specialized literature shows that 

ANA does not necessarily imply zero utility weight for an attribute but often indicates that 

respondents assign a lower importance to the attribute, and is best captured by a lower magnitude 

of the marginal utility for non-attenders than attenders (Hess and Hensher, 2010; Kragt, 2013). 

This motivates the estimation of a second ANA model known as validation ANA model. This 

model involves estimating two parameters for each attribute depending on whether the attribute 

is reported to be ignored or considered by respondents in their choice making (Hess and Hensher, 

2010; Scarpa et al., 2013; Alemu et al., 2013; Caputo et al., 2018). Following Caputo et al. 

(2018), the utility coefficients conditional on attendance is indicated with the superscript 1 (  
 ) 

and those conditional on non-attendance with superscript 0 (  
 ). 

           ∑  
     

   

   

 ∑  
     

 

   

                                                                                              

This approach helps to validate the first ANA model. Based on the validation method, choice 

behavior of respondents is expected to be in line with their self-reported ignored attributes if the 

estimated coefficients of ignored attributes are not significantly different from zero.  

In summary, we estimate the following models: a standard latent class model (LCM) in 

STATA 15, a scale-adjusted latent class model (SALCM) in Latent Gold Choice 5.1, a 

conventional attribute non-attendance model (conventional ANA), and a validation attribute non-

attendance model (validation ANA) in NLOGIT 5.  

4  Results  

4.1  Descriptive results 

Table 2 describes individual-, household- and farm-level characteristics of sampled farmers with 

a distinction between farmers with and without experience with conventional extension on soil 

fertility management. Farmers are on average 44.7 years old and have an average of 5.2 years of 

schooling. Farm-households are rather large with on average 9.4 members. Farmers have on 

average 3.2 ha of land and 19 years of farming experience. About 21% of the sampled farmers 
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have access to credit, 34% are member of a farmer association and 16% produce maize under a 

contract-farming arrangement. We observe significant differences between farmers with and 

without experience with conventional extension services in terms of the household size, income, 

the farm area and farm assets, the participation in contract-farming and in farmer associations, 

and farmers‟ location with respect to roads. Differences in non-land asset ownership between the 

two groups of farmers are generally not significant. Apart from a small difference in 

intercropping practice, there are no significant differences in agricultural input application and 

farm management practices between farmers with and without extension experience. On average 

farmers apply 127 kg of NPK fertilizer per ha, and 89 kg of urea per ha and 28% of farmers use 

improved maize seeds, resulting in an average input cost of 39,000 NGN and an average maize 

yield of 2.1 tons per ha. The application of NPK (15:15:15 and 20:10:10) and urea (46 N) is 

equivalent to 61 kg N, 19 kg P2O5 and 19 kg K2O per ha, which is below the general 

recommendation of 120 kg N, 60 kg P2O5 and 60 kg K2O per ha.  
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Table 2: Summary statistics of farmers’ characteristics  

 Whole sample Farmers with 

extension 

experience
1
 

Farmers without 

extension 

experience
1
 

 

Mean  SD Mean  SD Mean  SD Sig. 

Age of head (years) 44.70 12.03 44.84  12.51 44.61 11.75  

Education of head (years) 5.16 6.01 5.42  6.08 5.02 5.97  

Health of head (%)
2
 96.43  96.96  96.12   

Adults (no.) 3.56 1.97 3.74  2.36 3.45 1.68 * 

Children (no.) 5.88 4.49 6.71  5.41 5.38 3.76 *** 

Access to credit (%) 20.7 0.40 21.30 0.41 20.41 0.40  

Access to off-farm income (%) 94.98  94.06  96.52  *** 

Maize contract farming (%) 16.37  12.17 0.33 18.86  ** 

Member of association (%) 33.71  26.52  37.98  *** 

Farming experience (years) 19.11 0.43 19.71  0.71 18.75 0.53  

Farm assets
3
 (1,000 NGN) 51.36 11.45 40.71  68.40 57.83 134.69 * 

Transport assets (1,000 NGN) 201.85 459.05 187.3 357.31 210.13 508.28  

Livestock assets (1,000 NGN) 394.51 586.67 386.6  491.77 399.22 637.08  

Durable assets
4
 (1,000 NGN) 22.66 52.86 22.53 39.38 22.74  59.35  

Annual income
5
 (1,000 NGN) 177.63 221.35 209.9

0 

251.03 158.45  199.54 *** 

Total farm area (ha) 3.23 3.63 2.82     3.05 3.47 3.91 ** 

Maize focal plot area
6
 (ha) 0.82 1.04 0.84  0.98 0.81 1.06  

Use improved seed (%) 28.04  28.26  27.91   

NPK fertilizer (kg/ha) 126.96 102.84 123.5

8 

97.72 128.96 105.83  

Urea fertilizer (kg/ha) 88.79 95.09 87.75  94.69 89.40 95.44  

Input cost/ha
7
 (1,000 NGN) 38.61 25.11 38.67 22.47 38.58 26.58  

Maize-legume intercrop (%) 30.15  26.09  32.55  * 

Maize yield (tons/ha) 2.05 0.91 1.95 0.85 2.12 0.95 *** 

Distance to tarmac road (km) 4.08 5.15 3.07  3.45 4.68 5.85 *** 

Northern guinea savanna (%) 80.71  83.91  78.81   

Southern guinea savanna (%) 3.40  3.90  3.1   

Sudan savanna (%) 15.88  12.17  18.08  * 
Significant differences from a t-test indicated with * p < 0.1, ** p < 0.05, *** p < 0.01 
1 

Extension experience through a face-to-face contact with extension agents, on-farm trials, field demonstrations or 

any extension-related training in the last three years, 
2 
Percentage of farmers who self-report to be healthy throughout the year,  

3 
Value of non-land assets, including farm equipment and machinery,  

4 
Value of durable assets such as TV, radio, refrigerator, mobile phone, sewing machine etc,  

5 
Per-adult equivalent household annual income from all sources,  

6
 Maize focal plot is defined as the plot a household considers as their most important maize plot,  

7 
Input cost only refers to cost of fertilizer and seed for maize in the 2016 season,   

NGN: 305 NGN (Nigerian Naira) is equivalent to 1 USD at the survey time. 
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4.2  Econometric results 

Before discussing the results in detail, we elaborate on scale heterogeneity and ANA. First, scale 

heterogeneity is addressed in the SALCM. In this model, the scale factor of scale class one is 

fixed to unity for identification purposes while that of scale class two is estimated. The latter is 

very small (0.13), indicating that farmers in scale class two make less consistent choices 

resulting in higher error variance. As the large majority of farmers (96%) belong to scale class 

one (and make consistent choices) and the parameter estimate of the scale factor is weakly 

significant, we can conclude that there is only weak evidence of heterogeneity in scale across the 

two classes. Second, the descriptive information in table 3 shows that 42% of farmers ignored at 

least one attribute, which justifies the estimation of the ANA model. The results of the validation 

ANA model show that the choice behavior of farmers in the CE corroborates their self-reported 

ANA as almost all parameter estimates of the self-reported ignored attributes are not 

significantly different from zero. This implies that self-reported ANA does not bias the results in 

the conventional ANA model and that restricting the parameters of ignored attributes to zero 

works well for our data. This is line with the findings of Caputo et al. (2018) and in contrast to 

Alemu et al. (2013) on ANA validation models at choice task and serial levels respectively.  

Table 3: Descriptive information on stated ANA  

# ignored 

attributes 

Share of 

respondents 

(%) 

Ignored attributes Share of 

respondents 

(%) 

0 57.7 Fertilizer application rate 15.1 

1 10.4 Fertilizer application method 30.3 

2 14.4 Expected yield 4.4 

3 16.9 Yield variability 9.1 

4 0.7 Seed type 20.4 

  Cost of fertilizer and seed 13.1 

 

We estimate four LCMs with two to seven latent classes in order to sufficiently represent 

the preference heterogeneity in our data. Based on the Akaike Information Criteria (AIC) and the 

Bayesian Information Criteria (BIC) (Boxall and Adamowicz, 2002), a two-class model is 

selected as the one with the best fit. The results of the estimated LCMs with two latent classes 

are presented in Table 4, including the LCM, SALCM, conventional ANA and validation ANA 

models. The parameter estimates are consistent across the different models, implying robust 
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results. The SALCM has the best fit according to the AIC and BIC but has a weakly identified 

ASC as indicated by a very large standard error. As this is associated with imprecise estimates 

(Vermunt and Magidson, 2014)
8
, we base our discussion primarily on the standard LCM which 

is the second best fit and results in estimates that are comparable with the other models. 

The results of the LCM show that the estimated coefficient of the ASC is highly 

significant and negative for both latent classes of farmers. This implies that overall, farmers have 

positive preferences for site-specific fertilizer recommendations over the current extension 

practice. Both classes have significant positive preferences for site-specific fertilizer application 

rates. Yet, latent class one farmers (LC1) have a significant positive preference for a site-specific 

fertilizer rate that is above their current fertilizer application rate while latent class two farmers 

(LC2) have a significant positive preference for a site-specific fertilizer rate that is below their 

current application rate. The coefficients for seed type show that only LC1 farmers have a 

positive preference for using an improved seed variety; for LC2 farmers this coefficient is not 

significant. In addition, in LC1 there is a positive preference for a higher fertilizer and seed cost 

while in LC2 this is negative. The latter is consistent with the law of a downward sloping 

demand curve. The former is not but is consistent with a higher willingness of these farmers to 

invest in better farm inputs. The coefficient on fertilizer application method (dibbling) is 

significantly negative in LC2, which indicates these farmers prefer to apply fertilizer through 

broadcasting rather than through dibbling. The significant positive preference for maize yield 

and the significant negative preference for yield variability in both classes implies that farmers 

are interested in site-specific recommendations that result in higher and more stable yields, 

which is in line with the a priori expectations and with farmers being risk averse. 

                                                 
8
 The issue of weak identification is common in LCM and often results from model estimation algorithm converging 

on local maxima instead of global maximum. As recommended and implemented in other empirical studies that used 

SALCM (Vermunt and Magidson, 2014; Thiene et al. 2012), we tried various values of starting sets and iterations 

per set to achieve convergence on global maximum but ASC was still weakly identified. 
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Table 4: Results of different latent class models estimating farmers’ preferences for ICT-based extension  

 
LCM SALCM conventional ANA 

validation ANA 

 AC AI AC AI 

Class LC1 LC2 LC1 LC2 LC1 LC2 LC1 LC2 

Class probability 64% 36% 65% 35% 63.5% 36.5% 66%  34%  

ASC -5.667*** 

(0.703) 

-5.263*** 

(0.609) 

-24.105 

(31.319) 

-9.381 

(10.611) 

-5.694*** 

(0.652) 

-5.367*** 

(0.562) 

-5.693*** 

(0.680) 

 -5.268*** 

(0.583) 

 

SSFR  

(Below current rate) 

0.058 

(0.077) 

0.579*** 

(0.180) 

0.073 

(0.079) 

0.562*** 

(0.191) 

0.029 

(0.082) 

0.483*** 

(0.168) 

0.029 

(0.078) 

0.300* 

(0.174) 

0.499*** 

(0.186) 

0.811** 

(0.363) 

SSFR  

(Above current rate) 

0.246*** 

(0.076) 

-0.156 

(0.280) 

0.249*** 

(0.079) 

-0.190 

(0.291) 

0.258*** 

(0.080) 

-0.297 

(0.241) 

0.295*** 

(0.079) 

0.097 

(0.172) 

-0.508 

(0.399) 

0.513 

(0.386) 

Dibbling -0.073 

(0.057) 

-0.351*** 

(0.126) 

-0.085 

(0.059) 

-0.333** 

(0.132) 

-0.052 

(0.065) 

-0.398*** 

(0.133) 

-0.068 

(0.064) 

-0.132 

(0.091) 

-0.396*** 

(0.143) 

-0.182 

(0.209) 

Expected yield 0.046** 

(0.020) 

0.243*** 

(0.071) 

0.045** 

(0.020) 

0.270*** 

(0.074) 

0.034* 

(0.020) 

0.233*** 

(0.048) 

0.044** 

(0.019) 

0.071 

(0.079) 

0.289*** 

(0.081) 

0.169 

(0.183) 

Yield variability  -0.054** 

(0.024) 

-0.528*** 

(0.073) 

-0.059** 

(0.025) 

-0.542*** 

(0.077) 

-0.046* 

(0.023) 

-0.519*** 

(0.065) 

-0.056** 

(0.023) 

-0.061 

(0.058) 

-0.561*** 

(0.088) 

-0.629*** 

(0.130) 

Improved seed 0.253*** 

(0.060) 

0.154 

(0.147) 

0.252*** 

(0.062) 

0.178 

(0.157) 

0.233*** 

(0.064) 

0.057 

(0.141) 

0.246*** 

(0.063) 

0.327*** 

(0.113) 

0.093 

(0.167) 

-0.067 

(0.258) 

CFS (10000 NGN) 0.029* 

(0.017) 

-0.068* 

(0.038) 

0.028* 

(0.017) 

-0.067* 

(0.040) 

0.038** 

(0.017) 

-0.089*** 

(0.034) 

0.030* 

(0.016) 

-0.041 

(0.049) 

-0.071 

(0.044) 

0.195** 

(0.092) 

N  1106 1106 1106 1106 

Log likelihood -2375.63 

4803.27 

4993.46 

-2369.74 

4793.48 

4912.95 

-2406.18 

4864.40 

5026.00 

-2365.50 

4811.00 

5059.70 
AIC 

BIC 
LCM = standard latent class model, SALCM = scale-adjusted latent class model; conventional ANA = conventional attribute non-attendance model; validation ANA = validation 

attribute non-attendance model; LC = latent class; AC= attributes considered or attended to, AI= attributes ignored or non-attended to,  

The SALCM model has two scale classes: scale class 1 with a probability of 96% and a scale factor set to unity; scale class 2 with a probability of 4% and a scale factor of 0.13.  

Standard error reported between parentheses. Significant coefficients at * p < 0.1, ** p <0.05 and *** p <0.01 
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To gain better insights on the trade-off farmers make between attributes and improve the 

interpretation of the results, we estimate marginal rates of substitution (MRS) (Green and 

Hensher, 2003; Lancsar et al., 2017). With an unexpected positive parameter for the cost 

attribute in LC1, the estimation of MRS in monetary terms is not meaningful for this class. 

Instead, we estimate MRS in terms of yield variability as a benchmark in order to provide 

information on the relative importance of attributes. Table 5 shows the estimated MRS which 

have to be interpreted as the yield risk farmers are willing to accept for an increase in another 

attribute. The results show that in both classes farmers are willing to accept some yield 

variability for a higher average yield, but for LC1 farmers this trade-off is on average larger, as 

revealed from the difference in magnitude of the estimated mean MRS. In addition, LC1 farmers 

are willing to accept an increased yield risk with the investment in improved seeds and higher 

fertilizer use stemming from site-specific recommendations, while LC2 farmers are not. The 

latter farmers are only willing to accept increased yield risk with reduced investment in fertilizer. 

In summary, LC1 farmers are willing to bear more risk of taking up intensification technologies 

to improve their maize productivity.  

Table 5: Marginal rate of substitution (MRS) between yield variability and other attributes 

for two latent class groups of farmers  

 

Expected 

yield 

SSFR 

(below 

current 

rate) 

SSFR 

(above 

current 

rate) 

Dibbling 
Improved 

seed 

LC 1      

Mean  0.860 - 4.572 - 4.693 

95% ll 0.056 - 1.093 - 1.572 

95% ul 4.179 - 22.673 - 22.108 

LC 2      

Mean  0.46 1.097 - -0.296 -
 

95% ll 0.238 0.443 - -1.166 - 

95% ul 0.642 1.989 - 0.985 - 
MRS is calculated as the negative of the ratio of each attribute coefficient to the yield variability coefficient, 

ll=lower limit, up= upper limit, 95% confidence intervals are estimated using the Krinsky and Robb method with 

2000 draws, MRS is not reported for insignificant coefficients as indicated by „-‟.  

 

The results of the multinomial logit models estimating the membership in latent classes 

are reported in table A2 in the appendix – these results shows that age, education, farmer 

association, assets, access to agricultural credit, access to extension and distance to road 
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significantly influence class membership. Table 6 shows the differences in individual-, 

household- and farm-level characteristics between the two classes of farmers defined based on 

their preferences for ICT-enabled SSNM. We find significant differences in most of the 

characteristics, which contributes to explaining the differences in preference pattern between the 

latent classes. The results show that in comparison with LC2, farmers in LC1 are relatively 

younger, invest more in farm inputs and are generally better-off in terms of access to resources 

(including family labor, income and different types of assets) and access to services and 

institutions such credit, farmer associations, contract farming arrangements, and extension 

services. Farmers in LC2 appear better-off in terms of education and access to roads, which is 

unexpected as a higher education and access to road infrastructure is expected to increase 

openness to technological interventions. However, the benefits of education in enhancing 

learning processes of a new technology might be minimal for technologies with traits that are 

familiar to the end-users, which likely applies for fertilizer use. In terms farming experience, 

there are no significant differences between the two classes of farmers. Given the observed 

differences, we can describe LC1 farmers as more resource endowed farmers and LC2 farmers as 

less resource endowed, and further explain the observed preference patterns.  
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Table 6: Farmer characteristics by preference classes 

 Latent class 1 (64%) Latent class 2 (36%)  

Mean  SD Mean  SD Sig. 

Age of head  43.52 11.64 46.90 12.41 *** 

Education of head  4.37 5.68 6.63 6.30 *** 

Health of head  96.51  96.30   

Adults  3.60 2.19 3.50 1.46 *** 

Children  6.02 4.72 5.62 3.99 *** 

Access to credit  26.68  9.72  *** 

Access to off-farm income  96.51  92.13  *** 

Maize contract farming  17.96  13.43  *** 

Member of association  40.40  21.30  *** 

Farming experience  19.12 10.48 19.10 10.68  

Farm assets  60.68 132.35 34.40 67.70 *** 

Transport assets  227.01 489.86 158.01 394.69 *** 

Livestock assets  439.94 651.94 292.57 382.21 *** 

Durable assets  24.41 63.65 19.41 20.51 *** 

Annual income  192.72 244.84 149.62 165.07 *** 

Total farm area  3.19 3.48 3.32 3.86 * 

Maize focal plot area  0.80 1.04 0.84 1.03 ** 

Extension experience  39.65  32.87  *** 

Use improved maize  30.92  22.69  *** 

NPK fertilizer  125.4 101.83 129.85 104.41 ** 

Urea fertilizer  94.59 94.42 78.01 95.18 *** 

Input cost/ha  39.51 25.64 36.93 23.94 *** 

Maize-legume intercrop  28.93  32.41  *** 

Yield 2.1 0.92 2.0 0.90 *** 

Distance to tarmac road  4.78 5.95 2.81 2.71 *** 

Northern guinea savanna  81.55  79.17  *** 

Southern guinea savanna  3.24  3.70   

Sudan savanna  15.21  17.13  *** 
 * p < 0.1, ** p <0.05, 

*** 
p <0.01 independent sample t-tests of significant differences between the two classes of 

farmers, Variables are as defined in table 2. 

5  Discussion 

We find that farmers are in general favorably disposed to site-specific extension over the 

traditional extension practice of disseminating general recommendations. This suggests that 

farmers recognize the heterogeneity in their farming systems and the need for recommendations 

to be tailored to their specific growing conditions which can be done with ease using DSTs (Rose 

et al., 2016). However, farmers have heterogeneous preferences for SSNM recommendations and 

this observed heterogeneity is correlated with farmers‟ resource endowments and access to 

services. We identify two groups of farmers (latent classes) with different preferences. The first 
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group (LC1 representing 64% of the sample) includes innovators or strong potential adopters of 

SSNM recommendations. Farmers in this group are generally better-off, less sensitive to risk, 

have higher preferences for investment in farm inputs, and are indifferent between more or less 

labor intensive production techniques. This is in line with the expectation that better-off farmers 

are more responsive to new technologies despite the riskier outcomes of new technologies 

(Foster and Rosenzweig, 2010). The second group (LC 2 representing 36% of the sample) 

includes more conservative farmers or weak potential adopters. Farmers in this group have lower 

incomes and lower productive assets, are more sensitive to yield variability, and prefer less 

capital and labor-intensive production techniques.     

Both the strong and weak potential adopters exhibit strong positive preferences for higher 

yield, which is consistent with other CE studies that reveal maize farmers‟ preferences for high 

yielding technologies (Ortega et al., 2016; Kassie et al., 2017). In addition, they both exhibit 

disutility for risk, which signals a safety-first behavior to smooth income and consumption 

(Feder et al., 1985). Yet, the weak potential adopters are less willing to accept increased yield 

risk for an increase in yield level (or more willing to forego yield gains for stability in yield) than 

the strong potential adopters. This implies that the adoption behavior of farmers is not only 

strongly influenced by the expectation of higher yields but also by the expected risk exposure 

associated with higher yielding interventions. This is in line with the finding of Coffie et al. 

(2016) on the negative effect of risk exposure in farmers‟ preferences for agronomic practices.  

The weak potential adopters show an aversion for labor-intensive fertilizer application 

methods and higher yielding intensification options with high cost implications. This is in line 

with the findings of Coffie et al. (2016) and reaffirms the issue of labor constraint for agricultural 

technology adoption. The strong potential adopters prefer high yielding intensification options 

with high investment costs, which is rather unexpected. This likely indicates their willingness to 

invest more in farm inputs of higher quality and their perception of a positive correlation 

between higher input cost and higher yields. Empirical CE studies with positive cost coefficients 

also attribute this somewhat unexpected finding to be most likely due to a positive price-quality 

expected relationship, especially for new products (Lambrecht et al., 2015; Mueller Loose et al., 

2013; Romo-Muñoz et al., 2017). These findings imply that less endowed and more risk averse 

farmers are better served with cost-saving recommendations and yield-stabilizing technologies, 
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while better endowed and less risk averse farmers can benefit most from very high yielding site-

specific recommendations.  

From a methodological point of view, we show that it is worthwhile to ensure robustness 

of results by addressing issues of heterogeneity in error variances and ANA in CE studies. As 

differences in scale imply differences in choice consistency (Lancsar et al., 2017), this should 

motivate studies to take into account scale heterogeneity to avoid biased estimates of preferences 

and spurious preference classes (Thiene et al., 2012; Dalemans et al., 2018). We find that the 

majority of farmers exhibit consistent choices, which is not surprising as they are largely familiar 

with the attribute and attribute levels presented in the CE and can readily express their 

preferences. This is in line with Czajkowski et al. (2015) who note that respondents have a more 

deterministic choice process from an appreciable level of information and experience on the 

attributes of a product being valued. Failure to account for ANA is an additional possible source 

of bias in discrete CEs (Kragt, 2013; Coffie et al., 2016; Hess and Hensher, 2010; Caputo et al., 

2018). The estimation of an ANA model validates our finding on the preference for higher 

yielding recommendations with higher investment costs for the strong potential adopters. Such 

an unexpected result could also stem from non-attendance to the cost attribute (as in Campbell et 

al., 2018) but this is ruled out in the ANA model.  Overall, our results are consistent across all 

the models, which suggests that any possible bias from scale and ANA issues is relatively small. 

However, this may not always be the case for other studies that do not account for these issues.  

Finally, our results entail some specific implications for the development of the NE and 

similar tools as well as broader policy implications. The direct implication of the farmers‟ 

homogenous preferences for high yielding recommendations and risk aversion for the design of 

ICT-based extension tools is that in the development process, more attention should be paid on 

ensuring that tools are robust in estimating expected yields for farmers. Most importantly, our 

results strongly indicate the need to optimize design of tools to allow for a feature/module for 

providing information on yield variability (riskiness of expected outcomes) and not only on 

attainable yield levels to help farmers make better informed decisions. This is rarely taken into 

account as most DSTs are designed to produce recommendations for farmers on the basis of an 

expected yield level without providing further information on the uncertainty of the expected 

outcomes. Therefore, improving the design of extension tools to enable provision of information 

on the riskiness of expected yields will be more rewarding for farmers. In addition, our results 
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point to the need for extension services that are designed to take into account the heterogeneity in 

farmers‟ behavioral responses (Lopez-Ridaura et al., 2018). This implies flexibility in extension 

tools to switch between low-investment, low-risk, low-return recommendations and high-

investment, high-risk, high-return recommendations depending on the risk and investment profile 

of the individual farmer. In terms of broader policy implications, farmers‟ general interest in site-

specific recommendations from ICT-based tools lends credence to the theoretical motivation for 

addressing informational inefficiencies in agriculture using digital technologies (Janssen et al., 

2017; Verma and Sinha, 2018). Digital inclusion policies to bridge the digital divide can include 

fostering the use of digital technologies in providing quality extension to farmers. The use of 

ICT-based extension tools that are farm- and field-specific and flexibly take into account 

farmers‟ needs may integrate complementary services – such as credit provision, subsidized 

inputs and insurance schemes – that are well-targeted and increase the uptake of extension 

recommendations by farmers as well the efficiency of service provision to farmers.  

6  Conclusion 

In this paper, we analyze farmers‟ preferences for site-specific nutrient management 

recommendations provided by ICT-based extension tools such as Nutrient Expert that is being 

developed for extension services on soil fertility management in the maize belt of Nigeria. We 

use a discrete choice experiment to provide ex-ante insights on the adoption potentials of ICT-

based advisory services on soil fertility management from the perspective of farmers. The choice 

experiment was carried out, along with a farmer survey, among 792 farmers in three states in the 

maize belt of Nigeria. Different econometric models are used to control for attribute non-

attendance and account for class as well as scale heterogeneity in preferences. The findings 

reveal that farmers have strong preferences to switch from general to ICT-enabled site-specific 

soil fertility management recommendations. We find substantial heterogeneity in farmer 

preferences for extension recommendations and distinguish between strong and weak potential 

adopters of more intensified maize production. Strong potential adopters are better-off farmers 

with higher incomes, more assets and better access to services; they are less sensitive to risk and 

have higher preferences for investing in farm inputs and more capital- and labor-intensive 

production systems with higher expected return, even at a higher risk in terms of yield 

variability. Weak potential adopters are more conservative farmers with lower incomes and less 
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productive assets; they are more sensitive to yield variability, and prefer less capital- and labor-

intensive production techniques with a lower but more stable return. In general, our findings 

imply that farmers in the research area support the use of ICT-based site-specific extension 

services, which calls for agricultural extension programs to contribute to closing the digital 

divide through the inclusion of ICT-based technologies in the extension system. More 

specifically, our findings document the importance of flexible extension systems that take into 

account the willingness of farmers to invest in farm inputs and take risk, and inform farmers 

correctly on expected yield and returns as well as on the variability in yield and potential losses.   
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Figure A1: Example of a choice card 
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Table A1: Latent class model of farmers’ preferences for ICT-based extension (without membership function)
 1
  

 LCM SALCM conventional ANA Validated ANA 

       AC   AI AC   AI 

Class LC1 LC2 LC1 LC2 LC1 LC2          LC1         LC2 

Class probability 63% 37% 80% 20% 64% 36% 61%  39%  

ASC
2
 -4.748*** 

(0.388) 

-20.051 

(393.955) 

-60.379 

(48.411) 

-124.727 

(180.966) 

-4.782*** 

(0.387) 

-35.647 

(0.2D+07) 

-5.502*** 

(0.747) 

 -5.501*** 

(0.669) 

 

SSFR  

(Below current rate) 

0.125 

(0.084) 

0.328* 

(0.177) 

0.445*** 

(0.145) 

-0.434 

(0.539) 

0.111 

(0.090) 

0.227 

(0.200) 

0.065 

(0.090) 

0.258 

(0.192) 

0.304* 

(0.171) 

0.846** 

(0.342) 

SSFR  

(Above current rate) 

0.270*** 

(0.082) 

-0.229 

(0.297) 

0.426** 

(0.179) 

-0.531 

(0.719) 

0.271*** 

(0.084) 

-0.357 

(0.281) 

0.339*** 

(0.090) 

0.056 

(0.203) 

-0.467 

(0.364) 

0.545 

(0.417) 

Dibbling -0.081 

(0.061) 

-0.303** 

(0.129) 

-0.402*** 

(0.129) 

-0.978 

(1.187) 

-0.074 

(0.071) 

-0.355** 

(0.148) 

-0.080 

(0.071) 

-0.125 

(0.101) 

-0.294** 

(0.138) 

-0.149 

(0.192) 

Expected yield 0.047** 

(0.022) 

0.220*** 

(0.063) 

0.147*** 

(0.037) 

1.476* 

(0.814) 

0.040* 

(0.022) 

0.216*** 

(0.051) 

0.037* 

(0.022) 

0.0674 

(0.095) 

0.250*** 

(0.072) 

0.162 

(0.186) 

Yield variability  -0.047* 

(0.026) 

-0.512*** 

(0.086) 

-0.478*** 

(0.098) 

0.121 

(0.546) 

-0.040 

(0.028) 

-0.532*** 

(0.093) 

-0.036 

(0.029) 

-0.075 

(0.067) 

-0.512*** 

(0.090) 

-0.522*** 

(0.127) 

Improved seed 0.279*** 

(0.063) 

0.031 

(0.154) 

0.116 

(0.122) 

5.534** 

(2.563) 

0.273*** 

(0.067) 

-0.080 

(0.184) 

0.290*** 

(0.072) 

0.317** 

(0.123) 

-0.023 

(0.156) 

-0.001 

(0.224) 

CFS (10000 NGN) 0.032* 

(0.017) 

-0.070* 

(0.040) 

-0.052 

(0.036) 

0.207 

(0.129) 

0.037** 

(0.019) 

-0.089** 

(0.038) 

0.034* 

(0.019) 

-0.051 

(0.055) 

-0.063 

(0.039) 

0.182** 

(0.090) 

Log likelihood -2405.50 

4845.00 

4969.36 

-2391.00 

4820.00 

4904.07 

-4067.06 

4895.20 

5000.90 

-4067.06 

4856.90 

5049.60 

AIC 

BIC 
LCM = standard latent class model, SALCM = scale-adjusted latent class model; conventional ANA = conventional attribute non-attendance model; validation ANA = validation 

attribute non-attendance model; LC = latent class; AC= attributes considered or attended to, AI= attributes ignored or non-attended to,  
1 

Without membership function, the signs and significance of coefficients as well as latent classes closely compares to the results with membership function except for 

SALCM,  
2 
ASC is weakly identified in SALCM and class 2 of the other models as can be seen from the large values of the estimates due to a non-convergence challenge,  

Number of observations is 1106,  

SALCM has two scale classes.  Scale class 1has class probability of 48% and a scale factor set to unity. Scale class 2 has class probability of 52% and a scale factor of 0.08,  

Standard error reported between parentheses,  

Significant coefficients at * p < 0.1, ** p <0.05 and *** p <0.01.  
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Table A2: Results of multinomial logit models estimating membership function  

 
LCM SALCM 

conventional 

ANA 

validation 

ANA 

Constant 

 

-2.953*  

(1.587) 

-1.526* 

(0.813) 

-2.818* 

(1.511) 

-2.214      

(1.440) 

Age  

 

-0.046*** 

(0.015) 

-0.024*** 

(0.008) 

-0.043***       

(0.014) 

-0.049*** 

(0.014) 

Education 

 

-0.089*** 

(0.030) 

-0.046*** 

(0.016) 

-0.079*** 

(0.026) 

-0.088*** 

(0.026) 

Labor 

 

0.105  

(0.102) 

0.066 

 (0.052) 

0.093 

(0.110) 

0.108 

(0.093) 

Farmer association 

 

0.747**  

(0.372) 

0.410**  

(0.193) 

0.776** 

(0.336) 

0.794** 

(0.336) 

Off-farm income 

 

0.699  

(0.596) 

0.345  

(0.306) 

0.539 

(0.591) 

0.565 

(0.563) 

Assets 

 

0.318*** 

(0.130) 

0.181*** 

(0.066) 

0.312*** 

(0.119) 

0.279** 

(0.113) 

Agricultural credit 1.175*** 

(0.452) 

0.620*** 

(0.229) 

1.068** 

(0.423) 

1.188*** 

(0.432) 

Extension 

 

0.671** 

(0.315) 

0.331**  

(0.162) 

0.460 

(0.296) 

0.729** 

(0.300) 

Distance to road 

 

0.132*** 

(0.049) 

0.060*** 

(0.023) 

0.112*** 

(0.043) 

0.124*** 

(0.044) 

Significant coefficients at * p < 0.1, ** p <0.05 and *** p <0.01, Latent class 2 as reference class. 

 

 


