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Abstract

Acts are functions from states of nature into finite-support
distributions over a set of "deterministic outcomes". We
characterize preference relations over acts which have a numerical

representation by the functional J(f) = min(
.1 
uofdP I P e C) where

f is an act, u is a von-Neumann-Morgtnstern utility over outcomes,
and C is a closed and convex set of finitely additive probability
measures on the states of nature.

In addition to the usual assumptions on the preference relation
as transitivity, completeness, continuity and monotonicity, we assume
uncertainty aversion and certainty-independence. The last condition
is a new one and is a weakening of the classical independence axiom:
It requires that an act f is preferred to an act g if and only if
the mixture of f and any constant act h is preferred to the same
mixture of g and h. If non-degeneracy of the preference relation
is also assumed, the convex set of priors C is uniquely determined.

Finally, a concept of independence in case of a non-unique prior
is introduced.
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By Itihak Gilboa and David Schmeidler

1. INTRODUCTION

One of the first objections to Savage's paradigm was raised by Ellsberg

(1961). He suggested the following mind experiment challenging the expected

utility hypotheses: Subject is asked to rank four bets. (S)he is shown two

urns, each containing 100 balls each one either red or black. Urn A contains

50 black balls and 50 red ones, while there is no additional information

about urn B. One ball is drawn at random from each urn. Bet 1 is "the ball

drawn from urn A is black", and will be denoted by AB. Bet 2 is "the ball

drawn from urn A is red", and will be denoted by AR, and similarly we have BB

and BR. Winning a bet entitles the subject $100. The following preferences

have been observed empirically: AB = AR > BB = BR. It is easy to see that

there is no probability measure supporting these preferences.

One conceivable explanation of this phenomenon which we adopt here is as

follows: In case of urn B, the subject has too little information to form a

prior. Hence (s)he considers a set of priors as possible. Being uncertainty

averse, (s)he takes into account the minimal expected utility (over all

possible priors) while evaluating a bet.

These ideas are not new. Smith (1961) suggested to consider an interval

of priors in such situations. He tried to axiomatize this behavior pattern

using the "Odds" concept. Other works utilize the Choquet Integration with

respect to capacities (Choquet (1955)) to deal with the problem of a



non-unique prior. Huber and Strassen (1973) use the Choquet Integral in

testing hypotheses regarding the choice between two disjoint sets of

measures. Schmeidler (1982, 1984, 1986) axiomatizes the preferences

representable via the Choquet Integral of the utility with respect to a

non-additive probability measure. He used a framework including both "Horse

Lotteries" and "Roulette Lotteries", a la Anscombe-Aumann (1963). Gilboa

(1985) obtains the same representation in the original framework of Savage

(1954). (See also Wakker (1986)).

In Schmeidler (1986) it has been shown, roughly speaking, that when the

non-additive probability v on S is convex (i.e. v(AuB) + v(AnB) _>_- v(A) +

v(B)), the Choquet Integral of a real-valued function, say a, with respect

to v is equal to the minimum of (JadP 1 P is in the core of v). The

core of v, by definition, consists of all finitely additive probability

measures that majorize v pointwise (i.e., event-wise). That is to say,

the non-additive expected utility theory coincides with the decision rule we

propose here, where the set of possible priors is the core of v.

However, when an arbitrary (closed and convex) set of priors C is

given, and one defines v(A) = min (P(A) 1 P e C), v need not be convex,

though it is exact (by definition). (See examples in Schmeidler (1972) and

Huber and Strassen (1973).)

Furthermore, even if v happens to be convex C does not have to be

its core. It is not hard to construct an example in which C is a proper

subset of the core of v.

This paper proposes an axiomatic foundation of the maxmin expected
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utility decision rule. As in Schmeidler (1984), some of which notations we

repeat, we use the framework of Anscombe-Aumann (1963).

The main difference among the models of Anscombe-Aumann (1963),

Schmeidler (1984) and the present one lies in the phrasing of the

independence axiom (Sure Thing Principle). Unlike in the other two works, we

also use here an axiom of uncertainty aversion. Similarly to the

non-additive expected utility theory, this model extends classical expected

utility. In general, the theories differ from each other; as mentioned

above, they coincide in the case of a convex v.

The straightforward interpretation of our result is an extension of the

neobayesian paradigm which leads to a set of priors instead of a unique one.

However, with a different interpretation, in which the set C is the set of

possible probability distributions in a statistical decision problem, our

result sheds light on Wald's minimax criterion and on its relation to

personalistic probability. (We refer here to the minimax loss criterion,

which is equivalent to maxmin utility, and not to the minmax regret criterion

suggested by Savage (1954, ch.9).)

In Wald (1950, section 1.4.2), we find: "A minimax solution seems, in

general, to be a reasonable solution of the decision problem when an a

priori distribution in 0 does not exist or is unknown to the experimenter."

Hence our axioms on preferences imply Wald's criterion.

The detailed exposition of the model and the main result are stated in

the next section. The proof is in section 3 and section 4 is devoted to an

extension and several concluding remarks. Especially, we deal there with the

definition of the concept of independence in the case of a non-unique prior.
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Finally we would like to note that different approaches to the

phenomenon of a non-unique prior appear in Lindley, Tversky and Brown (1979),

Vardennan and Meeden (1983), Agnew (1985), Genest and Schervish (1985) and

others.

2. STATEMENT OF THE MAIN RESULT

Let X be a set and let Y be the set of distributions over X with

finite supports

Y = (y: X .4 [0,1] I y(x) 0 0 for finitely many x's in X and

For notational simplicity we identify X with the subset (y E

YI y(x) = 1 for some x in X). of Y.

Let S be a set and let E be an algebra of subset of S. Both sets,

X and S are assumed to be nonempty. Denote by Lo the set of all

E-measurable finite step functions from S to Y and denote by Lc the

constant functions in L. Let L be a convex subset of Y which includes

L. Note that Y can be considered a subset of some linear space, and Y ,

in turn, can then be considered as a subspace of the linear space of all

functions from S to the first linear space. Whereas it is obvious how to

perform convex combinations in Y it should be stressed that convex

combinations in Y are performed pointwise. I.e., for f and g in Y

and a in [0,1], af +'(1-a)g h where h(s) = af(s) + (1-a)g(s) for s E S.

In the neobayesian nomenclature elements of X are (deterministic)

outcomes, elements of Y are random outcomes or (roulette) lotteries and

elements of L are acts (or horse lotteries). Elements of S are states (of

nature) and elements of E are events.



The primitive of a neobayesian decision model is a binary (preference)

relation over L to be denoted by >_. Next are stated several properties

(axioms) of the preference relation, which will be used in the sequel.

(i) Weak order. (a) For all f and g in L: f g or g f.

(b) For all f, g and h in L: If f g and g h then

f >• h.

The relation > on L induces a relation also denoted by on Y:

iff y z where x (s) = x for all x E Y and s E S. When no

confusion is likely to arise, we shall not distinguish between y
* 

and y.

As usual, > and = denote the asymmetric and symmetric parts, respectively,

of

(ii) Certainty-Independence (C-Independence for short). For all f, g

in L and h in L
c 

and for all a in ]0,1[: f > g iff

af + (1-a)h > ag + (1-a)h.

(iii) Continuity. For all f, g and h in L: If f > g and g > h

then there are a and /3 in ]0,1[ such that af + (1-a)h > g

and g> flf + (1-3)h.

(iv) Mbnotonicity. For all f and g in : If f(s) g(s) on S

then f g.

Uncertainty Aversion. For all f, g e L and a e 10,1[: f = g

implies af + (1-a)g f.

(v1) Non-degeneracy. Not for all f and g in L, f g.

All the assumptions except for (ii) and (v) are quite common. The

standard independence axiom is stronger than C-independence as it allows h
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to be any act in L rather than restricting it to constant acts. This axiom

seems heuristically more appealing: a decision maker who prefers f to g

can more easily visualize the mixtures of f and g with a constant h

than with an arbitrary one, hence he is less likely to reverse his

preferences. An intuitive objection to the standard independence axiom is

that it ignores the phenomenon of hedging. Like comonotonic independence

(Schmeidler (1984)), C-independence does not exclude hedging. However,

C-independence is much simpler than and implied by comonotonic independence.

Uncertainty aversion (which was introduced in Schmeidler (1984)) captures the

Phenomenon of hedging, especially when the preference is strict. Thus this

assumption complements C-independence.

Before stating the main result N4e mention that the topology to be used

on the space of finitely additive set functions on is the product

topology, i.e. the weak* topology in Dunford-Schwartz (1957) terms. Recall

that in this topology the set of finitely-additive probability measures on E

is compact.

THEOREM: Let >. be a binary relation on L
o
. Then the following

conditions are equivalent:

(1) > satisfies assumptions (i)-(v) for L L

(2) There exist an affine function u: Y R and a non-empty,

closed and convex set C of finitely additive probability measures

on E such that:

(*) f g iff min fuof dP min fuogdP (for all f, g e Lo).
PEG PEG

Furthermore:

(a) The function u in (2) is unique up to a positive linear

transformation,

(b) The set C in (2) is unique iff assumption (vi) is added to (1).
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3. PROOF OF THE THEOREM

The crucial part of the proof is that (1) implies (2). If (vi) fails to

hold, then a constant function u and any closed and convex subset C will

satisfy (2), hence for the next several lemmatta we suppose assumptions

(i)-(vi).

3.1. Lemma There exists an affine u: Y R such that for all

y, z E Y: z iff u(y) u(z)

Furthermore, u is unique up to a positive linear transformation.

Proof. This is an immediate consequence of the von-Neumann-Morgenstern

theorem, since the independence assumption for L
c

C-independence. (See Fishburn (1970) ch.8).

is implied by

3.2. Lemma Given a u: Y R from lemma 3.1, there exists a unique

J: L
o 

R such that:

(i) f g iff J(f) J(g), (for all f, g e Lo.)

(ii) For f = y E Lc
, J(f) = u(y)

Proof. On L
c 

J is uniquely determined by (ii). We extend J to L
o 

as

follows: Given f E L
o
, there are y, y E Y such that y f y.

By the continuity assumption and other assumptions, there exists a

unique a E [0,1] such that f = ay + (1-a). Define J(f) = J(ay +

(1-a)5). By construction, J satisfies (i), hence it is also unique. 0

We shall henceforth choose a specific u: Y R such that there

are yl, y2 e Y for which u(y1) < -1 and u(y2) > 1. (Such a choice of a

utility u is possible in view of the non-degeneracy assumption.) We denote

by B the space of all bounded E-measurable real valued functions on S

(which is denoted B(S,E) in Dunford-Schwartz). B
o 

will denote the space

of functions in B which assume finitely many values. Let K = u(Y), and



a let B
o
(K) be the subset of functions in B

o 
with values in K. For

7 e R, let 7* E B
o 

be the constant function on S the value of which is

7.

3.3. Lemma There exists a functional I: B
o 

R such that:

(i) For all f E L
o
, I(u0f) = J(f),

(hence I(1*) = 1).

(ii) I is monotonic (i.e., for a, b E Bo:

a b —> I(a) I(b)).

(iii) I is superlinear (that is, superadditive and homogeneous of

degree 1).

(iv) I is C-independent: for any a G Bo and 7 E R,

I(a 7*) = I(a) + I(7*)

Proof. We first define I on B
o
(K) by condition (i). (Lemma 3.2 and the

monotonicity assumption assure that I is thus well-defined.) We now show

that I is homogeneous on Bo(K).

Assume a = ab where a, b E Bo(K) and 0 < a 1. We have to show

that I(a) = aI(b). (This will imply the equality for a > 1.) Let g E Lo

satisfy uog = b. Let z E Y satisfy J(z) = 0 and define f = ag +

(1-a)z. Hence uof = auog + (1-a)uoz ab — a, so I(a) = J(f).

Let y E Y satisfy y = g (hence J(y) = J(g) = I(b)). By C-independence,

ay + (1-a)z = ag + (1-a)z = f

Hence J(f) = J(ay + (1-a)z) = aJ(y) + (1-a)J(z) = aJ(y). Whence

I(a) = J(f) = aJ(y) = aI(b).

We now extend I by homogeneity to all of B
o
. Note that I is

monotone and homogeneous of degree 1 on Bo.



Next we show that I is C-independent (part (iv) of the lemma). Let

there be given a E Bo and 7 E R. By homogeneity we may assume without

loss of generality that 2a, 27* e B
o
 (K). Now define /3 = I(2a) = 2I(a).

Let f E L
o 

satisfy uof = 2a and let y, z e Y satisfy uoy = /3* and

uoz = 27*. Since f = y, C-independence of > implies that

1 1
+ = + z. Hence

2 2
1

I(a+7*) —I(1/3* + 7*) = -g + 7 = I(a) + 7,
2

and I is C-independent.

It is left to show that I is superadditive. Let there be given

a, b e B. Once again, by homogeneity we may assume without loss of

generality that a, b E Bo(K). Furthermore, for the same reason it suffices

1
to prove that I(la + 

1
b) 1I(a) + Suppose that f, g E Lo are such

2 2 2

that uof — a and uog = b. If I(a) = I(b), then f = g and by

1 1
uncertainty aversion (assumption (v)), f + f, which, in turn, implies

I(la + 
1
b) I(a) 1I(a) + 1I(b).

2 2 2 2

Assume, then, I(a) > I(b), and let 7= I(a) - I(b). Set c = b + 7*

and note that I(c) = I(b) + I(a) by C-independence of I. Using the

C-independence of I twice more and its superadditivity for the case proven

above, one obtains:

1 1 1 1 1 1 1 1 1
+ + + + I(c) + +

which completes the proof of the lemma. 0

Recall that the space B is a Banach space with the sup norm 111, and

B
o 

is a norm-dense subspace of B. The next lemma will also be used in an

extension of the Theorem.
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• 3.4. Lemma. There exists a unique continuous extension of I to B.

Furthermore, this extension is monotonic, superlinear and C-independent.

Proof. We first show that for each a, b E Bo, 1I(a) - I(b) 1 .15 ila-bil.

Indeed, a = b + a-b b + ila-b11*. Monotonicity and C-independence of I

imply that I(a) I(b+11a-b11*) = I(b) + ila-bil or I(a) - I(b) Da-bil. The

same argument implies I(b) - I(a) lib-all. Thus there exists a unique

continuous extension of I. Obviously, it is superlinear, monotonic and

C-independent. 0

In the next lemma the convex set of finitely additive probability

measures C of the Theorem will be constructed via a separation theorem.

3.5. Lemma. If I is a monotonic superlinear and C-independent

functional on B with I(1*) = 1, there exists a closed and convex set

C of finitely additive probability measures on E such that: for all

b G B, I(b) = min(fbdP I P e C).

Proof. Let b E B with I(b) > 0 be given. We will construct a finitely

additive probability measure Pb such that I(b) =TbdPb and I(a)

fadPbfor all a E B. To this end we define

— (a e B I I(a) > 1)

D
2 
= cony ((a e B I a 1*) U

(aEB1 b/I(b))).

We now show that Di n D2 — 4. Let d2 e D2 satisfy d2 aal + (1-a)a
2

where a
1 
< 1
* 

a2 I(b) 
<   and. ae[0,1]. By monotonicity, homogeneity and

C-independence of I,

I(d2) a + (1-a)I(a ) 1.

Note that each of the sets D
1, 

D
2 

has an interior point and that they are

both convex. Thus, by a separation theorem (see Dunford-Schwartz (1957)

V.2.8) there exists a non-zero continuous linear functional p
b 

and an a e

R such that:



for all di e Di and d2 E D2, pb(di) a pb(d2). (1)

Since the unit ball of B is included in D
2' 

a > O. (Otherwise p
b

would have been identically zero). We may therefore assume without loss of

generality that a = 1.

By (1), Pb(]*) 1. Since 1* is a limit point of D1, p
b
(1*) >_ 1 is

also true, hence Pb(1*) - 1. We now show that pb is non-negative, or,

more specifically, that pb(lE) 0 whenever 1
E 

is the indicator function

of some E E E. Since

p
b
(1

E
) + p

b
(1* - 1

E
) = p

b
(1*) — 1

and 1* - 1
E 
e D

2' 
the inequality follows.

By the classical representation theorem there exists a finitely additive

probability measure P
b 

on E such that p
b
(a) — fadP

b 
for all a e B. We

will now show that pb(a) I(a) for all a E B, with equality for a — b:

First assume I(a) > O. It is easily seen that a/I(a) + (l/n)* e D
1' 

so the

continuity of pb and (1) imply pb(a) I(a). For the case I(a) 0 the

inequality follows from C-independence. Since b/I(b) E D
2' 

we obtain the

converse inequality for b, thus Pb(b) = I(b).

We now define the set C as the closure of the convex hull of

(P
b 

1 I(b) > 0) (which, of course, is convex.) It is easy to see that I(a)

..5. 
min(f 

adP I P E C). For a such that I(a) > 0 we have shown the converse

inequality to hold as well. For a such that I(a) ... 0, it is again a

simple implication of C-independence. 0

3.6. Conclusion of the proof of the Theorem.

Lemmata 3.1-3.5 prove that (1) implies (2). Assuming (2) define I on

JB by I(b) — min( bdP I P e C), C compact and convex. It is easy to see
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that I is monotonic, superlinear, C-independent and continuous. So, in

turn, the preference relation defined on Lo by (2) satisfies (i)-(v).

We now turn to prove the uniqueness properties of u and C. The

uniqueness of u up to positive linear transformation is implied by Lemma

3.1.

If assumption (vi) does not hold, the range of u, K, is a singleton,

and C can be any non-empty closed and convex set. We shall now show that

if assumption (vi) does hold, C is unique. Assume the contrary, i.e. that

there are C
1 
0 C

2' 
both non-empty, closed and convex, such that the two

functions on L
o
:

Ji(f) = min (JuMO I P E C1)

J2(f) = min (fu(f)dP I P E C2)

both represent

Without loss of generality one may assume that there exists

P
1 EC1 \C2. 

Byaseparation theorem (Dunford-Schwartz (1957) V.2.10),

there exists a E B such that

fadPi < min (fadP I P E C2)

Without loss of generality we may assume that a e Bo(K). Hence there exists

f E L
o 

such that J
1
(f) < J

2
(f). Now let y E Y satisfy y f. We get

J1(y) 
j1(f) < j2(f)

a contradiction.

4. EXTENSION AND CONCLUDING REMARKS

A natural question arising in view of the Theorem is whether it holds

when the set of acts L, on which the preference relation is given, is a

convex superset of Lo. A partial answer is presented in the sequel. It

will be shown that, for a certain superset of Lo' 
the preference relation on



- 13 -

it is completely determined by its restriction to L
o 

should it satisfy the

assumptions introduced in section 2.

Given a weak order on L
c
, an act f: S Y is said to be

E-measurable if for all y E Y the sets (s I f(s) > y) and (s I f(s) y)

belong to E. It is said to be bounded (or, more precisely, ..›.-.-bounded) if

there are yl, y2 e Y such that yl f(s) y2 for all s e S. The set of

all E-measurable bounded acts in Y is denoted by 1,(:). It is obvious

that LW is convex and contains L.

4.1. Proposition: Suppose that a preference relation over L
o

satisfies assumptions (i)-(v). Then it has a unique extension to LW

which satisfies the same assumptions (over LW).

Proof. Because of monotonicity, the proposition is obvious in case that

assumption (vi) does not hold. Therefore we assume it does, and we may apply

lemmatta 3.1-3.4. We then define the extension of > (also to be denoted by

..>.) as follows: f g iff I(u(ff) I(u(g)). It is obvious that

satisfies (i)-(v) and that > on LW is the unique monotonic extension

of on L
o
. 0

4.2. Remark. Suppose that > satisfies (i)-(v) over L, which is convex

and contains L. Then, in view of the previous proposition, may be

represented as in the Theorem on L n

We now introduce the concepts of independence of acts and products of

binary relations.

Suppose that a given preference relation > satisfies (i)-(vi) over

L
o
. By proposition 4.1 we extend it to L L(.>..) and let u and C be as

in the Theorem. Two acts f, g e L are said to be independent if the

following two conditions hold:
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(1) There exists P
o 
e C such that

fuofdP0 — min (fuofdP I P e C)

and

fuogdP0 = min (fuogdP I P E C)

(2) uof and uog are two stochastically independent random variables

with respect to any extreme point of C(for short: Ext(C).)

As expected, this notion of independence turns out to be closely related

to that of product spaces, once the latter is defined. We will refer to a

triple (S, E, C) as a non-unique probability space. Given two non-unique

probability spaces (Si, Ei,Ci) i — 1,2, we define their product (S, E, C)

as follows:

S = 
1 
x S

2' 
— E

l 
0 E

2 
and C is the Closed convex hull of

(P
1 oPIP1 EC1' 

P
2 
EC

2 
).

2 

Suppose that for a given set of outcomes X, there are given two acts

spaces L
o 

Y >
i

= 1,2, and two preference relations correspondingly,

1
such that the restrictions of >_ and >_

2 
to Y coincide. As before, we

i
suppose that each > satisfies (i)-(vi) and we consider its extension to

S
1
xS
2

L
i 

— L
i
(>_). For the product acts space L

o 
Y we define the product

preference relation > = >
1 

>
2 

as derived from u and C. It is obvious

that also satisfies (i)-(vi), and it has a unique extension to L = LW.

Given f
i 
E L

i 
it has a unique trivial extension f E L.

Now we formulate the result which justifies our definition of

independence:

4.3. Proposition. Given L
2
,

.2 
and L as above, >. is the

unique preference relation over L satisfying:
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- (1) assumptions (i)-(vi);

(2) for all fi, gi E Li, fi >igi iff f _>_- g (i — 1,2).

(3) for all f E L
1 

and g E L
2
, k and g are independent.

Proof. It is trivial to see that indeed satisfies (1)-(3). To see that

it is unique, let _>.' also satisfy (1)-(3). By (1) and our main result, >'

is representable by a utility u' and a convex and closed set of finitely

additive measures C'. By 3.1 we assume without loss of generality that

U = u'.

We now wish to show that C' — C.

Step 1: C' c C.

Proof of step 1: As C is convex, it suffices to show that Ext(C') c C.

Let, then, Po E Ext(C'). Define P. to be the restriction of P
o 

to E.

(i — 1,2). Choose A E E
l 

and B E
2' 

and let f E L
1 

and g E L
2

satisfy uof =1A, u og — 1B. Since k and g are independent, they are

independent with respect to Po. Hence Po(AxB) = Po(AxS2)P0(S1xB)

P
1
(A)P

2
(B). This implies P

o 
0 P

2 
G C.

Step 2: C c C'

Proof of step 2: We begin with

Step 2a: If El and E2 are finite, then C C C'.

Proof of step 2a: By a theorem of Straszewicz (1935), it suffices to show

that P1 0 P2 E C' for all P1 E Exp(Ci) and P2 E Exp(C2), where Exp(C)

denotes the set of exposed points in C, i.e. the points at which there

exists a supporting hyperplane which does not pass through any other point of

C. Let there be given, then, P1 e Exp(Ci) and P2 E Exp(C2). Let f E L1

and g E L
2 

be such that

fuofdPi — min (SuofdP I P E C1)
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and

fuogdP2 — min (fuogdP 1 P E C2)

By the independence of f and g, there exists P
o 
E C' for which

f 

_
uo -tdP and uogdP are minimized simultaneously. By step 1, Po E C, hence

there are P E C and P E C such that P = P 0 P However,
1 1 2 2 o 1 2.

fUOLIP0 = fuofdP1 
1 and uogdP0 = uogdP2. By the uniqueness property of

Exp(Ci) (i = 1,2), we obtain P
1 

P
1 

and P • Hence P
1 
0 P — P

o 
E

C, and step 2a is proved.

We will now complete the proof of step 2. Assume that, by way of

negation, Ci\C 0 i. • > >'. As in the proof of the Theorem, there

exists f E Lo 
and y E Y such that f > y* and y* >' f. Consider the

finite sub-algebra, say 2, of E generated by f. There are Ei finite

sub-algebras of Ei (I — 1,2), such that 2 c E' - El ® Next consider

the restrictions of >. to the E.-measurable functions, and the
1 1

restrictions of to E'-measurable functions. Obviously, both and

satisfy requirements (1)-(3) of the proposition, although they differ on

the set of E'-measurable functions (to which f and y* belong.) This

contradicts step 2a, and the proof of the proposition is thus completed. 0
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