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ABSTRACT

Several procedures are proposed for testing the specification

of an econometric model in the presence of one or more other models

which purport to explain the same phenomenon. These procedures are

shown to be closely related, but not identical, to the non-nested hypo-

thesis tests recently proposed by Pesaran and Deaton [7], and to have

similar asymptotic properties.. They are remarkably simple both con-

ceptually and computationally, and, unlike earlier techniques, they

may be used to test against several alternative models simultaneously.

Some empirical results are presented which suggest that the ability of

the tests to reject false hypotheses is likely to be rather good in

practice.



Introduction

One of the major functions of econometrics is to test the validity

of models put forward by economic theory. Most techniques for hypothesis

testing in econometrics, however, simply allow one to test restrictions on

a model more general than the one being tested, conditional on the more

general model being valid. A striking exception to this generalization is

a technique recently suggested by Pesaran and Deaton [7], based on the

earlier work of Cox [2,3] and Pesaran [6]. The procedure they propose,

henceforth referred to as the Cox-Pesaran-Deaton or CPD test, allows one to

test the truth of a possibly nonlinear and multivariate regression model,

when there exists a non-nested alternative hypothesis. The latter need not

be true, and need not even be a hypothesis which the investigator would

seriously maintain.

In this paper, we propose several related procedures for doing

essentially the same thing as the CPD test. For simplicity, we consider

only univariate models. Our tests are conceptually much simpler than the

CPD test, can readily be implemented using existing computer sbftware, and

can handle several alternative hypotheses simultaneously. In Section 1 we

describe our test procedures; in Section 2 we present some theoretical

results on the relationships among them and between them and the CPD test;

and in Section 3 we present some empirical results on the application of

our tests to the data and models investigated by Pesaran and Deaton.

1. A Simple Test for Specification Error

We consider initially, the case of a single-equation, possibly non-



linear regression model, the truth of which we wish to test,

H
O
: y

i 
= f

i
(X

i 
+ E (1)

where yi is the -it observation on the dependent variable, Xi is a vector

of observations on exogenous variables, 13 is a k-vector of parameters to

be estimated, and the error term 6 is assumed to be NID (0,a
2
).Oi 0

Suppose that economic theory suggests an alternative hypothesis,

though not one in which we need have any faith,

H
1
: y

i 
= g

i
(Z,y) + cli 2)

where Z. is a vector of observations on exogenous variables, y is an

k-vector of parameters to be estimated and Eli is NID(0,G1
2
) if H1 is true.

We assume that H
1 

is not nested within H
0 

and that H
0 

is not nested within

H1. Thus the truth of Ho implies the falsity of H1, and vice versa.

Consider the possibly nonlinear regression

y.
1 
= (1- )fi(Xj,) -I- a gi (3)

where gi = gi(Zi,y) and y is the ML estimate of y. If H is true, then the

true value of a is zero. Now gi is simply a function of the exogenous

variables Z. and the parameter estimates y. The former are independent

of E.
1 

by assumption. Asymptotically, the latter are also independent of

E., because the influence of any particular error term on the estimates

tends to zero as the sample size tends to infinity. Thus, asymptotically,

gi will be independent of ci, so that one may validly test whether a = 0

in (3) by using a conventional asymptotic t-test or, equivalently, a like-

lihood ratio test.



An even simpler way to test the truth of Ho would be to estimate

/N.

yi =(1-)yag.+E., or y. - f. = a(g. - f.) + E., (4)

where f. = f(X
i However, the t-statistic for a from (4) provides a

test the asymptotic size of which is smaller than its nominal size, as we

shall demonstrate in the next section. In order to rectify this, it is

possible to compute an asymptotically valid standard error for a from (4)

by doing an auxiliary regression and some other simple calculations, but

that is not the simplest approach. Instead, one merely needs to estimate

a regression which is the linearization of (3) about 13 = 13:

f. = a(g. - f.) F.b E. (5)

where F. is a row-vector containing the derivatives off with respect to

the parameters fi for the ith observation, evaluated at 13. It is clear that

(3) and (5) will yield identical estimates of a and its standard error if

H0 
isalinearregressionmdel, since i n that caseF..x.and f. = X13 is

simply a linear combination of the regressors. In the nonlinear case (3)

and (5) will yield different results in small samples, but we shall show

that they yield identical results asymptotically when Ho is true.

We have thus suggested three procedures for testing the validity of

H0' 
The first procedure, based on (3), will be referred to as the 3-test,

since it involves estimating a and 13 jointly. It is extremely easy to use when

H is linear. The second procedure, based on (4), will be referred to as the

C-test, since it involves estimating a conditional on 13. Since the t-statistic

from (4) asymptotically has variance less than unity under H
0' 

(4) may be all

that one has to estimate to reject Ho. The third procedure, based on (5), will

be called the P-test, for reasons that will become clear later on. It is likely



to be much easier to perform than the 3-test when Ho is nonlinear, because

the latter involves a nonlinear regression which may not be well-behaved.

Thus we recommend the J-test when Ho is linear, the P-test when Ho is non-

linear, and the C-test as a simple preliminary test when Ho is nonlinear and

F. is not easy to calculate.

It is obvious that, if H1 is true, the estimates of a from 3), (4)

or (5) will converge asymptotically to one. This suggests that one could

test the truth of H
1 
without doing any more regressions. That is not quite

true. The t-statistics from (3) and (5) are conditional on the truth of H0'
not on the truth of H1. Thus, as we indicate in the next section, a t-

statistic which is valid for testing the truth of Ho will not be valid for

testing the truth of H1. If one wants to test H1 the simplest procedure is

simply to reverse the roles of H
0 

and H1 and carry out the test again. When

this is done, it is conceivable that both hypotheses may be rejected, or that

neither may be rejected. It is also conceivable that one may be rejected and

the other may not be, in which case one would presumably .want to choose the

latter over the former. However, like the CPD test, our procedures are really

designed for testing model specification, not for choosing among a number of

competing models. If one simply wants to choose one out of a set of competing

models, one should use some sort of information criterion (see, e.g. Sawa

[8]), rather than our procedures or the CPD test.

Unlike the CPD test, our J- and P-tests can be used to test the truth

of a hypothesis against several alternatives at once. To test Ho against

alternative models gi(Zji, yj) by a 3-test, one would simply estimate



_ 5_

= (1 - End./ cxj)fpi, Z =1
 

g + c ( 6j '

and perform a likelihood ratio test of the restriction that all the a.'s

are zero. For the P-test, one would estimate

^
= Em (g f.) F.b + Ej=1 j ji 7)

and perform the same likelihood ratio test. If there are several quite

different alternative hypotheses, this seems a more natural procedure than

testing Ho against each of them singly.

A different approach to testing non-nested regression models is

to form a compound model from two or more alternative hypotheses and test

the restrictions implied by only one of them being true. There is a close

relationship between this approach and ours, which can easily be demon-

strated for the case where both H
0 

and H
1 
are linear models,

H
0 
: y. = X. 

1 
+ + E

1 1 12 01
(8)

H (9)1'
• 

Yi = Zgl WiY2 "i" 61i.

Here X. and Z. denote vectors of regressors which are unique to 
Ho 

and H

respectively, and Wi denotes the regressors which are common to both hypo-

theses. One may form the compound model

yi = (l-a)X 1 + Wi [(1-a.)fi2 + aye] + aZiy, + ci (10)

and test whether ay, = 0 using an F test, a procedure suggested by Atkinson

[1] and discussed by Pesaran [6] as an alternative to the CPD test. Our

J-test involves estimating the compound model

) (X01 + W02) + a ^
(WiY2

which can be rewritten as

•Y + c.
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yi = Xj131 + Wi ( 2 al2) aZiYi Ei (12

where = (1-413j. The only real difference between (10) and (12)5 in

terms of parameters which are identifiable, is that in the latter, yl is

restricted to be proportional to yl.
2 

Thus in cases where there is only

one regressor in Ho that is not in H/5 the 3-test will yield exactly the

same results as the compound model approach. In other cases, the two pro-

cedures will not yield the same results.

The procedures we have proposed are conceptually much simpler than

the CPD test, and computationally somewhat simpler, especially for nonlinear

models. Before advocating their use, however, we must investigate their pro-

perties and compare them to those of the CPD test. That is done in the next

section.

2. Asymptotic Properties of the Tests

In this section, we shall derive the asymptotic distributions o

various test statistics, on the assumption either that Ho (equation (1)) is

true, or that H
1 (equation (2)) is true. Completeness requires a discussion

of the case in which neither is true; unfortunately nothing specific can be

said without knowing what is true, and the possibilities here are too numerous

for any general conclusions to follow. Here we shall simply remark that all

the tests we consider are capable of rejecting both Ho and H1.

We shall make the following assumptions:

(Al) Either or H H
nu 5is true5wth true parameters - 5 

as in (1) or (2) i or 
°04)

(Y1 5 4).

(A2) The vectors X. and Z. . are non-stochastic for all i = 1, ... n, and are1 

fixed in repeated samples.
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(A3)Let the matrices of partial derivatives with respect to or y

of the functions fi and gi be denoted by F(3) and G(y), where these

matrices are n x k and n x 2,-, their transposes are F (13) and G
T
(y).

Then, as n 00, the matrices

1 T 1 Tn F ()F(), n G (y)G(y), T
WG(y)

converge to well-defined finite limits for all bounded P, and y, the

first two being positive definite and the third non-zero.
3

for it is

Now let us consider regression (3). The log-likelihood function

1 
L(ot,,13,a)= yn log 27 - --an log a

2 
- 20,2 11 y )f() agli

2 
.

Here y, f(i3) and g denote n x 1 vectors of yi, fi(Xi ,p.), and gi(Zi,y), and

11-11 denotes the Euclidean norm of a vector. The likelihood equations,

which are the first-order conditions for a maximum of L, are obtained by

setting to zero the following partial derivatives:

La = (1/a2)(g - f(13))T(y - (l-a)f() a;),

L = (1/G
2
)(1-a) F (y - (1-0)f() - cog),

L = - (n/2G
2 
) + (1/204) y - (1-c)f() (1112 (13)

a
^

The ML estimates a, ps and G 
2 
satisfy the likelihood equations, and consequently

their probability limits under Ho satisfy the equations

plim 
Aja,(3,a )

n = 0
u " (a,,a

2 ,
(3 )

in obvious abbreviated notation. It is immediate from 13 that these limits

are 0, 13.
o 
and G2 respectively. Then as usual we have:0

a

- (30
"2 2
G G

0

2 —--La(0, Pb, Go)

L(0, , a2
0
)

130 
2L 

2(00, 
0
0
)

-G

(14)



where 1, the information matrix, is defined by

= plimo (1/n) D2L(0,(30, u02)],

and '-' relates quantities whose difference has a probability limit of zero.

We readily obtain that

= lim  1
n-->co nu

T.
0

0

0 0 n/2u
2

119 fl I 2

FT(g-f)

(g_f

F
T
F

(15)

where F and f without .subscript denote F(130) and f(i3
0 
) respectively.

We obtain from (1), (14) and the inverse of 1 that

iFfa— 14-1(g-f) Moc0/11M0(g-f)112

where

Mo = I - F(FTF)- 
1FT.

(16)

17)

It is asymptotically correct to replace g in expression (16) by g E g(y )

where yo = plimoy. This is so since yo is defined by the equation

1 Tlim G (y ) (g(y )n 0 0 - f(P.0)) = 0

(from the likelihood equations for the regression y = g(y) + and since a

calculation similar to that above yields

g -g - G(G G + E (g.-f.)D
2
gi)

-1 
Gi g-f-60).

(D2 again denotes the Hessian and G E G(y0)). Our assumptions are sufficient

to ensure that the second term here has a probability limit of zero. Hence

41- a is asymptotically normal with mean zero.

The estimate of the variance of Ai:-/Ci from the regression is

^
na
2 
/11M0() (g f(0)11

2

and it is clear that this tends in probability to the variance of the right-

hand side of (16). We have thus proved



Lemma 1 The t-statistic for a generated by regression 3 is asymptotically

distributed as N(0,1) if Ho is true.

This lemma deals with the J-test procedure. We now briefly consider

the C-test procedure, which is based on regression (4). The estimate of a

from (4) is

[(g_f) (y--"o] / 11/6--?11 2, (18)

where f denotes f(13) and 13 is now the ML estimate from 1 If H is true,
^

it is easy to see that f f (I - M 
'

)6 so that

^

f MOE0 (19)

^
The estimate of the variance of Viia from 4 is

2 -2
na Ilg-fil (20)

^2
where a is the estimate of a

2 
from (4), which is obviously consistent under

HO. The variance estimate (20) is asymptotically biased, however. This

situation has been analysed by Durbin [4], who shows how to obtain a correct

estimate by the use of consistent estimators of the various components of the

information matrix. Using (15) and Durbin's prescription, or alternatively

by direct calculation from (18) and (19), one can easily show that a consistent

estimator of the variance of Viia is any estimator which converges in probability

to

na211m0(g....f)112 /

(21)

Now observe that expression (21) is smaller than the probability limit of (20)

under H
0' 

since M
0 

is an orthogonal projection matrix, so. that

11M (9-f)112 < Ilg-f112-

Thus a crude test based on (4) will be valid in the sense that the true
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(asymptotic) probability of Type I error will be no greater than the size

of the test.

One can of course compute a correct C-test statistic by using an

estimate of (21), but it is easier to make use of the P-test procedure,

which is based on regression (5). In vector notation, (5) is:

f = (9-f) Fb + E. (22)

To show the validity of this procedure, we make use of a theorem of Lovell

[5], which can be stated as follows. The estimates of the parameters c and

of their, variances will be identical whether one estimates Y = Xc + Zd + u

or M
z
Y = M

z
Xc + u, where Y is a vector of dependent variables, X and Z are

matrices of independent variables, u is a vector of errors, and Mz = I
^ ̂  ^ ^

- Z(ZTZ)-1ZT. Identifying g-f with X and F with Z, and noting that Mo(y-f)

= y-f identically, we conclude that, so far as the estimate of a is concerned,

(22) may be replaced by the equivalent regression:

y - f = aMo(g - f) + c. (23)

The name "P-test" derives from this regression, in which the projection matrix

M
0 

explicitly appears.

From (23) it is obvious that the estimate of a from 22) will be
^ ^

aP = (g f) MO(Y-f) / 11M0(g-f)112,

and that the OLS estimate of the variance of A. a will be.

where a

under H0'

nC;211M06--/611-2,

(1/(n-k-1 )) ly-

(24)

(25)

^ ^ ̂  2
M
0 
(g--011 . From (19 we may conclude that,P 

VFot 
- 

(g-f)TM 
 060/11M0(g-f)112'

the variance of which is indeed the probability limit, under

(26)

of the
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estimate (25). Since a is obviously normally distributed with mean zero,

we have proved

Lemma 2: The t-statistic for a generated by regression 5 is asymptotically

distributed as N(0,1) if Ho is true.

Note that (16) and (26) are identical, so that, asymptotically under
. n

H0, 
a and a will be equal, and that both will also be perfectly correlatedJ P

with ac (see (18) and (19)).

If in any of the regressions (3), (4) or (5), the estimate a is signi-

ficantly different from unity, then one may conclude that H1 is not sustained

by the data. This follows from an argument similar to the one used above to
A

prove that the estimate of the variance of a from (4) is biased upwards. Again,

the method of Durbin [4] can be used to obtain a valid variance estimate, but

it will generally be simpler just to invert the roles of Ho and H1 in one of

the regular procedures when one wishes to test the latter.

We now turn our attention to the statistic used by Pesaran and Deaton

[7] for what we have called the CPD test. The numerator of their statistic

is

T
0 
= —

n 
log (2

^2
1 /a10) 

(with 
;210 

- ̂ 2 ^2
= GO a )a • (27)

^2 ^2Here a/ is the ML estimate from the regression y = g(y) + c, ao is the ML

^2estimate from the regression y = f(13) + E, and aa is the ML estimate from an

auxiliary regression f(iB) = g(y) + Ea. The assumptions made by Pesaran and

Deaton are the same as ours, and their notation is only slightly different.

As the logarithm in (27) is difficult to work with, we perform a

Taylor expansion of it around unity and retain only the term of leading order,

so as to obtain a statistic S which is asymptotically equivalent to T
0 
/VT.

4

If we make the definition
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T0/ - in72)log(1-2S/Ifii) (28)

then we see that

T /1-n- = 2S2//+0 • •

so that

/IT r,^2 "2, 2
= T

= -1  
[(f)T(f)

(31-;)]/[1 (Y-;)T(Y-;)]2fif (29)

where g = g(y), and y is the ML estimate of y from the auxiliary regression.

It is easy to see that g, like g, has probability limit g E g(y0), where as

before yo E plimoy. This implies that the auxiliary regression in the CPD

^2procedure is quite unnecessary, since aa can validly be replaced by
" 

(1/n)11g-f11
2 
, under Ho. Of course if Ho is not true, this replacement will

yield different results. In either case, we obtain that, under Ho:

[(1/4T)(f-OT
1
060] / [a2 + (1/ )11f-g112]. (30)

Comparison of (30) with (16) or (26) shows that S is asymptotically perfectly

correlated with all the a's, with correlation coefficient minus one.

Pesaran and Deaton give for an estimate of the variance of To the

expression

"2 "4 ^ T
CIO(TO) = (G0/a10)(f-g) M(P)( -g)

and it is clear from (30) that, asymptotically,- V (T0)/n is equal to the

variance of S. This result is noteworthy because the variance of S follows

immediately from (30) from first principles, whereas Pesaran and Deaton's

derivation of V0 (T0 ) uses a lengthy calculation based on a general and by no

means elementary result of Cox [2].

In summary, then, we have

Lemma 3: When H0 is true, the N0-statistic of Pesaran and Deaton, which is
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defined as T
0 
/(V (T
0' 

is asymptotically equal to minus the d- and P-test

statistics.

We now examine the power of our tests and of the CPD test. The

power of a test is defined as one minus the probability of Type 11 error

(see, for example, Silvey [9], Chapter 6). For our purposes, a Type II error

is committed whenever a test fails to reject Ho when it is false. We restrict

our attention to asymptotic results for the case where H1 is true, and shall,

for the sake of brevity, consider only the P-test and the CPD test.

First, it is easy to see that the plimi of a (i.e., the plim under

is unity, and that the plimi of the estimate of the variance of Ina is

where g =

no
-2
1 /II

9(11),

(g.4)112,

= plim
1

f(y and Mo = M0( 1). Then if we make

the definition

U E (1/n) IIM (g-f)112

and denote the P-test statistic by Np, we conclude that

plimi (31)

A somewhat lengthier calculation gives the corresponding result

for the CPD statistic, No:

- plimi No/In- = 1/2(U + V + a) log[l + (U+V)/4]/[14(U + c5.1)]2, (32)

where we have made the definitions:

(1/n)llyg-f)112,

E (1/011M0yg-f)112,

w.r."1"( )nt 11-1 nTlMl = I - G(Y2fLu avuo(2/..1 u a2

with y2 = plim y not necessarily equal to yl.
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It can readily be seen that the variances of both Np/Vii- and

N
0 
/firare of order l/n as n co. Since the expressions (31) and (32) are

plainly of order unity, we can conclude that as the sample size tends to

infinity, both the tests reject H
0 

against H
1 
with probability unity when

H
1 

is true. It does not appear to be possible to conclude that one test

will be more powerful than the other.

There remain a great many interesting questions related to the

small-sample behavior of the various tests, which we intend to examine in a

future paper. For now, we merely remark that the performance of all the tests

appears to be quite similar in small samples, and that the ability of the tests

to reject false hypotheses, even when testing against other false hypotheses,

appears to be rather good. These remarks are illustrated by the empirical

results of the next section.

3. Empirical Results

In this section we apply the test procedures we have proposed t

the data and models investigated by Pesaran and Deaton. They considered five

simple models of the relationship between real consumption and real personal

disposable income, denoted by H1 to H5, using U.S. quarterly seasonally ad-

justed data for 1954-2 to 1974-3. According to H1, consumption depends

linearly on current income and a measure of wealth; according to H2, it

depends linearly on current income and consumption lagged one period; accord-

ing to H3, it depends multiplicatively on current income and lagged consumption,

but with an additive error term; according to H4, it depends on current income

and on all past income with geometrically declining weights; and according to

H5 it depends on current income and on incomes for the past 21 quarters with

weights lying on a second degree polynomial. More detailed discussions of
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these five hypotheses, together with estimates of all of them, are provided

in [7]. Since none of the hypotheses is of much economic interest, because

they were deliberately kept very simple for purposes of illustration , we

do not reproduce that material here.
5

Table I presents the results of pairwise tests of each model, HI

through H5, against each of the other models. Each group of four rows relates

to a particular hypothesis being tested. The first element in each off-

diagonal entry is the value of the CPD No-statistic, from Table II of [7].6

The second element is a test statistic for the J-test. Where the hypothesis

being tested is linear (H1, H2 and H5), this is simply the t-statistic associated

with the estimate of a from (4). Where the hypothesis being tested is nonlinear

(H
3 

and H
4
) this is the square root of twice the difference between the log-

likelihood function for equation (4) evaluated at the maximum and evaluated

at (0,), a quantity which is asymptotically distributed as N(0,1) if the

hypothesis under test is true. We present this test statistic rather than an

estimated asymptotic t-statistic because we sometimes had difficulty numerically

evaluating the latter. The third element in each off-diagonal entry is the

value of the t-statistic from (4), as computed by the regression package, and

the fourth element is the P-test statistic. This fourth element is omitted

when the hypothesis being tested is linear, since the P-test is identical to

the J-test in that case.

Several features of Table 1 are worthy of note. First of all, as

the fact that their asymptotic correlation is unity suggests, the J- and P-

test statistics tend to be very similar. Secondly, inferences from the J-

and P-tests are basically the same as inferences from the CPD test. Since we

are applying asymptotic tests to estimates based on only 82 observations,

let us, conservatively, take 2.5 as a critical value. Then the CPD test



- 16 -

rejects Ho in 12 cases out of 20, •the P- and J-tests reject Ho in 13 cases,

and all three tests reject Ho in 11 cases. In two of the three cases where

our tests and the CPD test yield different inferences, the actual values

of the test statistics are not that far apart, so that there is serious

conflict in only one case out of 20. Another interesting feature of Table 1

is that the ordinary t-statistic from (4), although not as likely to reject

hypotheses as the J- or P-tests, is nevertheless quite useful. It rejects

H
0 

in nine of the thirteen cases where both the other tests do so.

As one would expect from Lemma 3, a positive value of the CPD

N0-statistic is usually, but not invariably, associated with negative values

of the J- and P-test statistics, and vice versa. Remember that the lemma

holds only asymptotically and only if Ho is in fact true. Thus these results

emphasize the fact that, despite their perfect negative asymptotic correlation

when H
0 

is true, the CPD test and the J- and P-tests are different procedures,

which can yield different inferences.

Finally, it is interesting to observe that large values of the J-

and P-test statistics tend to be associated with extremely large values of the

CPD statistic. This phenomenon has been observed in several other sets of

data as well. It is presumably related to the possibility that expression

(32) may be very much larger than (31) when U is large and W is small relative

to U. This may be a disadvantage of the CPD procedure, because it may

condition investigators to expect enormous values whenever a hypothesis is

false, and to be skeptical of values between say, 2.5 and 3.5.

As noted earlier, our procedures allow one to test a hypothesis

against several alternative hypotheses simultaneously, by estimating equation

(6) or (7) and testing whether all of the ai's are zero. We employ a standard

likelihood-ratio test. When each of H1 through H is tested against
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the other four hypotheses jointly, the test statistic would be asymptotically

distributed as chi-squared with four degrees of freedom if the hypothesis

under test were true. These test statistics are: for H
1' 69.236; for H2'

30.840; for H
3' 

18.798 (J) and 15.884 (P); for H
4' 

44.795 (J) and 59.240 (P);

and for H5, 83.080. Since the .005 critical value for x2(4) is 14.86, it is

clear that all five hypotheses must be rejected, most at an extremely high

level of significance.

Conclusion

In this paper we have proposed several new procedures for testing

the validity of regression models, provided there exist non-nested alter-

native hypotheses. These tests behave very much like the existing CPD test,

except that they less often produce enormous test statistics. They are re-

markably simple to compute. When Ho is linear, one merely has to run one

extra linear regression to test it. When Ho is nonlinear, one either has

to run one extra nonlinear regression (for the J-test), or calculate the

derivatives of the model evaluated at f3 and run one extra linear regression

(for the P-test). Since the tests are trivially easy to implement, and

since finding alternative models is rarely difficult, there would appear to

be no barrier to their widespread use in applied econometric work.
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TABLE 1

Pairwise Tests for H through H5

Alternative Hypothesis:
5

Tested hypothesis: -233.45 -47.08 -29.30 -28.30 0.71
6.84 7.10 4.78 1.34
6.96 7.22 4.33 0.72

0.37 -214.25 -3.38 -2.58 0.96
-0.40 3.29 1.97 3.75
-0.10 2.54 1.39 0.59

1.08 2.68 -213.15 -1.86 1.43
-1.19 -2.91 1.54 1.86
-0.37 -2.03 1.05 0.32
-0.95 -2.88 1.39 1.03

2.19 -11.20 -12.09 -225.13 1.31
-2.65 5.08 5.22 1.80
-0.67 5.21 5.38 0.43
-3.06 5.34 5.51 1.78

H
5 -14.89 -73.04 -39.66 -121.3 -233.97

4.87 8.72 8.96 5.63
1.25 7.11 7.33 4.44

Entries on the diagonal are log L. The first element in each off-
diagonal entry is the value of the CPD statistic, the second is the
J-test statistic, the third is the ordinary t-statistic from (4) and
the fourth is the P-test statistic, for H3 and H

4 
only.

•
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Footnotes

1. We would like to thank Angus Deaton, Gordon Fisher, Bentley Macleod,

Michael McAleer and Christopher Sims for helpful comments on earlier

drafts. Versions of this paper have been presented in'seminars at

Queen's University, the University of British Columbia, Stanford

University and the University of California at Berkeley. If any errors

survive, we are responsible for them. This research was supported, in

part, by a grant from the Social Sciences and Humanities Research

Council of Canada.

2. It was pointed out to us by a referee that Atkinson's compound model

procedure suffers from the difficulty that a and yi cannot be separate

identified. Our procedurescircumvent this difficulty by estimating a

conditional on yl.

3. These technical requirements are imposed to avoid difficulties associated

with unidentified models or with statistics that have infinite variances.

Strictly speaking, we must also exclude the following possibility: the

span of the columns of F and G have an interesection, V, of positive

dimension, and the orthogonal complements of V in the respective spans

of the columns of F and G are themselves orthogonal. We are indebted to

W. Bentley Macleod for this point.

4. Under H
0' 

it is T0/VW-which is of order unity in probability.

5. We are grateful to Professor Angus Deaton for supplying us with the data

used by Pesaran and Deaton, which differ from the data published with that

article because they have one more significant digit. Using the former,

we were able essentially to reproduce the estimates reported by Pesaran

and Deaton.
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6. Actually, the No-statistics reported in the last column of Table 1

differ from those reported by Pesaran and Deaton because the latter

were apparently computed incorrectly.
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