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Abstract 

We investigate the role of peer effects in the diffusion of an important water saving irrigation 

technology: Low Energy Precise Application (LEPA). Using detailed irrigation behavior data for 

growers in the High Plains Aquifer region of Kansas covering 1990-2014, we find clear evidence 

of peer influence in adoption of LEPA, net of environmental factors. Specifically, an additional 

neighboring LEPA installation within 1 km increases the probability of adoption by 0.2 percentage 

points, on average, and this effect diminishes with distance. Our empirical estimates indicate that 

in the absence of peer effects LEPA adoption would have been about 10 percent lower (1,000-

1,700 fewer installations) per year. In addition, we find that growers install LEPA in response to 

higher energy prices.    
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Irrigated water is a fundamental input to agricultural production in many parts of the world. 

Agricultural water use accounts for approximately 80% of global freshwater resource consumption 

(Jury and Vaux, 2005), with 40% of this water being sourced from aquifers. However, growing 

dependence of agricultural production on groundwater is causing rapid depletion of large aquifers, 

especially in Asia and the United States. Between 1960 and 2000, global groundwater depletion is 

estimated to have doubled (Wada, et al., 2010). In the United States, depletion of the High Plains 

Aquifer and California’s Central Valley are particularly problematic (Scanlon, et al., 2012). In 

light of these concerns, policy makers have sought to encourage the adoption of water-saving 

irrigation technologies, which are often cited as being an important component of meeting water 

conservation goals.  

 This paper examines spatial-temporal patterns of adoption of an important type of water 

saving irrigation technology: Low Energy Precise Application (LEPA). Our study area is the 

Kansas portion of the High Plains Aquifer. Among the factors we investigate, we place a particular 

focus on the possibility of peer effects as a driver of LEPA adoption. Recently, several studies 

have documented causal peer effects in settings such as residential solar photovoltaic installations 

(Bollinger and Gillingham, 2012, Müller and Rode, 2013, Graziano and Gillingham, 2015, Rode 

and Weber, 2016), healthcare products (Oster and Thornton, 2012), residential foreclosures (Towe 

and Lawley, 2013), and exploitation of natural resources (Lynham, 2017, Sampson and Perry, 

2017).1 Another strand of literature has studied peer effects in the adoption of certain agricultural 

technologies (Foster and Rosenzweig, 1995, Bandiera and Rasul, 2006, Conley and Udry, 2010, 

                                                            
1 Sampson and Perry (2017) investigate peer effects in the appropriation of rights to groundwater 

in the Kansas High Plains Aquifer using data back to 1943.  
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Ramirez, 2013, Genius, et al., 2014, Krishnan and Patnam, 2014). However, the only study focused 

on the role of peer effects in the adoption of water-saving irrigation technology is Genius et al. 

(2014), who use data from Greece.2   

For our analysis, we use data from one of the most agriculturally important aquifer systems 

in the world. Kansas is a top 10 national producer of wheat, grain sorghum, and grain corn and the 

High Plains Aquifer is the main source of groundwater for the Great Plains region of the United 

States (i.e “Breadbasket of the World”). A unique aspect of our research is the rich spatial and 

temporal variation in the irrigation technology adoption data we use. Location-specific data on the 

adoption of LEPA technology in Kansas over a 25-year period (1990-2014) are obtained from the 

Water Information Management and Analysis System (WIMAS) of the Kansas Division of Water 

Resources. Our data and unit of analysis is at the water right level, which is in contrast to some 

previous studies of peer effects which aggregate adoption observations up to discrete spatial units.   

If peer effects do in fact drive decisions to adopt water-saving irrigation technologies, then 

policy makers can leverage peer influence to steer public expenditures on incentive programs (e.g. 

Environmental Quality Incentives Programs (EQIP)) where they are most efficient. State and 

national cost-share programs that subsidize conversion to higher efficiency irrigation have not yet 

achieved intended reductions in water use (Pfeiffer and Lin, 2014a, Kim and Guilfoos, 2016), 

suggesting there may be need for more nuanced approaches that account for the social factors 

underlying adoption decisions. Consider, for example, if decisions to acquire water saving 

technologies are completely independent of social influences. Then the impact of a regional-

                                                            
2 Sangtaek et al. (2008) evaluate the profitability of LEPA adoption for a representative farm in 

Texas but do not consider the role of peers in individual adoption decisions.  
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specific incentive program would be confined to that region; there would be no spillover effects. 

Ex ante analysis of the efficacy of policies to encourage technology adoption are thus flawed if 

peer effects or other spatial dispersion processes are present but unaccounted for by analysts. 

We exploit detailed spatial and temporal variation in reported use of LEPA irrigation in the 

Kansas High Plains Aquifer in order to separately identify peer effects from other confounding 

factors. Specifically, we estimate how the relative odds of adopting LEPA change depending on 

the number of previous LEPA users within a grower’s peer network. We define a grower’s peer 

network using spatial bands around the location of a water right. This flexible measure of the peer 

network reduces the possible measurement error bias or modifiable areal unit problem associated 

with using rigid borders (Fotheringham and Wong, 1991) and allows us to explicitly test for peer 

influence dissipating over distance. To control for the possibility of peer self-selection, we include 

a rich set of county and agricultural district fixed effects. Year fixed effects and agricultural district 

by year fixed effects are included to control for time-varying correlated unobservables (e.g. trends 

in LEPA use unrelated to peer influence). Finally, simultaneity in LEPA adoption is not a concern 

because we use the number of previously installed LEPA systems as the measure of peer influence 

(Bollinger and Gillingham, 2012, Sampson and Perry, 2017). In addition to peer effects, we 

estimate the impacts of a rich set of climate, hydrology, and energy price data, which are spatially 

merged to LEPA use data.  

Overall, we find clear evidence of peer effects (i.e. spatial neighboring effects) from 

previous adoption of LEPA. By using spatial bands of differing radii, we are able to explicitly 

detect a pattern of spatial neighboring effects that diminish over space. For example, our results 

indicate that one more LEPA installation within 1 km increases the probability of LEPA adoption 

by about 0.2 percentage points, on average. By comparison, a LEPA adoption that takes place 2-5 
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km away increases the probability of adoption by only 0.05 percentage points on average. 

Additionally, we find that growers who planted water intensive crops (e.g. corn, soybeans, alfalfa), 

irrigated a large number of acres, or who ran irrigation pumps for many hours in the previous year 

are more likely to install LEPA. We also find that growers install LEPA in response to higher 

energy prices. These results are robust to alternative estimation techniques using individual water 

right fixed effects and random effects. In contrast to recent literature (e.g. Schuck, et al., 2005), 

we find no evidence of adverse long run climate nor short run weather conditions affecting 

farmer’s decisions to install LEPA. Finally, we illustrate the policy implications of our estimates 

by simulating a counterfactual LEPA adoption curve with no peer effects. Using the 

counterfactual, we find that ignoring peer effects results in under estimating LEPA adoption by 

about 10-12 percent in most years. This corresponds to about 1,000-1,700 fewer LEPA 

installations per year over the last 14 years of analysis (2001-2014).  

The remainder of the article is organized as follows. In Section 1, we provide background 

on LEPA in Kansas. In Section 2, we present our data sources and summarize our detailed dataset 

of LEPA use in Kansas. In Section 3, we describe our empirical approach. Section 4 presents 

results from the empirical analysis, documenting the primary factors that influence LEPA 

adoption. Section 5 presents robustness checks and alternative specifications. In Section 6, we 

demonstrate the role of peer effects in LEPA adoption by estimating cumulative adoption curves 

with and without peer effects. The article closes with discussion and interpretation of our findings.  

 

1. Background 

Our study area is the state of Kansas, where production agriculture relies heavily on 

groundwater irrigation from the High Plains Aquifer. Kansas ranks in the top 10 nationally in 
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wheat, grain sorghum, and grain corn production (Kansas Department of Agriculture, 2015). 

Irrigation water withdrawals from the Kansas High Plains Aquifer are about 3.5 million acre-feet 

annually, which are used to irrigate about 3 million acres. Recharge of the aquifer is low relative 

to the annual withdrawals and secure water availability for agriculture is a significant concern.  

Early agricultural irrigation in Kansas was typified by flood irrigation. Center pivot 

irrigation, which was conceived in 1949 by Frank Zybach, came into general use during the 1960’s 

and revolutionized irrigation technology at the time. A center pivot irrigation system is a pipe 

structure that rotates about a central pivot point, which is connected to a water supply. Irrigation 

water is broadcast to plants via a network of sprinkler packages along the pipe. In 1970, it is 

estimated that about 18 percent of the 1.8 million irrigated acres in Kansas were sprinkler irrigated 

with center pivots (Rogers and Lamm, 2012). Between 1970 and 1980, the amount of irrigated 

land in Kansas increased by approximately 1 million acres, largely owing to the adoption of center 

pivot irrigation (Rogers and Lamm, 2012). At present, most of the irrigated land in Kansas uses 

some form of center pivot technology.  

Water delivery packages can be composed of devices ranging from conventional sprinklers 

to more modern drip tubes or dropped nozzles. The latter delivers water more directly to the soil 

surface and can be equipped with low flow emitters. Moreover, dropped nozzle packages (also 

referred to as LEPA) require very low pressure to operate3, thus saving energy required for water 

delivery, and increasing the efficiency of irrigation by decreasing water lost to evaporation or drift. 

While standard center pivot sprinkler water use efficiency is about 80-90 percent, efficiencies of 

center pivot coupled with LEPA are upward of 95 percent (Schneider, 2000).       

                                                            
3 Reduction from 75 psi for standard center pivot to 18 psi for LEPA (DeLano, et al., 1997). 
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 Recognizing the problem of declining aquifer levels, the state of Kansas spent nearly $20 

million on programs such as EQIP to incentivize the adoption of more efficient irrigation 

technologies between 1997 and 2014.4 These programs provided cost sharing to farmers for the 

purchase and installation of irrigation technology upgrades, with some of the money being used 

for LEPA conversions (US Department of Agriculture, 2006). Figure 1 shows the number of new 

LEPA installations per year and the cumulative adoption curve for the Kansas portion of the High 

Plains Aquifer. Total conversion to LEPA has followed the well-known S-curve of technology 

adoption noted by Griliches (1957). As of 2014, there are nearly 16,000 water rights over the 

Aquifer that have experimented with LEPA. Moreover, the spatial pattern of LEPA adoption has 

followed a pronounced clustering over time, where new LEPA installations seem to occur in areas 

where LEPA is already being used by others (figure 2).  

 

2. Empirical Framework 

Background 

Our econometric framework draws on two strands of literature. The first strand concerns irrigation 

technology choice. Since the work of Caswell and Zilbermann (1985), numerous studies have 

investigated the factors that influence the type of irrigation system chosen by agricultural 

producers. A common thread in these studies is that the choice of irrigation technology is modeled 

as a discrete choice that depends on energy costs, field characteristics, aquifer characteristics, and, 

more recently, climate (Green, et al., 1996, Schuck, et al., 2005, Koundouri, et al., 2006). There 

                                                            
4 We thank Lisa Pfeiffer and personnel at the Kansas Natural Resource Conservation Service for 

data access.  
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are only three previous studies to model conversion to LEPA. Sangtaek et al. (2008) evaluate the 

profitability of LEPA under different output prices. Pfeiffer and Lin (2014a) estimate the factors 

that affect Kansas LEPA adoption in the first stage of a two-stage groundwater extraction model. 

Li and Zhao (2018) compare water use by Kansas LEPA adopters to water use by growers having 

conventional irrigation. 

We specify an empirical framework in the tradition of previous studies by modeling the 

decision to adopt LEPA in a discrete choice framework with a profit maximization objective. In 

particular, let 0  denote perceived present and future profits without LEPA and 1  denote 

perceived present and future profits with LEPA. A producer converts to LEPA when  

 1 0.    (1) 

Furthermore, profits can be specified to depend on various characteristics and factors: that is, we 

can write  x , where x  is a vector of characteristics and variables.   

The second strand of studies is the social interaction literature. As noted, this literature 

encompasses a wide range of topics, from residential solar photovoltaic installations (e.g. Bollinger 

and Gillingham, 2012) and healthcare products (Oster and Thornton, 2012) to residential 

foreclosures (Towe and Lawley, 2013) and various  agricultural technologies (Foster and 

Rosenzweig, 1995, Bandiera and Rasul, 2006, Conley and Udry, 2010, Ramirez, 2013, Genius, et 

al., 2014, Krishnan and Patnam, 2014). For the purpose of this study, there are three issues 

identified by the peer effects literature that are pertinent to our empirical model. The first is how 

to define an individual’s peer group.  Previous studies either elicit detailed information from 

individual respondents about who their peers are (e.g. Genius, et al., 2014) or, more commonly, 

peer groups are inferred based on spatial or situational proximity. In our data, we observe water 

rights holders’ locations, but no information about who their peers are.  Thus, we define peer 
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groups based on spatial distance. This presents the additional issue of what distance to use. Here 

we take a flexible approach by estimating peer effect across three different radii: (i) 0-1 km, (ii) 1-

2 km, and (iii) 2-5 km (see figure A1). To put these distances in perspective, the average irrigated 

acreage for a water right holder is about 160 acres (i.e. a quarter-section, 0.8km×0.8km). Defining 

peer groups in this way, rather than on the basis of predefined geographical boundaries, reduces 

the possibility for boundary issues, while also permitting us to estimate whether peer effects 

diminish with distance (as would be expected).   

 The second issue is how to empirically model peer effects. Following the arguments by 

Bollinger and Gillingham (2012), we incorporate peer effects using the installed base approach. In 

our context, the installed base is defined as the stock of neighbors up to the previous period that 

have adopted LEPA. Specifically, let i denote an individual, t  denote a year, and [ ]g i  denote the 

set of individual i ’s neighbors. The installed base is defined as 

𝑦𝑖(𝑡−1) = ∑ 𝐷ℎ(𝑡−1)ℎ∈𝑔[𝑖]   (2) 

where ( 1) 1h tD    if individual h  in peer group [ ]g i  had converted to LEPA at or before year ( 1)t 

. Irrigation upgrades are most typically conducted in spring prior to planting (Jonathan Aguilar, 

personal communication, February 7, 2018). Thus, the installed base is appropriate in our context 

because there will typically be a lag between the moment that farmers observe their neighbors’ 

positive adoption decision(s) and the moment that they fully install LEPA. Moreover, by using the 

installed base as a measure of peer effects, we address the simultaneity issue noted by Manski 

(1993).  

 The final insight from the social interaction literature concerns the identification of peer 

effects. The fundamental issue is that an individual may display similar behavior to his or her peers 

either because of causal spillover peer effects or because they are exposed to the same 
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environmental factors. The latter set of factors are commonly called contextual effects. Failure to 

control for contextual effects may result in a biased peer effect estimate. For example, Cohen and 

Fletcher (2008) found that in using standard econometric techniques to control for contextual 

effects, a previously identified positive peer effect associated with obesity disappeared. We control 

for contextual factors by including a rich set of climate, hydrology, soil and other field 

characteristics. Because our dataset is a panel (in contrast to many previous studies on the adoption 

of irrigation technologies), we can also control for both time-invariant and time-varying 

unobserved heterogeneity through spatial and year-specific fixed effects.  

Econometric Model 

Suppose we observe 1,...,i N  water rights holders. Each water rights holder is observed for 

1,... it T  years, where iT  is either the year that individual i  adopted LEPA or, if individual i  never 

adopted LEPA, the final time period in our sample (2014).5 Normalizing 0  (perceived profits 

without LEPA) to zero, and indexing profits by i  and t , the perceived present and future profits 

associated with conversion to LEPA is written as it . In each year t individual i chooses whether 

or not to install LEPA, indexed by itd , on the basis of profit maximization:  

 
0 0

1 0

it

it

it

d





 


  (3) 

Profits are specified to depend on the installed base and various spatial and temporal 

characteristics:  

                                                            
5 As an example, if a water rights holder adopts LEPA in 2001, they then drop out of the dataset 

from 2002 and on. Note, however, that their positive adoption decision contributes to the installed 

base for the remainder of the sample.  
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( 1) ( 1)

r

it r i t it i t c t it

r

it

y x z

v

       



         (4) 

where 
( 1)

r

i ty 
 is the installed base in sub-radius r  (where {0-1km,1-2km,2-5km}  ); itx  is a 

vector of contemporaneous characteristics; ( 1)i tz   is a vector of lagged characteristics, and c  and 

t  are spatial and time effects, respectively. The vector itx  includes various soil, hydrology, 

climate, energy cost, and field characteristics, the details of which are provided below. The vector 

( 1)i tz   includes binary variables for whether a choice-maker previously cultivated a water intensive 

crop (corn, soybeans, or alfalfa) and for whether they previously used a center pivot system.  The 

vector ( 1)i tz   also includes non-binary variables such as the number of acres irrigated and total 

hours of pumping. Year fixed effects, t , are included in all specifications and county level fixed 

effects ( c ) are included in two of four specifications. Year fixed effects control for statewide 

factors that influenced the returns to LEPA, and spatial fixed effects control for time-invariant 

unobserved spatial heterogeneity in the returns to LEPA. In one specification, we also include year 

fixed effects for each of the five agricultural district in the High Plains Aquifer, which capture 

regional-specific temporal shocks that affect LEPA adoption.  

 The model is completed with an assumption on the distribution of the unobservable 

component, it , which we assume is IID and follows the type I extreme value distribution.  The 

probability of converting to LEPA is therefore given by the standard logit expression 

 
1

it

it

v

it v

e
p

e



  (5) 

The likelihood function is given by the product of the probabilities for the observed adoption 

decisions of Kansas water rights holders:  
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(1 )

1 1

(1 )
i

it it

TN
d d

it it

i t

L p p


 

    (6) 

The vector of model parameters, ( , , ,    ), is estimated via maximum likelihood.  

 While we are able to control for a rich set of factors that are likely to influence grower 

decisions to adopt LEPA, there is still a possibility for unobservable characteristics. For instance, 

some growers may be more inclined to technological experimentation due to age or educational 

attainment. In our data, we observe over 18,000 decision makers and 25 periods. Attempting logit 

specification with controls at the individual grower level introduces the problem of incidental 

parameters and biased estimates, given the number of individuals far exceeds the time periods 

(Greene, 2004). We therefore test the robustness of the logit estimates by estimating linear 

probability models controlling for individual heterogeneity with fixed and random effects in later 

sections.   

 

3. Data 

The data used for our estimation are drawn from multiple sources. Information about water 

rights identifications, well locations, water rights priority dates, irrigation behavior, and irrigation 

technology for the years 1990-2014 come from the Water Information Management and Analysis 

System (WIMAS), which is maintained by the Kansas Division of Water Resources. The unit of 

analysis is at the level of a water right, with each water right treated as a single grower. We use 

the water right as the unit of analysis rather than the well to avoid the complicated situation where 

a single well is shared by multiple water rights. For approximately 35 percent of the data, a single 

water right is associated with a single well. Over 90 percent of the data is made up of water rights 

having five or fewer wells. For water rights having multiple wells, we determine a central location 
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by calculating mean coordinates (consistent with methods used for calculating well spacing 

requirements per K.A.R. 5-4-4.). In total, there are 18,486 unique water right identifications in our 

data.  

 In Kansas, it is possible for individuals to hold multiple water rights. If an individual with 

multiple water rights in close proximity serially acquires LEPA, then this would produce a spatial-

temporal clustering that would appear to be a peer effect. To avoid this possibility, we obtain a 

recent list of contact names and addresses for groundwater rights in Kansas. In total, we obtain 

information for 9,067 unique name, address combinations. It is likely that water rights have been 

consolidated during the period of our analysis, as most regions of Kansas are either fully 

appropriated or over-appropriated. However, this should provide a conservative correction for any 

“own-neighbor” effects. We match the contact list to the 18,486 unique water rights identifications 

obtained from WIMAS and omit any neighboring water rights listing the same name and address 

as the focal water right from being treated as a peer.  

Soils 

Spatially explicit soils characteristics likely to affect the returns from LEPA installation are 

obtained from the SSURGO soil survey on the website of the USDA Natural Resource 

Conservation Service (NRCS). These characteristics include detailed information on soil 

composition, drought vulnerability, and water storability. Our regression specifications include the 

following soil characteristics as controls: proportion of cropland with pH less than 6 (acidic soils), 

proportion of cropland with pH greater than 7.5 (basic soils), plant available water storage, soil 

organic carbon, and a dummy for whether the soils are vulnerable to drought. These soil 

characteristics were chosen to represent agricultural productivity and water storability.  
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 Soils with a pH less than 6 or greater than 7.5 are known to affect crop yields (USDA 

Natural Resource Conservation Service, 1998). Positive coefficients on these variables would 

suggest land quality-augmenting behavior (Lichtenberg, 1989). Greater plant available water 

storage allows the grower to schedule irrigation activities over longer intervals. We expect 

negative coefficients on this variable, as conventional center pivot is expected to perform relatively 

well for longer irrigation schedules. We hypothesize that LEPA is a form of adaptation to heat 

conditions, and so a positive coefficient is expected on drought vulnerable soil types.  

Hydrology 

Spatially explicit hydrology characteristics for the High Plains Aquifer are obtained from The 

Kansas Geological Survey. These variables include the following: hydraulic conductivity, specific 

yield, average annual recharge, and depth to water at five-year intervals. We smooth the depth to 

water using linear-spline smoothing. We do not obtain well capacity data. However, well capacity 

is likely to be a mixed function of depth to water and hydraulic conductivity.  

LEPA requires lower pressure to operate than conventional center pivot. Thus, we expect 

that the benefits of lower water pressure associated with LEPA will accrue most readily to growers 

located over portions of the aquifer having lower hydraulic conductivity, lower specific yield, and 

greater depth to water. Therefore, we expect negative coefficients on hydraulic conductivity and 

specific yield. We expect a positive coefficient on depth to water. If growers adopt LEPA out of 

concern for future water availability, then this should be reflected by a negative coefficient on 

average annual recharge.  

Climate 

Climate data at the county level are obtained from PRISM using the method described in Schlenker 

and Roberts (2009). We construct four climate variables for each county: ten-year moving 
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averages of precipitation, the number of degree days between 8 and 32 degrees Celsius, degree 

days greater than 32 Celsius (heat levels that are detrimental to crop growth (Schlenker, et al., 

2006)), and a one-year lagged measure of degree days greater than 32 Celsius. One of the principle 

advantages of LEPA over the conventional center pivot sprinkler system is the reduction in 

evaporative water losses: with LEPA, irrigation water is applied more directly to the soil surface 

rather than the canopy (Lyle and Bordovsky, 1983). We therefore hypothesize that detrimental 

heat exposure is the climate variable of most interest. By including both a ten-year moving average 

and a lagged measure of detrimental heat, we are able to capture both long-run responses to climate 

conditions and short-run adaptation to weather, respectively. A negative coefficient on 

precipitation and positive coefficient on detrimental heat variables would suggest evidence of 

LEPA as an adaptation to drought or heat.  

Energy  

Pumps used to withdraw groundwater in Kansas are powered by natural gas, diesel, or electricity. 

Of the roughly 3 million acres irrigated from groundwater in Kansas, about 50 percent are serviced 

by pumps running off natural gas, 25 percent are serviced by pumps running off diesel fuel, and 

22 percent are serviced by pumps running off electricity (U.S. Department of Agriculture, 2004). 

The WIMAS data does not provide the energy source for groundwater pumps. Following Pfeiffer 

and Lin (2014b), we use the natural gas price as the energy price for farmers located in counties 

having natural gas production during the years 1990-2014.6 For counties not having natural gas 

production, we use an index of electricity and diesel prices. Natural gas and electricity price data 

are obtained from the Energy Information Administration. Diesel fuel prices are for bulk delivery 

                                                            
6 Natural gas production data are obtained from the Kansas Geological Survey. 
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of diesel fuel in the northern Plains, obtained from the Nebraska Energy Office. All energy prices 

are converted to units of dollars per million btu and are adjusted to 2015 dollars using the 

Consumer Price Index. Because LEPA operates at much lower pressures than conventional center 

pivot sprinklers, less pumping energy is required. We hypothesize that growers may adopt LEPA 

partly to save on energy expenditures and thus a positive coefficient on energy prices is expected.  

NRCS subsidies 

As noted, the state of Kansas subsidized the adoption of LEPA through EQIP during the 1997-

2014 period. We obtain EQIP payment data for irrigation upgrades from the Kansas NRCS for the 

years 1997-2014 (payments started in 1997). EQIP payments are aggregated at the annual and 

county level. Contracts with EQIP occur when an individual voluntarily enrolls in the program, 

but we do not observe payments at this level.7 In total, nearly $22 million was spent on irrigation 

upgrade programs. We normalize the annual county-level EQIP payments by dividing the total 

expenditure by the number of water rights in the county. We expect a positive coefficient on EQIP 

subsidy payments.  

 The well location and water right data obtained from WIMAS are matched by county to 

the soils, hydrology, climate, energy price, and NRCS subsidy data using spatial query functions 

in QGIS. The sample period used in the analysis is thus 1990-2014. Table 1 presents summary 

statistics of the variables used in model estimation. 

 

4. Results 

                                                            
7 To enroll in EQIP, growers must first decide upon an irrigation upgrade such as LEPA. Therefore, 

enrolling in EQIP does not exclude the possibility for earlier peer influence. 
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Table 2 presents our primary results using a 1-, 2-, and 5-km radius definition of the peer group. 

All specifications include year fixed effects to account for unexpected year-to-year variation in 

LEPA adoption, as well as robust standard errors to account for model misspecification. Column 

1 presents a specification with spatial fixed effects for the five Groundwater Management Districts 

(GMD) in the Kansas High Plains Aquifer to control for aquifer characteristics and water use that 

cluster within GMDs.8 Column 2 adds dummies for the five agricultural districts (as defined by 

the USDA) in High Plains Aquifer portion of Kansas to control for socioeconomic and agricultural 

factors that may cluster at the agricultural district level. Column 3 uses county-level dummies to 

control for self-selection of peers and other socioeconomic factors that cluster within counties. 

Finally, column 4 presents our preferred results, which include county dummies and agricultural 

district by year fixed effects to flexibly address possibly spatial and time-varying correlation in 

unobservables.  

 Looking across specifications, our results indicate clear evidence of spatial neighboring 

effects in the adoption of LEPA irrigation technologies. All reported coefficients are presented as 

odds ratios – where the odds of adopting LEPA if the corresponding variable is incremented by 

one unit are in the numerator and the odds of adopting groundwater if the corresponding variable 

is not incremented are in the denominator. The coefficients of most interest are the lagged number 

of adopters. Regardless of whether we include county-specific controls or agricultural district-year 

controls, the previous stock of LEPA users within 5 km are positive, statistically significant at 0.05 

                                                            
8 GMDs are local institutions which provide water-use planning and management. The five 

GMDs were formed between 1973 and 1976 per the GMD Act, K.S.A. 82a-1020 through 82a-

1040. Primary groundwater use in the GMDs is for agricultural irrigation.  
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or better, and of a similar magnitude across specifications. For example, in column 4, the 

coefficient on the number of neighbors within 1 km indicates that one additional LEPA installation 

within 1 km increases the odds of adoption by 2.8 percent. For ease of interpretation, we also report 

average marginal effects at the bottom of Table 2. We find that an additional installation within 1 

km increases the probability of LEPA adoption by about 0.2 percentage points on average. 

Furthermore, the change in the results with distance is intuitive. The coefficients are smaller as the 

distance between an existing LEPA installation and a potential LEPA adopter increases. The 

average marginal effect of a neighbor that is 1-2 km away is similar to the effect of a neighbor that 

is 0-1 km away. But, for installations that are 2-5 km away, the influence is only about 20 percent 

as large as a neighbor that is 0-1 km away. Our results in this regard are consistent with Rode and 

Weber (2016), who find that spatial neighbor effects in solar photovoltaic installations are highly 

localized, with influence contained within 1 km. Our result is in contrast to Graziano and 

Gillingham (2015), who find no obvious dissipation in neighbor effects with distance.  

Our results highlight the role of energy prices on decisions to adopt LEPA. Coefficients on 

county-level energy prices are positive in all four specifications, but only statistically significant 

in columns 1-3. The average marginal effect of county-level energy price is positive and 

statistically significant for all specifications, however.9 The average marginal effect of a $1 per 

million btu increase (i.e. about 10% increase) in the energy price on the probability of LEPA 

adoption is about 0.2 percentage points. This finding builds upon the work of Pfeiffer and Lin 

                                                            
9 The difference of having a coefficient that is not significant while having a significant marginal 

effect can occur when calculating marginal effects in nonlinear models (e.g. Dowd, et al., 2014, 

Li and Zhao, 2018). 
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(2014b) and Zilberman et al. (2008), who find that rising energy prices will increase the cost of 

groundwater and thus reduce demand. We complement these previous studies by providing 

evidence that farmers adapt along technological margins in response to increasing energy prices. 

We also find some evidence suggesting that the effect of energy prices on LEPA adoption is greater 

in areas having greater depth to water. While the magnitude of the effect is small, this finding is 

consistent with pumping costs increasing with lift height. 

 The total number of neighbors within 5 km (both LEPA adopters and non-adopters) is a 

measure of farm density. We find that areas that are denser on average have lower odds of adopting 

LEPA. This suggests that returns to scale are important to adoption because farm density and farm 

size are likely to be inversely related. Water rights are limited in their maximum annual quantity 

and rate of diversion. The coefficients on authorized rate and authorized quantity are positive but 

small in magnitude, suggesting they do not affect LEPA adoption in an economically significant 

way. Water rights that are more senior have greater odds of adopting LEPA. More senior water 

rights are less susceptible to ceding their rights during times of shortage and thus their access to 

irrigation water is more secure. Farmers who have used conventional center pivot irrigation 

technology in the past have greater odds of eventually adopting LEPA. This makes sense, as LEPA 

is fundamentally a modification to a center pivot base model. Odds of adopting LEPA go up if a 

water intensive crop (defined as either corn, soybeans, or alfalfa) was planted in the previous year.  

   

 Reliance on groundwater for water and food security is widely predicted to increase as 

more frequent and intense climate extremes increase variability in precipitation and heat (Taylor, 

et al., 2013). Whether farmers adapt to these changes has important implications for the necessity 

and extent of policy designed to mitigate climate change. We find that ten-year averaged measures 
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of precipitation and degree days between 8 and 32 Celsius (i.e. favorable conditions) do not 

significantly affect conversion to LEPA. The coefficient on ten-year averaged degree days over 32 

Celsius is noisy across specifications. In columns 1-3, the coefficient is negative and varies in 

statistical significance. When agricultural district-year effects are specified, the coefficient 

changes sign and becomes strongly statistically significant. We interpret these patterns as 

providing no conclusive evidence that LEPA adoption takes place in response to long run trends 

in heat stress. We also include a lagged measure of degree days over 32 Celsius to capture short-

run adjustments to weather. This variable is not statistically significant. In sum, our findings 

provide no conclusive evidence of LEPA adoption as an adaptation to climate trends or weather 

events.  

For the remaining lagged variables, we find that increased irrigated acreage increases the 

odds of adopting LEPA in the current period. Likewise, increased lagged pumping hours is 

associated with greater odds of LEPA adoption in the current period. This suggests some returns-

to-scale in LEPA adoption decisions and irrigation water use and is consistent with our earlier 

finding with respect to farm density. The coefficient on drought vulnerable soil is noisy and is not 

always statistically significant. Specific yield is negative and statistically significant in columns 3-

4, suggesting farmers may use LEPA when faced with materials having poor drainage. Depth to 

water is negative and significant in three of four specifications. Soil organic carbon is negative and 

significant at 0.10 or better.  

 To summarize, we find strong evidence of localized spatial neighbor effects and energy 

prices influencing decisions to adopt LEPA. Moreover, the influence that a neighboring LEPA 

installation exerts on a potential adopter decreases with distance. Lastly, our results provide 

evidence that growers having larger irrigated acres, greater pumping hours, more senior water 
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rights, prior experience with center pivot technologies, and water intensive crops are more likely 

to adopt LEPA.  

 

5. Alternative specifications 

We perform specification checks on our primary results in Table 2 and report them in Tables 3 and 

4. Table 3 reports estimates where the effects of spatial neighbors within 0-1 km (column 1), 1-2 

km (column 2), and 2-5 km (column 3) are estimated in separate models. A potential concern with 

the model estimates in Table 2 is that the number of peer adopters within the rings of the concentric 

spatial buffers will almost always covary in the same direction. The specifications in Table 3 

include county dummies and agricultural district by year controls, as in column 4 of Table 2. The 

results in columns 1-3 of Table 3 are consistent with the results from our preferred specification 

in Table 2. Comparing marginal effects from Table 3 to the marginal effects in column 4 of Table 

2 suggests there is some attenuation to estimates of spatial neighbor effects when the rings of the 

concentric spatial buffers are estimated simultaneously. We therefore interpret our main results in 

Table 2 as being conservative estimates.  

In Table 4, we report estimates from linear probability models exploring different fixed 

effects specifications. Logit models can be unreliable and difficult to estimate when individual 

fixed effects are included, particularly when the number of individuals is large relative to the 

number of time periods (Greene, 2004). In columns 1 and 2, we report results with water right 

heterogeneity modeled using a random effect, 𝑐𝑖~𝑁(0, 𝜎𝑐
2), with district by year or county by year 

effects, respectively. In columns 3 and 4, we report results with water right heterogeneity modeled 

using a fixed effect with district by year or county by year effects, respectively. Thus, the results 
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from columns 1-4 provide information on whether water right level unobserved heterogeneity is a 

significant concern for our peer effect estimate.  

 In general, the linear probability results confirm the estimated spatial neighbor effects from 

the logit model. Coefficient estimates on the 0-1, 1-2, and 2-5 km neighbors generally follow the 

same pattern of attenuation with distance (0-1 and 1-2 km effects remain similar in magnitude). 

The linear probability model results produce coefficients that are slightly larger than the average 

marginal effect estimates from the logit models, suggesting the main results in Table 2 are 

conservative estimates of spatial neighbor peer effects.  

 

6. Counterfactual simulation 

To obtain an approximation of the impact of peer influence on total LEPA usage, we estimate a 

LEPA adoption curve with and without peer effects using the specification in column 4 of Table 

2. We obtain the fitted adoption curve by estimating the predicted probability of LEPA adoption 

for each water right in each year, then take the average annual predicted probability across water 

rights, and multiply that average probability by the number of potential adopters in that year. The 

counterfactual adoption curve is found by setting the 0-1 km, 1-2 km, and 2-5 km peer group 

adoption variables to zero for each observation and then estimating predicted probabilities.  

 The left panel of figure 3 shows the fitted cumulative adoption curve plotted against the 

true adoption curve. The fitted curve closely tracks the true adoption curve for all years. The center 

panel of figure 3 shows the counterfactual of no peer effects plotted against the true adoption curve. 

As expected, the counterfactual with no peer effects under-predicts LEPA adoption in every 

period. The right panel of figure 3 shows the difference between the predicted and counterfactual 

adoption curve. Omitting peer effects results in an under-estimation of true annual LEPA adoption 
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by at least 1,000 units each year between 2001 and 2014. This corresponds to underestimating true 

adoption by approximately 10-12 percent in each of these years.   

 The amount of actual water savings associated with converting from conventional center 

pivot to LEPA remains an empirical question. Some studies conclude that more efficient irrigation 

technologies are essential to solving the world’s water problems (e.g. Jury and Vaux, 2005, Evans 

and Sadler, 2008). Economists, however, have argued that behavioral adjustments associated with 

technological change may lessen or even outweigh any potential water savings. For example, using 

data from Kansas, Pfeiffer and Lin (2014a) and Li and Zhao (2018) find a rebound effect after 

adopting LEPA. The rebound occurs because irrigation becomes effectively less costly and farmers 

have incentives to irrigate more acres, grow more water-intensive crops, or both. It is therefore 

plausible that peer effects in the adoption of LEPA in Kansas have actually exacerbated rather than 

slowed depletion of the High Plains Aquifer.  

 

7. Conclusion 

In this paper, we analyze detailed irrigation behavior data at the water right level and find strong 

evidence for peer effects in the adoption of LEPA technology in the High Plains Aquifer region of 

Kansas net of environmental factors. By using spatial bands around each water right as a peer 

group measure, we uncover an intuitive pattern of spatial peer effects that diminish over space. 

Our results indicate that one more LEPA installation within 1 km increases the probability of 

LEPA adoption by 0.2 percentage points, on average. For LEPA installations that are 2-5 km away, 

the average marginal effect on LEPA adoption is 0.05 percentage points on average. We also find 

that the likelihood of adopting LEPA increases for growers cultivating water intensive crops such 

as corn and for large irrigated acreages. Energy prices also play a major role in adoption of LEPA. 
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We find little evidence that long-run trends in temperature and precipitation or short-run 

fluctuations in heat stress affect LEPA adoption.  

 Using our model estimates, we simulate a counterfactual LEPA adoption curve in the 

absence of any peer effect to illustrate policy implications. We find that cumulative LEPA 

adoptions would have been about 10-12 percent lower in most years in the absence of any intra-

grower peer influence. This result corresponds to about 1,000-1,700 fewer LEPA installations per 

year over the final 14 years of our analysis (2001-2014). In light of these results, increasing the 

recognition and salience of water saving irrigation adoptions would be expected to increase the 

rate of adoption. Additionally, expenditures on cost share programs and provision of government 

or university extension services may be more effective if they can complement spatial dispersion 

of grower peer networks.  
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Tables 

Table 1. Summary statistics for model variables. 

Variable (units) Definition Mean Std.D Min Max 

Peer adopters, 0-1 km Number of water rights have LEPA installed 0.6 0.9 0 9 

Peer adopters, 1-2 km Number of water rights have LEPA installed 2.2 2.3 0 17 

Peer adopters, 2-5 km Number of water rights have LEPA installed 14.4 12.5 0 71 

Total neighbors Total water rights within 5 km 35.2 16.7 1 99 

Slope (%) Soil slope 2.0 2.6 0.0 19.0 

Elevation (meters) Distance above sea level 848.6 253.0 294.3 1,631.0 

Acidic soils  Soil pH level less than 6.0, binary 0,1 0.01 0.1 0.0 1.0 

Basic soils  Soil pH level greater than 7.5, binary 0,1 0.7 0.4 0.0 1.0 

Soil Organic Carbon (g/m2) Total organic carbon in soil 8,366.1 3,272.7 959.0 23,149.6 

Root Zone Available Water Storage (mm) Volume of plant available storage in root zone 254.6 50.8 39.1 335.0 

Drought Soil Landscape  Drought vulnerable soils, binary 0,1 0.1 0.2 0.0 1.0 

Specific Yield Aquifer yield ratio 16.6 3.5 5.0 25.0 

Hydraulic Conductivity (ft/day) Ease with which water moves through aquifer 280.5 93.3 49.4 476.3 

Depth to Water (feet) Distance from surface to top of water table  118.8 80.1 0.0 365.4 

Recharge (inches/year) Average annual recharge for 2000-2009 2.2 2.4 0.0 14.1 

Energy Price ($/mmbtu) County-specific cost of energy 10.7 5.0 5.7 28.2 

Authorized Quantity (acre feet) Maximum authorized use per the water right 290.0 211.5 0.0 3,596.0 

Authorized Rate (gallons/minute) Maximum authorized pump rate per the water right 901.4 451.9 0.0 5,875.0 

Seniority Age of the water right 29.2 10.1 3.0 72.0 

Total Acres Irrigated (acres) Total acres irrigated during the year 145.2 123.4 0.0 3,900.0 

Hours Pumped (hundreds of hours) Total hours pumped during the year 6.2 11.4 0.0 326.4 

Cost Share Payments ($/water right) Annual county-level cost share payments  36.0 142.4 0.0 1,800.2 

Degree days between 8 and 32C 

(degrees*days) 

Ten year moving average of annual count of time 

spent greater than 8C and less than 32C 

2,025.2 126.5 1,703.4 2,333.4 
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Average degree days over 32C 

(degrees*days) 

Ten year moving average of annual count of time 

spent greater than 32C 

39.0 8.4 16.0 64.8 

Degree days over 32C (degrees*days) Annual count of time spent greater than 32C 41.9 22.1 2.6 150.8 

Precipitation (mm) Ten year moving average of annual rainfall 410.6 72.5 253.6 648.0 

Intensive Crop Dummy Dummy for water intensive crop last year 0.2 0.5 0.0 1.0 

Center Pivot Dummy Dummy for center pivot technology last year 0.3 0.4 0.0 1.0 

The summary statistics are based on a panel of 18,486 water right identifications over 25 years (1990-2014), resulting in a sample size of 449,353. 
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Table 2. Odds ratios for primary specifications for the 0-1 km, 1-2 km, and 2-5km peer group. 

  (1) (2) (3) (4) 

Lagged no. adopters 1 km 1.041*** 1.040*** 1.033** 1.028** 

 (0.014) (0.014) (0.014) (0.014) 

Lagged no. adopters 1-2 km 1.037*** 1.036*** 1.030*** 1.028*** 

 (0.007) (0.007) (0.007) (0.007) 

Lagged no. adopters 2-5 km 1.017*** 1.016*** 1.010*** 1.007*** 

 (0.002) (0.002) (0.002) (0.002) 

County energy price 1.010** 1.012*** 1.050*** 1.008 

 (0.004) (0.004) (0.007) (0.009) 

Depth to water interacted with 
county energy price 

1.0001*** 1.0001*** 1.0001** 1.0002*** 

(2.85E-05) (2.74E-05) (3.36E-05) (4.30E-05) 

Total no. neighbors 0.991*** 0.991*** 0.995*** 0.996*** 

 (8.39E-04) (8.23E-04) (9.36E-04) (9.43E-04) 

Authorized quantity  1.000 1.000 1.0001* 1.0001* 

 (6.41E-05) (6.40E-05) (6.58E-05) (6.60E-05) 

Authorized rate 1.0001*** 1.0001*** 1.0001** 1.0001** 

 (2.74E-05) (2.75E-05) (2.83E-05) (2.82E-05) 

Seniority  1.019*** 1.019*** 1.018*** 1.017*** 

 (0.001) (0.001) (0.001) (0.001) 

Lagged acres irrigated  1.001*** 1.001*** 1.001*** 1.001*** 

 (7.59E-05) (7.59E-05) (7.74E-05) (7.74E-05) 

Lagged hours pumped 1.003*** 1.003*** 1.004*** 1.004*** 

 (9.20E-04) (9.16E-04) (9.45E-04) (9.56E-04) 

Center pivot dummy 1.986*** 1.974*** 1.903*** 1.927*** 

 (0.045) (0.045) (0.044) (0.045) 

Lagged water intensive crop 1.258*** 1.257*** 1.277*** 1.280*** 

 (0.026) (0.026) (0.027) (0.027) 

County EQIP subsidy 1.000 1.0002** 1.0003*** 1.000 

 (8.09E-05) (8.14E-05) (8.40E-05) (9.80E-05) 

Slope 0.986*** 0.988** 0.987** 0.989** 

 (0.005) (0.005) (0.005) (0.005) 

Elevation 1.000 1.000 1.0001* 1.000 

 (6.26E-05) (6.27E-05) (7.23E-05) (7.22E-05) 

Acidic soils 1.209 1.189 0.968 1.023 

 (0.157) (0.154) (0.130) (0.141) 

Basic soils 0.923** 0.936 0.932 0.916** 

 (0.038) (0.038) (0.041) (0.040) 

Soil organic carbon 0.999*** 0.999* 0.999*** 0.999*** 

 (4.60E-06) (4.56E-06) (5.42E-06) (5.44E-06) 
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Root zone available water storage 0.999*** 0.999*** 0.999* 0.999* 
 (4.32E-04) (4.36E-04) (4.69E-04) (4.69E-04) 

Drought soil landscape 0.939 0.957 1.021 0.989 

 (0.070) (0.072) (0.080) (0.078) 

Specific yield 0.999 0.997 0.990** 0.990*** 

 (0.004) (0.004) (0.004) (0.004) 

Hydraulic conductivity  1.000 1.000 1.000 1.000 

 (1.42E-04) (1.42E-04) (1.57E-04) (1.57E-04) 

Depth to water 0.999** 0.999*** 1.000 0.999** 

 (3.52E-04) (3.47E-04) (4.39E-04) (5.17E-04) 

Aquifer recharge 1.008 1.005 1.006 1.007 

 (0.005) (0.005) (0.005) (0.005) 

10 year avg. precip. 0.999* 0.999** 1.001 1.001 

 (4.88E-04) (4.63E-04) (8.79E-04) (0.001) 

10 year avg. degree days over 32C 0.980*** 0.972*** 0.983* 1.045*** 

 (0.006) (0.005) (0.009) (0.014) 

Lagged degree days over 32C 1.001  1.002  1.002  1.000  

 (0.001) (0.001) (0.001) (0.003) 

10 year avg. degree days 8C-32C 1.000  1.000  1.004*** 1.002  

 (3.87E-04) (4.13E-04) (0.001) (0.002) 

Spatial effects GMD Ag. District County County 

Year FE Yes Yes Yes No 

Ag. District X Year FE No No No Yes  

R2 0.11  0.11  0.12  0.12  

Observations 193,085 193,085 193,037 192,785 

Marginal effects     

1 km peer 0.00253*** 0.00247*** 0.00200** 0.00174** 
 (8.70E-04) (8.70E-04) (8.69E-04) (8.69E-04) 

1-2 km peer 0.00225*** 0.00224*** 0.00184*** 0.00174*** 

 (4.09E-04) (4.08E-04) (4.07E-04) (4.08E-04) 

2-5 km peer 0.00103*** 0.00100*** 0.000598*** 0.000449*** 
 (1.06E-04) (1.04E-04) (1.10E-04) (1.12E-04) 

County energy price 0.00156*** 0.00181*** 0.00367*** 0.00196*** 

 (2.11E-04) (2.15E-04) (3.34E-04) (4.42E-04) 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3. Odds ratios for separate specifications of the 0-1 km, 1-2 km, and 2-5km peer group. 

  (1) (2) (3) 

Lagged no. adopters 1 km 1.048*** 1.039***  

 (0.014) (0.006)  

Lagged no. adopters 1-2 km    

    

Lagged no. adopters 2-5 km   1.010*** 

   (0.002) 

County energy price 1.008 1.008 1.009 

 (0.009) (0.009) (0.009) 

Depth to water interacted with county energy 
price 

1.0002*** 1.0002*** 1.0002*** 

(4.29E-05) (4.29E-05) (4.31E-05) 

Total no. neighbors 0.999 0.998*** 0.996*** 

 (7.65E-04) (8.11E-04) (9.26E-04) 

Authorized quantity  1.0001* 1.0001* 1.0001* 

 (6.59E-05) (6.60E-05) (6.60E-05) 

Authorized rate 1.0001** 1.0001** 1.0001** 

 (2.83E-05) (2.82E-05) (2.82E-05) 

Seniority  1.017*** 1.017*** 1.017*** 

 (0.001) (0.001) (0.001) 

Lagged acres irrigated  1.001*** 1.001*** 1.001*** 

 (7.74E-05) (7.74E-05) (7.73E-05) 

Lagged hours pumped 1.004*** 1.004*** 1.004*** 

 (9.57E-04) (9.57E-04) (9.55E-04) 

Center pivot dummy 1.941*** 1.935*** 1.932*** 

 (0.045) (0.045) (0.045) 

Lagged water intensive crop 1.282*** 1.280*** 1.281*** 

 (0.027) (0.027) (0.027) 

County EQIP subsidy 1.000 1.000 1.000 

 (9.75E-05) (9.77E-05) (9.78E-05) 

Slope 0.989** 0.989** 0.987** 

 (0.005) (0.005) (0.005) 

Elevation 1.0001* 1.0001* 1.0001* 

 (7.22E-05) (7.22E-05) (7.23E-05) 

Acidic soils 1.036  1.021  1.035 

 (0.142) (0.140) (0.143) 

Basic soils 0.897** 0.906** 0.914** 

 (0.039) (0.040) (0.040) 

Soil organic carbon 0.999*** 0.999*** 0.999*** 

 (5.43E-06) (5.43E-06) (5.44E-06) 
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Root zone available water storage 0.999* 0.999* 0.999* 
 (0.000) (4.69E-04) (4.69E-04) 

Drought soil landscape 0.972 0.977 0.983 

 (0.077) (0.077) (0.078) 

Specific yield 0.989*** 0.990*** 0.989*** 

 (0.004) (0.004) (0.004) 

Hydraulic conductivity  1.000 1.000 1.000 

 (1.56E-04) (1.56E-04) (1.56E-04) 

Depth to water 0.999** 0.999** 0.999** 

 (5.17E-04) (5.16E-04) (5.18E-04) 

Aquifer recharge 1.008 1.007 1.008* 

 (0.005) (0.005) (0.005) 

10 year avg. precip. 1.001 1.001 1.001 

 (0.001) (0.001) (0.001) 

10 year avg. degree days over 32C 1.047*** 1.047*** 1.045*** 

 (0.014) (0.014) (0.014) 

Lagged degree days over 32C 1.000  1.000  1.000  

 (0.003) (0.003) (0.003) 

10 year avg. degree days 8C-32C 1.002  1.002  1.002  

 (0.002) (0.002) (0.002) 

Spatial effects County County County 

Year FE No No No 

Ag. District X Year FE Yes  Yes  Yes  

R2 0.12  0.12  0.12  

Observations 192,785 192,785 192,785 

Marginal effects     

Peer effect 0.00290*** 0.00237*** 0.000606*** 
 (8.43E-04) (3.82E-04) (1.07E-04) 

County energy price 0.00206*** 0.00205*** 0.00198*** 

 (4.42E-04) (4.42E-04) (4.43E-04) 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 

 

 

 

 

 



35 
 

Table 4. Linear probability model estimates. 

 (1) (2) (3) (4) 

Lagged no. adopters 1 km 0.00215* 0.00212* 0.00252* 0.00403** 

 (0.001) (0.001) (0.002) (0.002) 

Lagged no. adopters 1-2 km 0.00265*** 0.00236*** 0.00379*** 0.00412*** 

 (5.71E-04) (5.47E-04) (8.39E-04) (8.37E-04) 

Lagged no. adopters 2-5 km 0.00108*** 0.000762*** 0.00164*** 0.00135*** 

 (1.37E-04) (1.44E-04) (1.94E-04) (2.08E-04) 

County energy price -0.00118*** 1.39E-02 5.11E-04 -0.121 

 (2.79E-04) (7.480) (5.63E-04) (0.355) 

Depth to water interacted with 
county energy price 

1.65e-05*** 2.05e-05*** 6.73e-06* 1.98e-05*** 

(1.81E-06) (3.20E-06) (3.72E-06) (6.37E-06) 

Total no. neighbors -0.000468*** -0.000311***   

 (4.37E-05) (4.66E-05)   

Authorized quantity  3.74E-06 4.07E-06   

 (4.22E-06) (3.90E-06)   

Authorized rate 5.44e-06*** 4.63e-06***   

 (1.83E-06) (1.72E-06)   

Seniority  0.00120*** 0.000961***   

 (8.08E-05) (7.50E-05)   

Lagged acres irrigated  6.54e-05*** 6.31e-05*** 8.86e-05*** 8.24e-05*** 

 (7.20E-06) (6.94E-06) (1.19E-05) (1.18E-05) 

Lagged hours pumped 6.15E-05 8.57E-05 -0.000354*** -0.000402*** 

 (5.66E-05) (5.61E-05) (7.68E-05) (7.68E-05) 

Center pivot dummy 0.0425*** 0.0384*** 0.0248*** 0.0265*** 

 (0.001) (0.001) (0.003) (0.003) 

Lagged water intensive crop 0.0163*** 0.0173*** 0.0158*** 0.0162*** 

 (0.002) (0.001) (0.002) (0.002) 

County EQIP subsidy -9.91E-06 -1.21E-04 -2.34e-05*** 0.000429* 

 (6.99E-06) (0.078) (7.01E-06) (2.36E-04) 

Slope -0.000739** -0.000605*   

 (3.55E-04) (3.66E-04)   

Elevation -4.25E-07 7.18E-06   

 (4.25E-06) (4.73E-06)   

Acidic soils 0.0172** 3.14E-03   

 (0.009) (0.009)   

Basic soils -0.00552** -0.00446   

 (0.003) (0.003)   

Soil organic carbon -3.37E-07 -1.08e-06***   

 (2.84E-07) (3.27E-07)   



36 
 

Root zone available water storage -6.17e-05** -2.99E-05   

 (2.84E-05) (2.86E-05)   

Drought soil landscape -2.66E-03 3.36E-04   

 (0.005) (0.005)   

Specific yield -7.66E-05 -0.000555**   

 (2.35E-04) (2.44E-04)   

Hydraulic conductivity  -6.57E-06 -7.04E-06   

 (9.34E-06) (9.77E-06)   

Depth to water -0.000132*** -0.000140*** 0.0107*** 0.00806*** 

 (2.03E-05) (3.26E-05) (8.72E-04) (0.002) 

Aquifer recharge 2.51E-04 3.60E-04   

 (2.96E-04) (2.91E-04)   

10 year avg. precip. -6.86e-05* -0.000115 -0.000562*** -0.00583*** 

 (3.71E-05) (0.367) (8.35E-05) (0.001) 

10 year avg. degree days over 32C -2.22E-04 -3.02E-03 0.00293*** 0.0896** 

 (4.20E-04) (1.844) (9.18E-04) (0.040) 

Lagged degree days over 32C 3.62E-05 1.85E-03 -0.000549*** 3.36E-03 

 (1.76E-04) (0.003) (1.73E-04) (0.003) 

10 year avg. degree days 8C-32C -7.39e-05*** -2.61E-05 1.99E-04 -0.0005 

 (2.85E-05) (0.093) (1.25E-04) (0.001) 

Water right FE No No Yes Yes 

Water right RE Yes Yes No No 

Ag. District X Year FE Yes No Yes No 

County X Year FE No Yes No Yes 

R2 0.10  0.11  0.12  0.14  

Observations 193,085 193,085 193,085 193,085 

*** p<0.01, ** p<0.05, * p<0.1 
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Figures 

 

Figure 1. New LEPA per year (left) and cumulative usage over time (right).  
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Figure 2. Spatial pattern of LEPA use in the Kansas High Plains Aquifer. Clockwise from top-

left: 1995, 1998, 2002, 2010.  
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Figure 3. Fitted cumulative LEPA adoption curve (left), counterfactual with no peer effects 

(middle), and per-period difference between the fitted and counterfactual (right).  
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Additional Figures 

 

Figure A1. Sample 0-1 km, 1-2 km, and 2-5 km buffers about a water right.  
Note: green indicates LEPA adoption and white is non-LEPA. In this example, the focal water right has one 

LEPA peer in the 0-1 km buffer, two LEPA peers in the 1-2 km buffer, and three LEPA peers in the 2-5 km 

buffer.  

 

 

 

 

 


