Shade-grown coffee on neighboring farms: complements, substitutes, or negative spillovers?

Ian R. McGinnis, Shadi S. Atallah, University of New Hampshire
irm1006@wildats.unh.edu, Shadi.Atallah@unh.edu

Selected Poster prepared for presentation at the 2018 Agricultural & Applied Economics Association Annual Meeting, Washington, D.C., August 5-August 7

Copyright 2018 by Ian R. McGinnis and Shadi S. Atallah. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Contact

Graduate Student, Associate Professor, Department of Natural Resources and Environment, University of New Hampshire

Shade-grown coffee on neighboring farms: complements, substitutes, or negative

The spatial heterogeneity of land cover (sun grown vs. shade grown) systems are subject to pest infestations.

Results

The expected infestation state of cell (i, j) at time t+1 is:

\[E(I_{i,j}^{t+1}) = E(I_{i,j}^{t}) + E(I_{i,j}^{t}) \times f(I_{i,j}^{t}) \]

where \(f(I_{i,j}^{t}) \) represents the time-dependent probability of pest infestation in cell (i, j).

The economic model consists of each farmer maximizing profit subject to the constraint that the total production of sun-grown coffee on neighboring farms is limited by the infestation state of the neighboring farm. The optimal strategy is denoted by the optimal strategy (\(\pi^* \)) and is given by:

\[\pi^* = \arg \max_{\pi} \pi^T \cdot E(I_{i,j}^{t+1}) \]

The expected profit of producing sun-grown coffee on neighboring farms is given by:

\[E(P) = \sum_{i,j} P(I_{i,j}) \cdot E(I_{i,j}^{t+1}) \]

where \(P(I_{i,j}) \) represents the price of coffee produced in cell (i, j).

Discussion

Shade-grown coffee on neighboring farms: complements, substitutes, or negative

Economic Production Function

The total production of coffee on neighboring farms is given by:

\[P = \sum_{i,j} P(I_{i,j}) \]

The economic production function is a function of the infestation state of the neighboring farm and the price of coffee produced in cell (i, j).

Profit Function

The profit of producing sun-grown coffee on neighboring farms is given by:

\[\Pi = P - C \]

where \(C \) represents the cost of coffee production in cell (i, j).

Conclusion

Shade-grown coffee on neighboring farms: complements, substitutes, or negative

The expected profit of producing sun-grown coffee on neighboring farms is limited by the infestation state of the neighboring farm. The optimal strategy is denoted by the optimal strategy (\(\pi^* \)) and is given by:

\[\pi^* = \arg \max_{\pi} \pi^T \cdot E(I_{i,j}^{t+1}) \]

The expected profit of producing sun-grown coffee on neighboring farms is given by:

\[E(P) = \sum_{i,j} P(I_{i,j}) \cdot E(I_{i,j}^{t+1}) \]

where \(P(I_{i,j}) \) represents the price of coffee produced in cell (i, j).

Discussion

Shade-grown coffee on neighboring farms: complements, substitutes, or negative

Economic Production Function

The total production of coffee on neighboring farms is given by:

\[P = \sum_{i,j} P(I_{i,j}) \]

The economic production function is a function of the infestation state of the neighboring farm and the price of coffee produced in cell (i, j).

Profit Function

The profit of producing sun-grown coffee on neighboring farms is given by:

\[\Pi = P - C \]

where \(C \) represents the cost of coffee production in cell (i, j).

Conclusion

Shade-grown coffee on neighboring farms: complements, substitutes, or negative

The expected profit of producing sun-grown coffee on neighboring farms is limited by the infestation state of the neighboring farm. The optimal strategy is denoted by the optimal strategy (\(\pi^* \)) and is given by:

\[\pi^* = \arg \max_{\pi} \pi^T \cdot E(I_{i,j}^{t+1}) \]

The expected profit of producing sun-grown coffee on neighboring farms is given by:

\[E(P) = \sum_{i,j} P(I_{i,j}) \cdot E(I_{i,j}^{t+1}) \]

where \(P(I_{i,j}) \) represents the price of coffee produced in cell (i, j).

Discussion

Shade-grown coffee on neighboring farms: complements, substitutes, or negative

Economic Production Function

The total production of coffee on neighboring farms is given by:

\[P = \sum_{i,j} P(I_{i,j}) \]

The economic production function is a function of the infestation state of the neighboring farm and the price of coffee produced in cell (i, j).

Profit Function

The profit of producing sun-grown coffee on neighboring farms is given by:

\[\Pi = P - C \]

where \(C \) represents the cost of coffee production in cell (i, j).