
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Correlated Non-Classical Measurement Errors,
‘Second Best’ Policy Inference and the Inverse
Size-Productivity Relationship in Agriculture

Kibrom A. Abay
University of Copenhagen

Gashaw T. Abate
International Food Policy Research Institute

Christopher B. Barrett
Cornell University

Tanguy Bernard
University of Bordeaux and International Food Policy Research Institute

February 2018

Abstract
We show analytically and empirically that non-classical measurement errors (NCME)

in the two key variables in a hypothesized relationship can bias the estimated relation-
ship between them in any direction. Furthermore, if these measurement errors are
correlated, correcting for either NCME alone can aggravate bias in the parameter esti-
mate of interest relative to ignoring mismeasurement in both variables, a ‘second best’
result with implications for a broad class of economic phenomena of policy interest. We
use numerical simulation to illustrate the parameter space over which a second best
approach of not correcting one variable’s NCME dominates correcting it. We then
illustrate these results empirically by demonstrating the implications of mismeasured
agricultural output and plot size for the long-debated (inverse) relationship between
size and productivity. Our data from Ethiopia show large discrepancies between farmer
self-reported and directly measured values of crop output and plot size. These NCME
are strongly, negatively correlated with the true variable values and strongly, positively
correlated with one another. In these data, correlated NCME generate a strong but
largely spurious estimated inverse size-productivity relationship. And in line with our
analytical result, correcting for just one source of NCME aggravates the bias in the
parameter estimate of interest.
JEL Codes: C81, O12, Q12, Q15
Keywords: Agricultural policy, measurement, bias, Ethiopia.
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1 Introduction

Measurement drives analysis. The quality of descriptive and predictive evidence is only as

good as the underlying measures used to test key hypotheses. In recent years, empirical

researchers have begun to devote considerably more effort to careful measurement and to

explore the consequence of different measurement methods for key variables of direct policy

relevance.1 Of particular concern is non-classical measurement error (NCME), which occurs

when the error in measuring a variable of interest is correlated with the true value of that

variable, with the true values of other variables in the model, or with the errors in measuring

those values (Bound et al. (2001)).2 Many papers have clearly demonstrated the widespread

prevalence of NCME and its relevance for policy inference in a range of fields, especially labor

(e.g., Borjas (1980); Bound and Krueger (1991); Bound et al. (1994); French (2004); Kim

and Solon (2005); Arthi et al. (2018)), consumer behavior (Gibson and Kim (2010); Gibson

et al. (2015)), development (Baird and Özler (2012); Beegle et al. (2012); Chao et al. (2012);

Desiere and Jolliffe (2018)), health (Das et al. (2012); Larsen et al. (2017)), and agriculture

(De Groote and Traoré (2005); Carletto et al. (2013, 2015); Gourlay et al. (2017)). The

sensible guidance provided by that literature is to employ better measurement methods so

as to reduce error. The rise of improved techniques based on high resolution remote sensing,

mobile phone, imagery, global positioning system (GPS) and biomarker data, along with

electronic survey data entry, steadily opens up new possibilities for reducing policy-relevant

measurement error.

Yet in many domains, multiple variables fall prey to NCME. Moreover, mismeasurements

may often be correlated between variables, for any of several reasons. For example, survey

respondents might consciously and systematically underreport assets and earnings in order

to reduce prospective tax liabilities or to increase the likelihood of being deemed eligible for

some benefit. Or unconscious error may arise from rounding (sometimes known as ‘focal

point bias’) so that variables that naturally exhibit positive skewness, such as asset holdings

or earnings, will commonly exhibit upwardly biased and positively correlated measurement

error as a result. Or one mismeasured variable might be used by a respondent to generate an

optimal prediction of another variable (Hyslop and Imbens (2001)), resulting in correlated

1The special issue of Journal of Development Economics on measurement and survey design, introduced
by McKenzie and Rosenzweig (2012), was a watershed event pushing more careful measurement in develop-
ment economics. Ozler (2013)’s Development Impact blog entry helped call the development communitys
attention to these important issues more broadly.

2As is well known, classical measurement error is just a special case of the more general NCME form we
study. Classical measurement error generates attenuation bias in parameter estimates and artificially inflates
variance that may provide misleading description of, for example, income inequality or mobility (Gottschalk
and Huynh (2010)). Such bias declines as panel survey intervals increase (Naschold and Barrett (2011)).
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measurement errors.

If multiple variables are measured with error but only some are amenable to correction,

does correction for just one, but not both, otherwise-mismeasured variables reduce bias

and improve inference, especially if those measurement errors are correlated? To the best

of our knowledge, this important question has not yet been explored in the literature. Yet

correlated NCMEs matter for the same reason that omitted relevant variables matter because

each NCME is, by definition, correlated with a relevant variable.With multiple NCME, the

possibility of biases of opposing signs with positive correlation between the measurement

errors, or of biases of the same sign with negative correlation between the measurement

errors, implies that correcting for one source of NCME does not necessarily move the resulting

estimate closer to the true parameter value; indeed, it could increase bias. Hence, our central

analytical finding that correcting for one source of measurement error might magnify bias in

a parameter estimate of interest and its corollary, that if one cannot correct for both sources

of measurement error, a second best estimate based on multiple NCME may be preferable

in the sense of reduced bias.

This problem arises for a wide range of economic questions. For example, estimates of

the wage elasticity of labor supply may be subject to error in measures of earnings and hours

worked, the latter of which serves as both the dependent variable and the denominator of

the standard wage measure, leading to division bias (Borjas (1980)). Correlated errors in

nominal output and price measures may similarly bias the estimated relationship between real

output or total factor productivity and inflation (Diewert and Fox (1999)). And measurement

error in childrens ages, which are likely correlated with errors in height or weight measures

used jointly to construct standard anthropometric indicators such as height-for-age, can

significantly bias estimates of the determinants of child health (Larsen et al. (2017)).

In this paper we present quite general analytical findings, and explore their implications

numerically. But we frame the initial analytical portion in relation to our empirical part,

which explores the consequences of correlated NCME in crop output and land area in the

long-studied size-productivity relationship (SPR) in agriculture. The SPR has been stud-

ied extensively because of its considerable implications for agricultural development policy.

For decades, findings of an inverse relationship were widely invoked to support land reform

programs and substantiate claims of widespread factor market failures that justify interven-

tions. Earlier studies typically found an inverse relationship between farm size and crop

output per unit cultivated area (i.e., yield, a partial productivity indicator), attributing this

empirical regularity to factor market imperfections (e.g., Sen (1966); Feder (1985); Barrett

(1996)) or omitted land attributes, including soil quality (Benjamin (1995); Assunção and
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Braido (2007); Barrett et al. (2010)).3 Recently, improvements in agricultural data collection

have allowed researchers to explore the implication of measurement errors in self-reported

production and farm or plot size.4 Some papers have examined the implication of improved

area measurement for estimation of the SPR using GPS measures of the surface area of

plots (Carletto et al. (2013); Holden et al. (2013); Carletto et al. (2015)). Most recently,

a few papers have explored the implication of measurement errors in farmer self-reported

crop output on the estimated SPR using crop-cuts as a more objective measure of production

(Gourlay et al. (2017); Desiere and Jolliffe (2018)). Those papers find that, in their data, the

inverse relationship is essentially driven by measurement errors associated with self-reported

production. The relationship disappears upon using crop-cuts in place of self-reported pro-

duction.

While these few, recent studies explore the implication of measurement error associated

with either area or production, no study has yet considered both measurement problems

in a unified framework, much less generalized them beyond the specific case of the SPR.

This is particularly crucial if both size and production suffer NCME and these measurement

errors are correlated, a problem that bedevils a range of important empirical questions

in economics. As we demonstrate, when both production and farm size are inaccurately

measured, correcting for measurement error in just one variable is not sufficient to generate

a consistent and unbiased estimate of the SPR. Furthermore, while previous studies show

similar features of measurement errors in self-reported area and production, we know little

as to why they generate conflicting empirical implications as to the effects on the estimated

SPR.5 By studying correlated NCME in a more general setting, we can reconcile these

findings. More importantly, we analytically and empirically establish that correcting for

mismeasurement of just one variable can aggravate rather than attenuate bias in the SPR

estimate.

In what follows, we analytically and empirically characterize the implication of various

forms of NCME in self-reported crop production and cultivated area. We first set up a general

framework that allows NCME in both output and area as well as potential correlations in

these errors. We analytically characterize the implication of alternative features of NCME in

output and land area on the estimated SPR. We then empirically demonstrate our analytical

3Bevis and Barrett (2017) provide another new behavioral explanation for the inverse relationship between
farm size and productivity. They argue that productivity may be higher around the periphery of plots, partly
for biophysical edge effect reasons (e.g., improved access to sunlight) but mainly for behavioral reasons (e.g.,
greater observability of edges). As smaller plots have a greater ratio of edges to interior area, this can explain
the commonly observed inverse relationship between productivity and farm size.

4We will use the terms output and production synonymously and similarly area and size.
5Carletto et al. (2013) find that inaccuracies in land area measurement lead to underestimation of the

inverse relationship between plot size and productivity while Carletto et al. (2015) show the opposite.
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findings, employing both self-reported and objectives measures of output and area from

an agricultural household survey in Ethiopia. For production, we compare farmers self-

reported production measures and production estimates based on crop-cuts, which are widely

considered the gold standard for measuring agricultural output. We similarly rely on both

farmer-reported land area as well as measurements based on compass-and-rope method,

also known as Polygon method.6 Compass-and-rope is considered the most reliable method

to accurately measure land area (Keita and Carfagna (2009); Fermont and Benson (2011);

Carletto et al. (2015, 2016)).7 By employing these four different measures of farm size and

production, we illustrate empirically the patterns our analytical results predict regarding the

long-debated SPR.

We make three contributions to the literature. First, we show that when both the depen-

dent and a key explanatory variable suffers NCME, the effect of these measurement errors on

the estimated parameter of interest is analytically ambiguous, depending on several param-

eters that characterize each mismeasured variable. To the best of our knowledge, this is the

first paper to provide a general analytical framework for understanding the inferential impli-

cations of multiple, correlated NCME, and of incomplete correction for multiple NCME. In

our data, we find that measurement errors in self-reported area and production are strongly

correlated. As a result, correcting for either problem alone may not ensure unbiased esti-

mation of the SPR. Indeed, our analytical and empirical exercises show that correcting for

either measurement problem alone may even aggravate bias in the SPR estimate relative to

ignoring both measurement problems. This is essentially an applied econometric analog to

the ‘theory of the second best’ (Lipsey and Lancaster (1956)) result and serves as a use-

ful caution against overconfidence in the gains from improved measurement of single, key

variables.

Second, we empirically corroborate in a new data set the core findings of recent studies

(Holden et al. (2013); Gourlay et al. (2017); Desiere and Jolliffe (2018)) that claim that mea-

surement error can explain the inverse relationship observed in farmer self-reported area and

productivity data. Our results refine these prior findings by identifying features of measure-

ment errors that can generate a spurious inverse SPR and when correcting for measurement

6Also, known as traverse measurement, the method involves measuring the length of each side and the
angle of each corner using a measuring rope and a compass and the surface area of the measured plot can then
be calculated using trigonometry (De Janvry and Sadoulet (2000); Schoning et al. (2005); Casley and Kumar
(1988)). Although the method is cumbersome and time consuming, it remains the approach of choice for
specialized data collection due mainly to its accuracy compared to GPS or self-reported measures (Carletto
et al. (2015)).

7For example, Fermont and Benson (2011) compare farm size measurement using GPS and compass-
and-rope, and show that GPS estimates significantly underestimate smaller farm sizes while both methods
perform comparably for larger plots (those greater than 0.5 ha).
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error might fail to correct for biased SPR estimates. Importantly, that result is not an au-

tomatic byproduct of measurement error in area and output, particularly if these errors are

correlated.

Third, our analytical framework and data allow us to compare the relative impact of

the measurement errors in self-reported production and area on the estimated SPR. We

analytically show and empirically find that when both variables suffer from similar mea-

surement errors, inaccuracies associated with production are relatively more consequential.

We also document that measurement errors in self-reported production and area may also

affect parameter estimates relating productivity to other covariates of interest (e.g., soil

characteristics).

Despite our emphasis on the estimated relationship between agricultural productivity and

cultivated area, our analytical results have far more general implications. Not only do these

findings reinforce previous concerns about recall-based and self-reported agricultural data,

they also reveal the existence of an empirical equivalent to the theory of the second best,

which holds that when one market failure in an economy cannot be corrected, efficiency may

– perhaps counterintuitively – be maximized by introducing an offsetting market distortion.

Two market failures may cancel each other out. We similarly demonstrate that when there

exist NCME in both the dependent and independent variables of interest, and especially if

those errors are correlated, then correcting for just one source of measurement error may,

paradoxically, exacerbate the bias in the resulting parameter estimate of interest.

2 Measurement errors in household surveys

Most agricultural research relies on self-reported, recall-based data. Due to cost and logisti-

cal considerations, most data are collected through single visit household surveys perhaps

repeated over time to generate longitudinal (i.e., panel) data using extensive multi-topic

instruments. Respondents are asked to recall and aggregate information often over many

months and, in the case of agriculture, sometimes across two or more separate harvests of

multiple crop types. While recall and aggregation errors can affect many metrics, they can

have especially pronounced consequences for measuring area cultivated and production (i.e.,

harvested output).

Some such error may be classical, meaning the error itself is mean zero and uncorrelated

with the true value of either the dependent variable or any independent variables of interest.

For example, farmers in developing countries may lack the level of literacy and numeracy

needed to accurately estimate and aggregate land area and crop production measurements,

leading to significant, but random and symmetric (around the true value) measurement error
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(De Groote and Traor, 2005). In a regression context, it is well known that classical measure-

ment error will under-estimate relationships: either in absolute magnitude, in case the error

lies with the independent variable (through attenuation bias); or in statistical significance,

if the error lies with the dependent variable (through increase in the estimators variance).

In the context of the SPR, classical measurement error will naturally bias estimates towards

zero, i.e., toward failure to reject the constant returns to scale null hypothesis.

Non-classical measurement error, in which the error is correlated with the true variable(s)

of interest, is of considerably greater concern. Multiple mechanisms might introduce NCME

in self-reported land area and crop production. First, farmers may intentionally misreport

their land area and crop production so as to conceal wealth and thereby avoid taxes or be

found eligible for proxy means tested benefits of various types (Diskin (1997)). This type of

misreporting can vary systematically with the true value of farm size, since those with little

land or output have little or nothing to hide. Second, farmers may not accurately recall

information related to much earlier events; in particular, extended recall periods may cause

them to forget details of past events (Beegle et al. (2012); Arthi et al. (2018)) or season-

specific harvests (Ali et al. (2009); Howard et al. (1995)).8 Third, precise and universally

applied measurement units may not be widely employed in low-income rural areas where

imprecise local measures are commonplace. Traditional units can vary between locations

and farming systems, implying that measurement and conversion into standardized units

can introduce systematic errors. Finally, respondents may tend to round off values around

focal points (e.g., one hectare or one day), a problem that may be more consequential, in

percentage terms, for smaller plots and harvests than for larger ones.9

While the inverse SPR was long observed in survey data, an emerging literature now

argues that measurement errors in either land area or production may generate spurious

estimates. On the land measurement side, recent studies relying on GPS devices consistently

find evidence that farmers overestimate area for smaller plots and underestimate for larger

ones (e.g., De Groote and Traoré (2005); Carletto et al. (2013); Holden et al. (2013); Carletto

et al. (2015)). However, the implication of area measurement error on estimating the SPR

varies and sometimes contradicts each other. For example, Carletto et al. (2013) document

that error in land area measurement underestimates the inverse relationship between farm

size and productivity, while Carletto et al. (2015) find that it leads to overestimation of the

inverse relationship.

8Such recall bias affects many other agricultural metrics, including labor use (Arthi et al. (2018)).
9While most of the above reasons apply to farm size and production measurements, there are additional

problems that may affect measurement of production. For example, farmers may have forgotten season-
specific harvests (Ali et al. (2009); Howard et al. (1995)) and portion of their production given as gifts
and/or in-kind payments (David (1978)).
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On the production side, two recent studies find that the inverse relationship disappears

when using crop-cuts instead of self-reported production. They conclude that the estimated

inverse relationship is simply driven by measurement errors associated with production mea-

surement (Gourlay et al. (2017); Desiere and Jolliffe (2018)).10

While the above few studies explore the implication of measurement error associated with

either production or size, no study has analyzed the implication of measurement errors in

both metrics. In many situations both area and output are measured with errors and this

may have varying implications relative to the measurement errors in either one alone. This

is particularly crucial if measurement errors in crop production and farm size are correlated.

Intuitively, measurement errors in self-reported production and land area will often be corre-

lated. For example, if households engage in strategic misreporting of land size, they may be

more likely to do so as well for their harvests. Similarly, if rounding appears to be the main

source of measurement error, rounding in both measures will naturally generate some corre-

lation in measurement errors. For strictly positive-valued variables such as production and

land area, upward rounding of production and area generates a potential positive correla-

tion between measurement errors across both variables. The same will be true for positively

skewed variables subjected to rounding around focal points, as the density in ranges beneath

the focal point will typically exceed the density in the range above it. Below we analytically

characterize alternative forms of measurement errors in land and production measurements.

3 Analytical framework

Consider the following relationship between a true outcome of interest Y ∗ and the true

value of a single explanatory variable, X∗ , both expressed as the log-transformation of the

underlying variables:

Y ∗ = θX∗ + ε (1)

We assume that the regression error term,ε, is mean zero and uncorrelated with the ex-

planatory variable. Next, assume that we do not observe the true measures of production

and land area. Rather we observe error-ridden self-reported measures, Y and X (also ex-

pressed in logs), which can be expressed as combinations of true measures and measurement

errors as follows:11

10Gourlay et al. (2017) also used high-resolution remote sensing-based measurements for crop yield esti-
mation.

11This specification implies that measurement errors are assumed to be additive in their logarithmic
transformed values and hence multiplicative in their original form.
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Y = Y ∗ + u

X = X∗ + v (2)

In what follows, we show how the nature of the relationship between the measurement

errors, u and v, and X∗ affect estimates of the size-productivity relationship (SPR).

3.1 Size-productivity relationship

Letting Y ∗ and X∗ measure production and land area, respectively, we first transform Equa-

tion (1) into the more commonly estimated relationship between yield (production/area)

and land area cultivated. Recalling that both Y ∗ and X∗ are expressed in logs:

Y ∗ −X∗ = (θ − 1)X∗ + ε = βX∗ + ε (3)

Equation (3) is the workhorse estimable equation used in the SPR literature. Our purpose

is to analyze the effects of alternative forms of measurement errors in either production or area

on the β estimate. Note that land area enters both the right and left-hand side of Equation

(3); measurement error in land area therefore affects both the dependent and independent

variables. However, given the relationship between Equations (1) and (2), our representation

and implications remain general. In particular, one can use this basic framework to examine

generic measurement problems that include four cases of NCME, wherein measurement error

in the dependent variable, u, is correlated with (i) the true outcome or (ii) the explanatory

variable, or (iii) the measurement error in the explanatory variable, v, is correlated with its

true value, or (iv) the measurement errors u and v are correlated.

Case 1: Measurement error in the dependent variable correlated with true value

of the dependent variable

u = δY ∗ + ω

where ω is a random term uncorrelated with the explanatory variable (land area) and

the error term in Equation (3). This implies that:

Y = (1 + δ)Y ∗ + ω

With these features, ordinary least square (OLS) estimation of Equation (3) using self-

reported production would result in:
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βOLS =
cov(Y −X∗, X∗)

var(X∗)
=
cov((1 + δ)(β + 1)X∗ + (1 + δ)ε+ ω −X∗, X∗))

var(X∗)
= (1 + δ)β

(4)

In the context of SPR, Case 1 implies measurement error in production that is correlated

with the true production level. If we assume, as we find empirically, that the correlation is

negative (i.e., that those with the lowest harvest tend to over-estimate output the most in

proportion to true output), then OLS using self-reported production weakens the estimated

(inverse) relationship between land area and productivity. The degree of underestimation

increases with the correlation between measurement error and true production, δ (Bound

et al. (2001); Gibson and Kim (2010)).

Part of the correlation reflected in δ may be driven by the correlation between measure-

ment error in self-reported production and true land area.12 This type of measurement error

is more consequential in our context, at least in generating correlation across measurement

errors in production and land area, which we analyze next.

Case 2: Measurement error in dependent variable correlated with true value of

independent variable

u = λX∗ + ζ

where ζ is random noise uncorrelated with the true value of farm size and the error term in

Equation (1). Using similar substitutions, one obtains the following expression:

βOLS =
cov(Y −X∗, X∗)

var(X∗)
=
cov((β + 1)X∗ + ε+ λX∗ + ζ −X∗, X∗))

var(X∗)
= β + λ (5)

Applied to SPR, Case 2 implies that mismeasurement of production is correlated with

farm size, as would occur for instance if smaller farmers were more likely to overestimate

output, which appears to be the case in our data. According to Equation (5), such negative

correlation induces overestimation of the inverse relationship. Following this reasoning, De-

siere and Jolliffe (2018) and Gourlay et al. (2017) provide empirical evidence showing that

self-reported production measures can generate a spurious inverse relationship even when

productivity is invariant with respect to area.

12This is always the case if production is a deterministic function of land area. If production is a prob-
abilistic function of land area, as usually specified in regression production functions, we may theoretically
disentangle the correlations between measurement error in self-reported production and measured production
caused by land area as well as other (unobservable) factors.
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So far, we have considered two cases of measurement errors in production that may result

in conflicting implications on the inverse relationship. The first case attenuates the inverse

relationship while the second case amplifies it. The overall net effect depends on the relative

sizes and sources of the measurement error. Considering similar levels of correlations, the

overestimation caused by Case 2 dominates the underestimation associated with Case 1,

however, for the expected range of true |β| < 1. Of particular note, Case 2 can generate an

inverse relationship even in the absence of any true relationship, while Case 1 cannot.

Case 3: Measurement error in independent variable correlated with true value

of independent variable

v = αX∗ + ι

where ι is uncorrelated with the error-free explanatory variable and the error term in equation

1. This, by substitution, implies that:

X = (1 + α)X∗ + ι

Letting variance of X∗ = ρx2∗ and variance of ι = ρι2∗, OLS estimation of the relationship

in Equation (3) using self-reported land area results in the following parameter:13

βOLS =
β(1 + α)ρx2∗

(1 + α)2ρx2∗ + ρι2
− α(1 + α)ρx2∗

(1 + α)2ρx2∗ + ρι2
(6)

This is the case of measurement error in land area assuming that we have a precise

measure of production.

Equation (6) is a generic representation of the consequences of NCME in explanatory

variables, including those which can also appear in the left-hand side of regressions if the

same variable is used to construct the dependent variable (as in the case of yields). The first

term in Equation (6) reflects special cases where the explanatory variable only appears in

the right-hand side, and this expression simplifies further to the usual attenuation bias if the

measurement error associated with the explanatory variable is classical (α = 0).

The second term in Equation (6) arises if and only if the explanatory variable (plot size

in our context) also appears in the left-hand side of the estimation, as is true in the SPR

literature because yield (i.e., output per unit area) is the dependent variable of interest.

This whole term disappears if the measurement error behaves classically (α = 0). This is

consistent with the fact that classical measurement errors in dependent variables are wholly

13To see this, consider βOLS = cov(Y ∗−X,X)
var(X) = cov((β+1)X∗+ε−((1+α)X∗+ι),((1+α)X∗+ι)

var((1+α)X∗+ι) such that βOLS =
(β−α)(1+α)ρx2

∗
(1+α)2ρx2

∗+ρι
2 and the resulting Equation (6)
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captured by the regression residual.

Importantly, we cannot know a priori the direction of bias associated with self-reported

land area measurement in Equation 6. Indeed, we cannot even determine the direction of bias

associated with the first term, even when land area only appears in the right-hand side of the

Equation (Gibson and Kim (2010)). The direction of bias in the first term mainly depends

on the relationship between the variances of self-reported and true area measurements as

well as on the size (and sign) of the correlation between the measurement error and true

area of land.

Intuitively, there are cases where self-reported land measurement can be expected to

have lower variance than the true area measure, for example, if rounding is the main source

of measurement error. In these cases, OLS estimation using self-reported farm size will

overestimate the inverse relationship if the difference between the two variances is large

enough relative to the negative correlation between the measurement error and true area

of land. However, the second term in Equation (6) renders ambiguous the overall effect of

inaccurate land area measurement.

Case 4: Measurement errors in both dependent and independent variables are

correlated

cov(u, v) = π 6= 0

Using analogous substitutions and reformulation, we can show that OLS estimation of

the size-productivity relationship using both self-reported measures yields the following iden-

tity:14

βOLS =
β(1 + α)ρx2∗

(1 + α)2ρx2∗ + ρι2
− α(1 + α)ρx2∗

(1 + α)2ρx2∗ + ρι2
+

λρx2∗
(1 + α)2ρx2∗ + ρι2

+
π

(1 + α)2ρx2∗ + ρι2
(7)

Equation (7) is a very general representation encompassing various types of classical and

non-classical measurement errors as well as those affecting the dependent and independent

variables of interest. For example, the standard attenuation bias associated with classical

measurement errors in the explanatory variable of interest (size in our case) can be shown

by setting λ = α = π = 0 . Similarly, we can show that ignoring measurement error in

self-reported production and correlations between both types of measurement errors (π = 0)

results in the special case of Equation (6).

14To see this, consider βOLS = cov(Y−X,X)
var(X) = cov((β+1)X∗+ε+u−((1+α)X∗+ι),X∗+v)

var((1+α)X∗+ι) =
(β−α)(1+α)ρx2

∗+λρx
2
∗+π

(1+α)2ρx2
∗+ρι

2

and the resulting Equation (7)
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Again, we are unable to sign the bias in Equation (7). However, the following insights

emerge about the resulting SPR estimate. First, even in the absence of correlation in mea-

surement errors (π = 0) , the fact that both size and productivity suffer from non-classical

measurement error (α 6= 0, λ 6= 0) implies that correcting for measurement errors in one of

the variables does not ensure unbiased estimates of the SPR.

Second, if we correct for measurement error in one of our metrics, for example for plot size

measurement, Equation (7) reduces to Equation (6) where the inverse relationship between

plot-size and productivity would be inflated because of the usually negative correlation be-

tween measurement errors in production and true plot size. The resulting bias in the inverse

relationship can be more consequential (i.e., greater in magnitude) than ignoring both types

of measurement errors, so correcting one measurement error may aggravate the inferential

problem, not resolve it. This can be expected for cases where the correlation between mea-

surement errors (the last term in Equation (7)) is positive and strong enough to dampen

part of the overestimation in the inverse relationship caused by the third term, a point to

which we return below.

Finally, we can assess the relative effects of the different types of measurement errors

on the parameter estimate. For example, assuming that there is no statistically significant

relationship between farm size and productivity (β = 0), the first term in Equation (7) dis-

appears. Then, with similar correlations between measurement errors and true area (α = λ),

NCME in self-reported production can generate a spuriously negative SPR estimate (through

the third term in Equation (7), while the positive correlation between measurement errors

may generate a spuriously positive one. This suggests that in the presence of correlation

between measurement errors, the strength of this correlation is a key parameter that may

define the direction and size of the bias in the SPR estimate, another point to which we

return below.

Overall, the generic analytical expression in Equation (7) refines and qualifies recent stud-

ies arguing that measurement error in size or production spuriously generates the standard

inverse SPR (Gourlay et al. (2017); Desiere and Jolliffe (2018); Carletto et al. (2013); Holden

et al. (2013); Carletto et al. (2015)). Equation (7) highlights the intricacies through which

measurement errors in cultivated area and crop output affect this oft-explored hypothesis.

Our analytical framework shows that predicting the direction of bias associated with self-

reported size and production is more complex than the existing literature suggests. Adding

more covariates to Equation (1) also complicates the prediction of the direction of the biases,

particularly if these covariates are correlated with cultivated area or the measurement errors,

as will commonly be true for agricultural inputs such as labor, fertilizer and machinery use.
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3.2 When should NCME be corrected ?

Note that the general expressions in Equation (7) apply to any OLS estimate involving

NCME in outcome or explanatory variables, or both, as well as for cases where these mea-

surement errors may be correlated. Table 1 summarizes the key analytical findings. These

results underscore some more general insights as to when ignoring known measurement er-

rors will be superior to correcting just one variables measurement error when correcting the

second variables measurement error is infeasible, a ‘second-best’ type of estimation strategy.

More specifically, we now use Equations (6) and (7) to illustrate numerically the parameter

space over which the ‘second best’ option of ignoring known measurement error is likely to

reduce bias compared to the seemingly-best-feasible option of correcting the known measure-

ment error in a single variable.

Define relative bias, RB, in the SPR estimate as the bias in β arising when one corrects

neither mismeasured variable minus the bias arising when one corrects just the one variable.

Then, RB > (<)0 indicates that correcting one mismeasured variable reduces (increases)

bias in the parameter estimate of interest. We start with the simplest case, in which we

assume no true correlation between our dependent and explanatory variables (β = 0), unit

variance of the mismeasured and correctly measured explanatory variables (ρx2∗ = ρx2 = 1),

and negative and equal correlations between measurement errors and true measures (α = λ =

−0.5), assumptions that appear broadly consistent with our data (on which, more below).

Under these assumptions, we can use Equation (7) to compute RB when the econometrician

has the option to correct measurement error only in the explanatory variable. The left-

hand panel of Figure 1 depicts RB as a function of , the correlation between measurement

errors. The right-hand panel shows the same function when the negative correlation between

measurement errors and true values is stronger (α = λ = −0.8). Both figures show that there

exists a significant parameter space – the region where RB < 0 – over which the second-best

approach of not correcting for measurement error outperforms incomplete correction.

Careful examination of the two panels reveals two important points. First, the second

best approach can dominate no matter the sign of the correlation between the measurement

errors. Second, even if the measurement errors are perfectly correlated, as in the case of

π = 1, with α = λ = −0.8 in the right-hand panel, correcting the one measurement error

might still not be superior.

Figure 2 replicates the exercise but now for RB when the econometrician has the option to

correct measurement error only in the dependent variable. The same basic pattern emerges

but with one important difference: the parameter space over which the second best approach

of not correcting for measurement error dominates is appreciably smaller. The key point

is that correcting NCME in the dependent variable is more likely bias-reducing than is
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correcting measurement error in the key explanatory variable, contrary to the case of classical

measurement error.

Figures 3 - 4 offer three-dimensional representations of the same phenomena, relaxing

some key assumptions imposed in Figures 1 - 2. In Figure 3, we show the effects on RB of

correcting only measurement error in land area while also varying the correlation between

measurement error in area and true area. Figure 4 offers a similar comparison when the

option is to correct measurement error in output rather than area. Beyond reinforcing the

findings from Figures 1 and 2, these plots add important nuance, such as the importance

of the correlation between the measurement error in and the true value of the independent

variable. If α ≥ 0, it is almost always better to correct even just one source of NCME; the

second best approach is rarely better, especially if one can correct NCME in the dependent

variable. The main driver, however appears to be the correlation among measurement errors,

with moderately positive levels, 0 < π < 1, most typically associated with a second best

result that ignoring NCME beats correcting just one of the two sources of NCME. And

correcting for NCME in the dependent variable is, all else equal, more consequential than

correcting for NCME in the explanatory variable.

4 Characterizing measurement error among wheat pro-

ducers in Ethiopia

Following the above analytical framework, we now empirically investigate how NCME affect

the SPR amongst wheat farmers in Ethiopia. Our sample consists of 504 farmers, randomly

selected from 36 villages (kebeles) spanning 18 districts (woredas) of the Ethiopian wheat

belt.15 Farmers were interviewed in February and March 2014, a few months after the meher

season harvest.16 The survey instrument covered standard household characteristics, along

with detailed data on one wheat plot randomly selected amongst all wheat plots for those

farmers cultivating wheat on multiple plots.

In addition to farmers recall data, the originality of this data lies with the collection

of accurate measurement for both wheat harvest and plot size, at the time of harvest, in

November-December 2013. For this, we relied on experts from the Central Statistical Agency

(CSA) of Ethiopia to accurately measure the plot area using the compass-and-rope method,

and to measure harvest through a crop-cut exercise by which one random subplot (4 meters

4 meters) is harvested, and the resulting crop output weighed. Of the 504 sampled farmers,

15See Abate et al. (2015) for detailed discussion on the sampling design.
16Meher is the long (main) rainy and production season in Ethiopia.
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crop-cut wheat production was successfully measured on 382 plots.17

Table 2 presents the summary statistics of main household and plot level characteristics.

The first six rows provide alternative measures of plot size and production while the remain-

ing rows report household and plot characteristics. In particular, we consider detailed plot

level characteristics that might confound accurate measurement of plot size and production.

As shown in the top of the table, there are important discrepancies between self-reported

and objective measures of land area and production.

Table 2 shows that sampled plots have, on average, about nine corners, indicating that

precise measurement of such plots using scientific methods can also be difficult. Nonetheless,

the closure error is one percent, on average.18 About 40 and 60 percent of the sample

households used standard units for reporting their plot size and production, respectively.

One can argue that the use of standard units (e.g., kg or ha) may introduce considerable

errors since these measurements might not be commonly used in some rural areas. On

the other hand, local measurement units are likely to vary between regions, villages and

even farmers. For this reason, we control for these measurement units in our empirical

characterizations of measurement errors.

In the remainder of this section, we use these data to explore the extent and nature of

measurement errors for both production and plot size, and the consequences of those NCME

on estimates of the SPR.

4.1 Self-reported plot size

Farmers self-reported estimates and traversing (also known as compass-and-rope) are the

two conventional methods of measuring the surface of plot size. With the advent of new

technologies, there are now alternative ways of measuring plot size i.e., GPS and remote

sensing (see Carletto et al. (2015) and Carletto et al. (2016) for detailed discussion on these

methods).

While measuring plot size through farmers self-report in household surveys is the least

costly, the obtained measures can be subject to considerable measurement errors. First, self-

reported plot sizes are commonly based on traditional units whose conversion factor varies

across regions and hence can introduce meaningful errors. For example, farmers in Ethiopia

17Crop-cuts could not be measured for the remaining 122 plots for three reasons. First, seven of the farmers
had no wheat plot during the 2013 meher season. Second, five farmers could not be identified by anyone
in their respective kebeles at the time of the household survey. Third, the remaining 110 farmers harvested
their wheat plots early before the crop-cut survey. There were no refusals. In Table A1, we show that these
nonresponses are not systematic and hence uncorrelated with the household and plot characteristics.

18Closure error is the shortest line of unknown length and direction connecting the initial and final station
of the polygon or traverse. When the closing error is larger than 3 percent of the perimeter of the polygon,
repeating the measurement procedure is highly recommended (Casley and Kumar (1988)).
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commonly measure and report land areas in oxen days, but that measure will necessarily

vary with weather conditions, slope of the plot, drainage and texture of soils, animal breed

and condition, etc. Second, farmers rounding of area units (rounding to a half day, a full

day, or two days for instance) can generate meaningful error, the extent of which may vary

proportionally with actual size. Last, farmers may strategically report lower landholding, a

means to avoid state taxes or qualify for social programs.

Compass-and-rope is the most reliable method to accurately measure land area (Keita

and Carfagna (2009); Fermont and Benson (2011); Carletto et al. (2015, 2016)). Compared

to GPS-based area measurement, the compass-and-rope method is expensive, though some

argue that the level of accuracy is worth the extra time and cost (Diskin (1997)), in particular

because GPS-based area measurement may be imprecise for smaller plots (Schoning et al.

(2005); Keita and Carfagna (2009); Fermont and Benson (2011); Carletto et al. (2015)).

Figure 5 reports the error in self-reported plot size (darker columns), by categories of plot

size as measured by compass-and-rope. Farmers tend to over-estimate plot size by 150% on

average, for the smaller plots. As plot size increase, the level of error decreases with farmers

accurately reporting plot size (on average) for those plots ranging between 0.375 and 0.75

hectares. Larger plots tend to be under-estimated, however, by a factor of 25%, on average,

for plots larger than 1 hectare. These differences are statistically significant at the bottom

and top of the distribution, and non-significant towards the middle where differences are

negligible.19

Next, we explore potential sources of mismeasurement in self-reported plot sizes. Figure

6, panel (a) plots the self-reported plot size onto actual plot size measured by the compass-

and- rope (CR) method. Several observations are in order. First, it is clear that the majority

of observations lie above the 45 line, indicating a clear tendency for farmers to over-estimate

the size of their plot as compared to what is obtained from CR method. Second, coordinates

based on the CR method appear more smoothly distributed than coordinates from self-

reports which display significant heaping on values that correspond to the conversion factor

between the common local unit and hectare (e.g. 1/2 oxen day=0.125 ha; 1 oxen day=0.25

ha). Accordingly, rounding appears to be a potentially important source of measurement

error, with larger proportional consequences for smaller plots.

Other aspects of local context may also contribute to these errors. In Ethiopia, mis-

measurement of plot sizes could emanate in part from the traditional measurement units of

land itself. Oxen days (timad) is the most common unit of area measurement and can be

subject to a wide range of errors, including biases from differences in length of working hours

and traction capacity of oxen and in weather conditions, as well as plot characteristics (e.g.,

19Table A2 in the Appendix provides further details on this distribution.
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slope, soil texture and drainage, etc.). Moreover, some of those same plot characteristics

(along with shape, fertility, and ownership of the plot) and household characteristics can

affect farmers estimation of plot size.

Column (1) of Table 3 reports correlates of measurement error in self-reported farm size,

expressed as differences in logarithmic values of self-reported plot size and CR measurement

(ln(self − reported) − ln(CR)).20 To facilitate comparison of estimates, we restrict our

sample to those plots for which crop-cuts are available.21 Table 3 provides estimates for

both unconditional relationships within kebeles (as per out theoretical framework) in odd-

numbered columns, as well as estimations using a set of household- and plot-level controls

in even numbered columns. In columns (1) and (2), results point to a negative correlation

between measurement error and true plot size (as measured by compass-and-rope method).

The magnitude of the correlation between measurement error and true farm size is larger

than those reported by Carletto et al. (2013) and Carletto et al. (2015). One potential

explanation for these differences could be related to the land area measure we are using in

this paper. Carletto et al. (2013) and Carletto et al. (2015), as well as other previous studies

investigating measurement error in plot size, use GPS-based land area measurement, which

might be susceptible to some systematic measurement error (especially large, proportionately,

for smaller plots), while we are using a method commonly considered as the most accurate

method to estimate land area. While characteristics of the household head (such as age and

gender) do not appear correlated with the error, we find evidence that farmers with larger

total landholding tend to over-estimate the size of their individual plot, while those with

lower fertility plots tend to have a more accurate assessment of the size of these plots.

4.2 Self-reported wheat production

Crop-cuts and farmer self-reported estimates are the two methods most often used to measure

production in developing countries. The crop-cut method is based on harvesting one or

multiple random subplots in each plot. The method involves randomly locating a sub-plot(s)

prior to the harvest and the subplot(s) will be harvested by survey enumerators at the time of

maximum crop maturity. Then, the harvest is processed (e.g., dried) and weighed. Total plot

level production is then estimated by extrapolating the sampled crop production. One notes

20Due to the skewed distribution of some of our variables (e.g., plot size), we also re-estimate the above
regressions that characterize measurement errors using the inverse hyperbolic sine transformation of our
main variables of interest. The inverse hyperbolic sine transformation better handles extreme values than
the commonly used log transformation (Burbidge et al. (1988)). In our case, it also overcomes potential
expansion of the heterogeneity of the distribution of biases for values between 0 and 1 due to the log trans-
formation. Results based on inverse hyperbolic sine transformation are however similar in sign, significance
and magnitude as those presented throughout this paper.

21Results based on the full sample are almost identical and available upon request.
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that this extrapolation may introduce errors due mainly to variations in the productivity of

plot parts (e.g., interior vs. periphery or edge).22 However, one may account for crop-cut

distance to edges to minimize such problems, as we do in all presented estimates.

Crop-cuts are commonly regarded as the most reliable and unbiased method for estimat-

ing crop production (Fermont and Benson (2011)). However, obtaining production estimates

through crop-cuts can be costly; it is both a time- and labor-intensive undertaking. Crop

production estimates based on farmers self-report are therefore most common in agricul-

tural surveys, including those incorporated in standard household surveys. Recently, high-

resolution satellite imagery-based remote sensing techniques are also being used to estimate

crop yield, with some promising results (e.g., Lobell et al. (2015); Gourlay et al. (2017)).

Figure 5 reports the error in self-reported production (lighter columns), by categories of

plot size, as measured by compass and rope. Farmers tend to over-estimate (or at least over-

report) their wheat harvest, although the bias appears much more pronounced for smaller

plots. We find average over-estimation of 250% for plots smaller than 0.125 hectares, and

150% for plots between 0.125 and 0.250 hectares. These biases significantly decrease as plots

become larger, albeit remaining positive and statistically significant.23

Panel (b) of Figure 6 further confirms farmers general tendency to over-estimate their

production, with most observations lying above the 45 line. We do find clear evidence of

heaping (as was the case in panel (a)), mainly due to the fact that farmers report their

production estimates in bags of 50 to 100 kg each, such that several bags are collected for

each plot, reducing the scope for heaping on a limited number of categories.

In Columns (3) and (4) of Table 3, we present correlates of measurement error in pro-

duction, conditional on plot size. Results confirm that measurement error in self-reported

production is negatively correlated with true measure of farm size (compass-and-rope). These

correlations are much higher than those reported in Gourlay et al. (2017) and Desiere and

Jolliffe (2018). As shown in our analytical framework, this correlation between measurement

error in the outcome variable and true explanatory variable induces overestimation of the in-

verse relationship. We do not however uncover significant correlation between measurement

error in production and the introduced household, farm and plot characteristics.

In Columns (5) and (6) of Table 3 we show that measurement error in self-reported pro-

duction is strongly and negatively correlated with crop-cut production, suggesting the type

of mean-reverting measurement error documented in earnings (Bound and Krueger (1991))

22For example, previous agronomic studies indicate that the periphery of a plot is often more produc-
tive than its interior (Little and Jackson (1978); Barchia and Cooper (1996); Ward et al. (2016)). More
recently, Bevis and Barrett (2017) argue that this could be one explanation for the inverse size-productivity
relationship. We explore that hypothesis below.

23See Appendix Table A3 for further details on this distribution.
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and consumption (Gibson et al. (2015)). Following our analytical framework in Section 3,

this may lead to underestimation of the inverse relationship. We find that measurement

error in self-reported production is also correlated with soil quality.

4.3 Correlated measurement errors

Taken together, evidence thus far give strong support to the presence of non-classical mea-

surement errors in both production and plot size, highlighting the strong negative relation-

ship between both errors and plot size, and with actual production. Following the discussion

in our analytical section, Columns (7) and (8) of Table 3 reports estimates of correlates

between measurement error in production and measurement error in plot size, for a given

plot size and other household and plot characteristics. The correlation is large in magnitude:

a one percent increase in measurement error in plot size is associated with a 0.37 percent

increase in measurement error in production.

To summarize the analysis of measurement errors in self-reported wheat production and

plot size, we find empirical support for each of the four cases that analytical Section 3 noted

may lead to biased estimates of the SPR: (i) NCME in self-reported production caused by

negative correlation between measurement error and true (i.e., crop-cut) production; (ii)

correlation between NCME in self-reported production and true plot size; (iii) NCME in

self-reported plot size, caused by negative correlation between the bias in plot size and

its true value; and (iv) positive correlation between measurement errors in self-reported

production and plot size. Because these introduce several opposing biases simultaneously,

the net effect of these measurement errors on the SPR parameter estimate of interest is

ambiguous. Columns (1), (2), (3) and (4) of Table 5 summarizes the findings of Table 3, in

line with our analytical framework.

5 Measurement errors and the estimated size – pro-

ductivity relationship

This section presents estimates of the plot size – productivity relationship, under various

combinations of measurement errors in plot size and production. For sake of comparability,

we follow the commonly used OLS estimation presented in Equation (3):

Y ∗ −X∗ = β1X
∗ + Z ′τ1 + ε1 (8)

where production (Y ∗) and plot size (X∗) are both expressed in logs and measured with-
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out systematic error. Z is the same vector of village, household and plot-level characteristics

that we relied on in Table 3 and ε1 is a mean zero error term. Equation (8) is our benchmark

estimation, immune to NCME because we estimate it using crop-cut measurement for Y ∗ ,

and compass–and–rope method for X∗.

To investigate how measurement error in production and/or plot size affect the estimated

β parameter, we run the following three alternative specifications, where Y and X are farmers

(log-transformed) self-reported production and plot size, respectively:

Y −X∗ = β2X
∗ + Z ′τ2 + ε2 (9)

Y ∗ −X = β3X + Z ′τ3 + ε3 (10)

Y −X = β4X + Z ′τ4 + ε4 (11)

Empirical results associated with Equations (8) - (11) are presented in Table (4). These

estimates are based on our unconditional regressions (odd-numbered columns) as well as

controling for a full set of covariates (even-numbered columns). For sake of comparability

across estimations, we limit the sample to those plots with crop-cut estimates, although

similar results are obtained upon using full sample when feasible. Columns (1) and (2)

reports benchmark estimates associated with Equation (8). Controling for a number of

characteristics - and in particular soil type - leads to a negative estimated β1 parameter,

relatively small in magnitude, and statistically insignificant, pointing to the absence of clear

relationship between plot size and productivity amongst wheat farmers in Ethiopia. Our

proxy for the edge effect that Bevis and Barrett (2017) hypothesize could explain the inverse

SPR, distance of crop-cut from the edge, is also statistically insignificant. In what follows,

we compare the parameter estimates from Equations (9), (10) and (11) against the null

benchmark of β1 = 0.

Results in columns (3) and (4) (corresponding to Equation (9)) show a large, negative

and statistically significant estimated β2 parameter. The effect of measurement error in

production therefore appears to substantially over-estimate the inverse size productivity

relationship. But recall from the previous section that measurement error in plot size is

correlated with crop-cut production as well as true plot size. In our analytical section,

this situation corresponds to the combination of Cases 1 and 2 wherein measurement error

may lead to over or under-estimation of the SPR depending on the relative magnitudes

of δ and λ. In our data, the effect of production mismeasurement correlated with true

plot size appears (Case 2) to dominate that of its correlation with true production (Case

1), as predicted. Overall, our results suggest that using self-reported production leads to

substantial overestimation of the inverse relationship. This corroborates recent findings by
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Gourlay et al. (2017) and Desiere and Jolliffe (2018), which similarly show that self-reported

production measures can generate an estimated inverse SPR even when none exists.

Columns (5) and (6) present the estimation results of Equation (10) where production is

correctly measured but measurement error in plot size is negatively correlated with true plot

size as established in the previous section. In our analytical framework, we showed that such

mismeasurement may have ambiguous consequence in estimating the relationship between

plot size and productivity. Accordingly, the direction of bias associated with measurement

in plot size depends on the relationship between the variance of self-reported and true area

measurements as well as on the size (and sign) of the correlation between the measurement

error and true area of land. Our descriptive statistics (Table 2) indicate that variance of the

self-reported plot size is smaller than that of the true area, implying a negative correlation

between measurement error in plot size and true land area measure. Thus, we may expect

OLS estimation using self-reported plot size to overestimate the inverse relationship. This

is supported by our results in Column (6), where the estimated β3 parameter is large in

magnitude, negative in sign and statistically significant. It is also consistent with the pattern

reported by Carletto et al. (2015) but in contrast to the results in Carletto et al. (2013). The

consequences of measurement error in plot size may therefore vary across contexts, sources

and empirical features of measurement errors, again highlighting the cost of inaccurate land

measurements.

Finally, Columns (7) and (8)) reports estimation results of Equation (11), where both

plot size and production are measured with error, that is, using self-reported plot size and

production. The estimated parameter β4 suggests a significant inverse relationship between

plot size and productivity. However, the magnitude of this inverse relationship is less than

half the magnitude of those in Columns (2) and (3), implying that the two sources of mea-

surement error have somewhat offsetting effects on the bias in the estimate of the SPR

parameter. This is consistent with our analytical expression in Equation (7), showing that

positive correlation of measurement errors in the dependent and independent variables may

cancel out part of the bias due to measurement error in the dependent or independent

variable(s). In such a situation, ignoring both types of measurement errors appear to bias

the parameter of interest less than does controlling for either source of measurement error

alone. This underscores the threat of partial correction of multiple, correlated, non-classical

measurement errors and the ‘second-best’ inference result we emphasized earlier. Table 5

summarizes the key empirical relationships considering the alternative empirical scenarios.

Comparing the other estimates associated with the other explanatory variables in our

regressions, we also observe some importance differences among Columns (4), (6) and (8) of

Table 4, in other parameter estimates of interest. For example, measures of soil quality (soil
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fertility and soil color) are significantly associated with productivity when one uses correct

measures of plot size and productivity, while this is not the case when using self-reported

measures because soil quality indicators are correlated with the measurement errors in pro-

duction and plot size (see Columns (1) and (3) of Table 3). This is consistent with previous

arguments that omitted attributes, including unobservable soil quality, may contribute to

the disputed inverse size-productivity relationship (Benjamin (1995); Assunção and Braido

(2007)). Similarly, some plot characteristics (number of corners and crop-cut distance to the

edge) appear to be significant only when we use crop-cut production along with self-reported

plot size (Column (3) of Table 4). These spurious correlations between productivity and plot

characteristics are potentially driven by farmers misperception of plot size and associated

endogenous investments, consistent with the behavioral mechanisms hypothesized by Bevis

and Barrett (2017). More generally, these pieces of evidence suggest that the implication of

NCME in size and production may go beyond the inverse relationship and hence affect other

relationships and inferences.

6 Concluding remarks

We analytically investigate correlated non-classical measurement errors (NCME) in both

dependent and independent variables within a standard regression framework. We set up a

generic analytical framework in which both dependent and explanatory variables can suffer

from NCME and these errors can be correlated. We show that the signs and magnitude of

resulting biases are analytically ambiguous and depend on several parameters characterizing

measurement errors in these variables as well as the relationship under investigation. We

also show that accounting for measurement error in only one of the variables may worsen

the bias in estimated parameters.

We use this framework to shed further light on the longstanding policy debate about

the relationship between plot size and agricultural productivity. This relationship has con-

siderable implications for agricultural development policy: previous findings of an inverse

relationship have often been invoked to support land reform programs. However, most

previous empirical studies rely on farmer self-reports of output and area cultivated, with

considerable room for NCME. And while recent studies have attempted to correct biases

on either one of the variables (e.g., through GPS devices for area cultivated, or crop-cuts

for production), none to our knowledge has investigated the relationship more generally, by

addressing measurement issues on both sides of the equation, nor explored the implications

for incomplete correction for correlated NCME.

We rely on a unique dataset combining self-reported and gold standard measurements of

23



both agricultural output and area cultivated in Ethiopia. These data enable us to empirically

validate our analytical and numerical results, showing that the inverse size-productivity

relationship that we find in the self-reported data vanishes with more accurate measures. We

also find that fixing measurement error in just one of the variables does not solve the problem

and may effectively worsen bias in the parameter estimate of interest. These findings carry

strong implications, not only for work that relies on conventional survey data, but also for

a far broader array of studies that incompletely correct for measurement errors, which may

prove inferior to a ‘second best’ approach that uses multiple variables measured with error.

These findings are relevant to many economic applications and estimation problems involving

multiple error-ridden variables. It may also be relevant to aggregate metrics constructed from

multiple variables suffering from competing sources and patterns of bias.24
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Tables and Figures

Figure 1: Relative bias in SPR, where RB > (<)0 implies correcting the mismeasured ex-
planatory variable reduces (increases) bias when measurement error remains in the dependent
variable.
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Figure 2: Relative bias in SPR, where RB > (<)0 implies correcting the mismeasured depen-
dent variable reduces (increases) bias when measurement error remains in the explanatory
variable.

Figure 3: Relative bias in SPR, where RB > (<)0 implies correcting the mismeasured ex-
planatory variable reduces (increases) bias when measurement error remains in the dependent
variable.
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Figure 4: Relative bias in SPR, where RB > (<)0 implies correcting the mismeasured depen-
dent variable reduces (increases) bias when measurement error remains in the explanatory
variable.

Figure 5: Measurement error in plot size and production, as a function of accurate plot size
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Figure 6: True vs self-reported plot size and production
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Table 1: Summary of Analytical Results

Source of non-classical Key parameters Estimated SPR Direction of bias
measurement error δ λ α π on the SPR
No error 0 0 0 0 β No bias
Error in production < 0 0 0 0 (1 + δ)β Underestimation of ISPR
Error in production ∗ < 0 0 0 β + λ Overestimation of ISPR
Error in plot-size ∗ 0 < 0 0 β(1 + α)φ− α(1 + α)φ Ambiguous
Errors in both ∗ < 0 < 0 0 β(1 + α)φ− α(1 + α)φ− λφ Ambiguous
Correlated errors in both ∗ < 0 < 0 > 0 β(1 + α)φ− α(1 + α)φ− λφ+ π

ρx2∗
Ambiguous

Notes: we rely on our data and empirical analysis to get an insight of the sign of the key parameters of interest.

φ = var(X∗)/var(X) =
ρx2

∗
(1+α)2ρx2

∗+ρλ
2

∗ : value of these parameters can be zero or negative.

SPR stands for the size-productivity relationship and ISPR for inverse size-productivity relationship.
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Table 2: Summary statistics

Variable Description Mean Std.
Dev.

Min Max Obs.

Area (SR) Self-reported area size (ha) 0.42 0.36 0.03 4 488
Area (CR) Measured area using compass and rope method 0.37 0.39 0.03 3.8 483
Production (SR) Self-reported production for reference plot (qt.) 21.05 19.18 0.5 120 488
Production (CC) Estimated production based on crop-cut (qt.) 8.98 9.91 0.81 101.5 365
Yield (SR) Self-reported (production/area), (qt./ha) 30.69 18.18 1 96 488
Yield (CC) Measured (production/area) using crop-cut,

(qt./ha)
28.23 15.05 2.78 95.38 366

Age of HH head Age of the household head in completed years 45.67 10.84 20 77 488
Gender of HH head Gender of the household head 0.86 0.34 0 1 488
HH size Number of household members 6.79 2.39 1 16 488
Literacy of HH
head

=1 if the household head is literate 0.64 0.48 0 1 488

No. of corners Number of corners of the reference plot 8.74 4.88 4 23 484
Closure error Closure error in plot area measurement 1.09 0.89 0.02 4.5 483
Area unit =1 if farmers used ha for SR area measurement 0.39 0.49 0 1 488
Total owned area Total farm land owned by sample farmers 2.31 2.14 0 20 488
Crop-cut to edge Distance between crop-cut and closest plot edge

(meters)
25.83 18.57 1.4 148 374

Production unit =1 if farmers used kg for SR production measure-
ment

0.59 0.49 0 1 488

Total wheat pro-
duced

Total wheat production during 2013/14 meher 46.64 75.26 0.95 755 488

High fertility =1 if the fertility of the reference plot is high 0.44 0.49 0 1 488
Medium fertility =1 if the fertility of the reference plot is medium 0.49 0.5 0 1 488
Poor fertility =1 if the fertility of the reference plot is poor 0.07 0.26 0 1 488
Red soil =1 if the color of the reference plot is red 0.26 0.44 0 1 488
Black soil =1 if the color of the reference plot is black 0.54 0.49 0 1 488
Grey/sand soil =1 if the color of the reference plot is grey or sandy 0.20 0.4 0 1 488
Distance to plot Walking time between dwelling and the plot (in

minutes)
30.98 9.94 0 120 488

Plot ownership =1 if the reference plot owned by the HH 0.82 0.38 0 1 488
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Table 3: Correlates of measurement errors

ln area ratio ln production ratio ln production ratio ln production ratio

(1) (2) (3) (4) (5) (6) (7) (8)

ln plot size (CR) –0.550***–0.532***–0.596*** –0.564*** –0.397*** –0.363***
(0.045) (0.045) (0.073) (0.079) (0.109) (0.110)

ln production (CC) –0.656*** –0.671***
(0.055) (0.054)

ln (land area bias) 0.362** 0.377***
(0.132) (0.131)

Medium soil fertility –0.096* –0.060 –0.151** –0.024
(0.054) (0.087) (0.070) (0.075)

High soil fertility –0.237** –0.074 –0.308*** 0.015
(0.089) (0.106) (0.082) (0.121)

Black soil –0.124 0.120 –0.035 0.166
(0.089) (0.127) (0.101) (0.125)

Grey or sandy soil –0.004 0.258* 0.232 0.259*
(0.080) (0.150) (0.145) (0.147)

Distance to home 0.003 0.003 0.002 0.002
(0.003) (0.005) (0.004) (0.004)

Distance to edge 0.001 0.000 0.000 –0.000
(0.002) (0.003) (0.003) (0.003)

Number of corners –0.002 –0.013 –0.002 –0.013
(0.007) (0.011) (0.010) (0.011)

Plot is owned by hh –0.037 –0.103 –0.080 –0.089
(0.072) (0.093) (0.080) (0.095)

Observations 365 360 365 360 365 360 365 360

R2 0.46 0.52 0.50 0.51 0.61 0.63 0.53 0.55

* p < 0.1, ** p < 0.05, *** p < 0.01.

Note: Standard errors are clustered at kebele level and given in parentheses. High and red are reference
categories for soil fertility and color, respectively. Other unreported controls in even numbers include the
household head’s age (linearly and squared), her gender, her education level, household size and total
farm size. All estimates include kebele-level fixed effects.

35



Table 4: Plot size productivity relationship

ln(crop-cut production/
compass-and-rope

plot size)

ln(self-reported production/
compass-and-rope

plot size)

ln(crop-cut production/
self-reported

plot size)

ln(self-reported production/
self-reported

plot size)

(1) (2) (3) (4) (5) (6) (7) (8)

ln plot size (CR) –0.247*** –0.104 –0.679*** –0.668***
(0.060) (0.062) (0.079) (0.072)

ln plot size (self-reported) –0.410*** –0.579*** –0.154** –0.187**
(0.067) (0.079) (0.062) (0.077)

Medium soil fertility –0.137*** –0.197*** –0.092 –0.063
(0.049) (0.066) (0.084) (0.063)

High soil fertility –0.355*** –0.429*** –0.169 –0.215*
(0.115) (0.087) (0.135) (0.107)

Black soil –0.234*** –0.114 –0.148 –0.068
(0.069) (0.091) (0.091) (0.088)

Grey or sandy soil –0.043 0.215 0.009 0.124
(0.074) (0.150) (0.125) (0.119)

Distance to home –0.001 0.002 –0.001 0.001
(0.002) (0.004) (0.004) (0.003)

Distance to edge –0.001 –0.001 0.011*** 0.002
(0.002) (0.003) (0.003) (0.002)

Number of corners 0.012 –0.001 0.072*** 0.013
(0.011) (0.010) (0.012) (0.010)

Plot is owned by hh 0.036 –0.067 0.037 –0.024
(0.064) (0.083) (0.095) (0.072)

Observations 365 360 365 360 365 360 365 360

R2 0.10 0.56 0.58 0.60 0.40 0.53 0.46 0.48

* p < 0.1, ** p < 0.05, *** p < 0.01.

Note: Standard errors are clustered at kebele level and given in parentheses. High and red are reference categories for soil fertility and color,
respectively. Other unreported controls in even numbers include the household head’s age (linearly and squared), her gender, her education
level, household size and total farm size. All estimates include kebele-level fixed effects.
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Table 5: Summary of estimation results

Source of non-classical Key empirically estimated parameters Estimated SPR Relative implication
measurement error δ λ α π on the SPR
No error NA NA NA NA 0.104 Insignificant ISPR estimated

(0.062)
Error in production -0.671*** -0.564*** NA NA -0.668*** Strongest ISPR estimated

(0.054) (0.079) (0.072)
Error in production NA NA -0.532*** NA -0.579*** Strong ISPR estimated

(0.045) (0.079)
Error in both -0.671*** -0.564*** -0.532*** > 0 -0.187*** Weakest ISPR estimated

(0.054) (0.079) (0.045) (0.077)
Notes: we extracted the above estimates and standard errors (given in parenthesis) from our conditional regressions

associated with Equations (8)-(11). NA refers that these parameters are either not relevant or not empirically estimated.

SPR stands for the size-productivity relationship while ISPR represents the inverse size-productivity relationship.
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Table A1: Characterizing non-response in crop-cut survey

Crop-cut
(1=yes)

Age of hh head 0.001
(0.008)

Age square 0.000
(0.000)

Gender of HH head -0.065
(0.039)

Size of HH -0.002
(0.008)

Education of HH head -0.023
(0.039)

Total landholding size 0.006
(0.006)

Soil fertility
Medium 0.036

(0.022)
Poor -0.006

(0.046)
Soil color
Black -0.003

(0.039)
Grey or Sandy -0.020

(0.043)
Distance from home 0.000

(0.001)
Own plot (1=yes) 0.018

(0.035)
Constant 0.822∗ ∗ ∗

(0.167)
Observations 488
R-squared 0.692
*** p<0.01, ** p<0.05, * p<0.1

Kebele-level fixed effects included.

Std. errors clustered at kebele level in parenthesis.
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Table A2: Discrepancy between compass and ropes and self-reported plot size

Plot-size group # Obs. Self reported Compass and rope Bias: SR− CR Difference in means
(CR) (SR) (CR) Bias: (1)− (2) %Bias: (3)/(2) p-values

(1) (2) (3) (4) (5)
≤0.125 ha 70 0.20 0.08 0.12 150% 0.000
0.125 − 0.25 ha 132 0.31 0.19 0.12 63% 0.000
0.25 − 0.375 ha 125 0.38 0.30 0.08 27% 0.000
0.375 − 0.5 ha 74 0.46 0.44 0.02 5% 0.350
0.5 − 0.75 ha 46 0.60 0.58 0.02 3% 0.783
0.75 − 1 ha 12 0.64 0.85 -0.21 -25% 0.005
>1.0 ha 24 1.22 1.70 -0.48 -28% 0.019
Total 483 0.42 0.37 0.05 14% 0.002
Note: CR refers compass-and-rope, while SR stands for self-reported farm size.
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Table A3: Discrepancy between crop-cut and self-reported production

Plot-size group # Obs. Self reported Crop-cut Bias: SR− CC Difference in means
(CR) (SR) (CC) Bias: (1)− (2) %Bias: (3)/(2) p-values

(1) (2) (3) (4) (5)
≤0.125 ha 59 9.1 2.6 6.5 250% 0.000
0.125 − 0.25 ha 108 13.9 5.6 8.3 148% 0.000
0.25 − 0.375 ha 87 16.3 7.7 8.6 111% 0.000
0.375 − 0.5 ha 50 19.1 11.7 7.4 63% 0.000
0.5 − 0.75 ha 33 26.1 13.6 12.5 91% 0.000
0.75 − 1 ha 9 24.2 21.8 2.3 10% 0.800
>1.0 ha 19 46.5 32.2 14.3 44% 0.064
Total 365 17.5 8.9 8.5 95% 0.000
Note: CC refers crop-cut and SR stands for self-report, while CR stands for compass-and-rope measurement of farm-size.
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