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Abstract

We extend the fractionally integrated exponential GARCH (FIEGARCH) model for daily

stock return data with long memory in return volatility of Bollerslev and Mikkelsen (1996) by

introducing a possible volatility-in-mean e¤ect. To avoid that the long memory property of

volatility carries over to returns, we consider a �ltered FIEGARCH-in-mean (FIEGARCH-M)

e¤ect in the return equation. The �ltering of the volatility-in-mean component thus allows

the co-existence of long memory in volatility and short memory in returns. We present an

application to the daily CRSP value-weighted cum-dividend stock index return series from

1926 through 2006 which documents the empirical relevance of our model. The volatility-in-

mean e¤ect is signi�cant, and the FIEGARCH-M model outperforms the original FIEGARCH

model and alternative GARCH-type speci�cations according to standard criteria.
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1 Introduction

Many of the salient features of daily stock returns are well described by the FIEGARCH (frac-

tionally integrated exponential generalized autoregressive conditional heteroskedasticity) model

introduced by Bollerslev & Mikkelsen (1996). Thus, in addition to time-varying volatility and

volatility clustering (the ARCH and GARCH e¤ects, as in Engle (1982) and Bollerslev (1986)),

and the resulting unconditional excess kurtosis or heavier than normal tails, the model accounts

for long memory in volatility (fractional integration, as in the FIGARCH model of Baillie, Boller-

slev & Mikkelsen (1996)), as well as asymmetric volatility reaction to positive and negative return

innovations (the exponential feature, as in Nelson�s (1991) EGARCH model).

In this paper, we introduce a �ltered in-mean generalization of the FIEGARCH model, which

we label FIEGARCH-M. The generalization allows a volatility feedback or risk-return relation

e¤ect of changing conditional volatility on conditional expected stock returns, and generates un-

conditional skewness. Following recent literature (Ang, Hodrick, Xing & Zhang (2006) and Chris-

tensen & Nielsen (2007)), it is changes in volatility that enter the return equation. The �ltering

of volatility when entering it in the return speci�cation implies that the long memory property

of volatility (the fractionally integrated feature) does not spill over into returns, which would be

empirically unrealistic.

That volatility exhibits long memory is well established in the recent empirical literature. This

�nding is consistent across a number of studies1, and �nancial theory may accommodate long

memory in volatility as well, see Comte & Renault (1998). Many of the studies use GARCH-type

frameworks, but none of them consider in-mean speci�cations, i.e., parametric relations across

conditional means and variances2. The FIEGARCH-M model of the present paper �lls this gap.

Three related e¤ects may introduce a relation between volatility and mean returns, namely,

(i) a risk-return tradeo¤ capturing the risk premium required by investors as compensation for

taking on additional risk, (ii) a �nancial leverage e¤ect, and (iii) a volatility feedback e¤ect. We

brie�y discuss each of these in turn.

Early theoretical and empirical contributions on the risk-return relation were due to Mer-

ton (1973, 1980). In equilibrium, investors taking on additional risk should be compensated

1See, e.g., Robinson (1991), Crato & de Lima (1994), Baillie et al. (1996), Ding & Granger (1996), Breidt, Crato

& de Lima (1998), Robinson (2001), and Andersen, Bollerslev, Diebold & Labys (2003).
2To the best of our knowledge, the only study of the relation between volatility with long memory and conditional

mean returns is Christensen & Nielsen (2007), which is outside the GARCH-class, using instead a stochastic volatility

model and basing inference on realized (from high-frequency returns) volatility or implied (from option prices)

volatility.
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through higher expected return, which implies a positive coe¢ cient in the risk-return relation.

The GARCH-M (GARCH-in-mean) model proposed by Engle, Lilien & Robins (1987) allows for

the direct e¤ect of volatility changes on asset prices through required returns in a short memory

GARCH-type model, by introducing the conditional volatility function into the conditional mean

return equation. Empirical studies of the risk-return tradeo¤ using GARCH-type models for stock

returns obtain mixed results regarding both the sign and the signi�cance of the in-mean e¤ect, see

e.g. Bollerslev, Engle & Wooldridge (1988), Chou (1988), Glosten, Jagannathan & Runkle (1993),

Nelson (1991), Campbell & Hentschel (1992), and Chou, Engle & Kane (1992). Recent work in

asset pricing examines cross-sectional risk premia induced by covariance between innovations in

volatility and stock returns. This literature �nds negative premia, e.g. Ang et al. (2006). The

idea is that since innovations in volatility are higher during recessions, stocks which co-vary with

volatility are stocks that pay o¤ in bad states, and these should require a smaller risk premium.

For a survey of related studies, see Lettau & Ludvigson (2004).

While time-varying volatility in itself generates excess kurtosis in unconditional distributions,

which is common to most �nancial return series, the phenomenon that negative return innovations

induce higher volatility than positive innovations of the same magnitude, observed particularly in

stock return distributions, may be accommodated using the EGARCH model of Nelson (1991).

The asymmetric volatility reaction pattern may stem from a �nancial leverage e¤ect, see e.g.

Black (1976), Engle & Ng (1993), and Yu (2005). The standard argument from Black (1976) is

that bad news decrease the stock price, hence increasing the debt-to-equity ratio (i.e. �nancial

leverage), and equity carries all asset risk, making the stock relatively riskier after the price drop

and increasing future expected volatility.

An alternative source of a negative volatility-return relation is the volatility feedback mecha-

nism of Campbell & Hentschel (1992), that is, if volatility is increased, then so is the risk premium,

in case of a positive tradeo¤ between risk and conditional expected return. Hence, the discount

rate is also increased, which in turn for an unchanged dividend yield lowers the stock price. Pre-

sumably, the volatility feedback e¤ect should be strongest at the market level, whereas the leverage

e¤ect should apply to individual stocks.

Our FIEGARCH-M model includes both the exponential (asymmetry) and in-mean features,

thus allowing tests of whether both are empirically relevant. Although the causality is reversed, the

leverage and volatility feedback e¤ects may be seen as supplementing each other as explanations

of the negative return-volatility relation documented in empirical stock market research. In the

empirical model, the negative relation may show up both through the exponential and the in-

mean feature. Of these, only the latter generates unconditional skewness (see He, Silvennoinen &
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Terasvirta (2008)). It is worth noting that the volatility feedback mechanism induces a negative

volatility-return relation even in the presence of a positive equity premium or risk-return tradeo¤,

and for a given data frequency the negative feedback e¤ect may dominate the positive tradeo¤

e¤ect in the estimation of the in-mean volatility-return relation. At the relatively high, say daily,

frequencies where GARCH-style models are most useful, the initial price reaction through the

change in discount rate (the feedback mechanism) is relatively more important than the change in

mean return (asset pricing or tradeo¤) e¤ect of a volatility change, and so the estimated in-mean

e¤ect may to a larger extent re�ect feedback. Our model allows estimating both the exponential

and volatility-in-mean e¤ects simultaneously, and the estimated in-mean volatility-return relation

will point to a feedback or tradeo¤ e¤ect operating alongside the leverage e¤ect.

We apply our FIEGARCH-M model to the CRSP value-weighted cum-dividend stock index

return series using daily data from 1926.1.2 through 2006.12.29. We estimate the model by

quasi-maximum likelihood (QML). The validity of the robust (sandwich-formula) standard er-

rors is con�rmed using the wild bootstrap algorithm. We compare the model to a number of

alternative GARCH-type speci�cations, including IGARCH, Spline-GARCH, FIGARCH, Adap-

tive FIGARCH, EGARCH, FIEGARCH, and associated models with in-mean e¤ects, such as

GARCH-M. The comparison con�rms that FIEGARCH is preferred over other models without

in-mean features. Furthermore, in-mean features in fact further improve the �t. The best model

according to standard information criteria rewarding both goodness-of-�t and parsimony as well

as to out-of-sample forecasting performance is the new FIEGARCH-M speci�cation. In particular,

the volatility-in-mean e¤ect is statistically signi�cant, even when controlling for autocorrelation

in daily returns. Thus, the results demonstrate that the volatility-in-mean e¤ect indeed is an

empirically important extension of the original FIEGARCH model.

In the next section, we present our FIEGARCH-M model, which incorporates all the above

mentioned features. Section 3 presents the application to the daily CRSP data, and Section 4

concludes.

2 The FIEGARCH-M Model

We extend the FIEGARCH model by introducing volatility into the return equation, i.e., the

in-mean feature, along the lines of the GARCH-M literature, thus yielding a new FIEGARCH-M

model. Since long memory in volatility introduced into the return equation in a linear fashion

generates long memory in returns, which may not be empirically warranted, we follow Ang et al.

(2006) and Christensen & Nielsen (2007) and consider the possibility that it is changes in volatility
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rather than volatility levels that enter the in-mean speci�cation and induce a volatility-return

relation.

Let the daily continuously compounded returns on the stock or stock market index be given

by

rt = ln(Pt)� ln(Pt�1); (1)

where t is the daily time index and Pt the stock price or index level at time t. In the FIEGARCH-M

model, we use the conditional mean speci�cation

rt = �+ �ht + "t; (2)

where volatility changes enter in the form of ht, de�ned in (7) below as the �ltered (fractionally

di¤erenced) conditional variance. Thus, the speci�cation allows for a volatility-return relation

through the parameter �: Letting Ft�1 denote the information in returns through t�1, i.e., the �-
�eld generated by frt�1; rt�2; :::g, it is noted that ht is Ft�1-measurable, so the return innovations
are "t = rt � E(rtjFt�1) with E(�jFt�1) denoting conditional expectation given Ft�1. It follows
that "t in (2) is a martingale di¤erence sequence (with respect to Ft).

The key is the modeling of the conditional return variance

�2t = V ar(rtjFt�1) = E("2t jFt�1): (3)

As in the FIEGARCH model, the speci�cation is

�(L)(1� L)d(ln�2t � !) =  (L)g(zt�1); (4)

where ! is the mean of the logarithmic conditional variance, �(L) and  (L) are polynomials in

the lag operator, �(L) = (1� �1L) � : : : �
�
1� �pL

�
and  (L) = (1 +  1L) � : : : �

�
1 +  qL

�
,

and (1� L)d is the fractional di¤erence operator de�ned by its binomial expansion

(1� L)d =
1X
i=0

�(i� d)
�(�d)�(i+ 1)L

i; (5)

where d is the order of fractional integration in log-variance and �(�) =
R1
0 x�e�xdx is the Gamma

function. The fractional di¤erence with 0 < d < 1 allows for stronger volatility persistence than

that of the GARCH-type generated by the lag-polynomials �(L) and  (L). The exponential or

asymmetry feature is ensured by modeling ln�2t in (4), as opposed to �
2
t , and by the de�nition of

the news impact function g(�) governing the manner in which past returns impact current volatility,

g(zt) = �zt + (jztj � Ejztj); (6)
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where zt = "t=�t is the normalized innovation. This follows Nelson�s (1991) EGARCH speci�-

cation. Here,  is the rate at which the magnitude of the normalized innovations in deviations

from mean, i.e., jztj �Ejztj, enter into current volatility3, and � generates an asymmetry in news
impact on volatility. Thus, if � < 0 then negative innovations induce higher volatility than positive

innovations of the same magnitude. However, this asymmetric reaction to innovations of di¤erent

sign does not induce unconditional skewness in returns, which is instead produced by the in-mean

feature (see He et al. (2008)) and hence also accommodated by the FIEGARCH-M speci�cation.

Bollerslev & Mikkelsen (1996) in fact use the model with p = q = 1. De�ning ht = (1 �
L)d(ln�2t � !) as the fractionally di¤erenced log-variance in deviation from the long run level, it

is convenient to rewrite the resulting FIEGARCH(1,d,1) model as

ht = (1� L)d(ln�2t � !) = �1ht�1 + g(zt�1) +  1g(zt�2): (7)

Thus, the relevant measure of volatility changes ht follows a special ARMA(1,1) process. The

presence of ht�1 on the right hand side of (7) is a GARCH-e¤ect, i.e., volatility (here, its fractional

di¤erence) depends on its own lag, whereas the ARCH-e¤ect stems from past returns feeding into

current volatility, namely, via the news impact g(zt�1) (and its lagged value) in (7).

In addition to the volatility-return relation where fractionally di¤erenced volatilities ht en-

ter mean returns as in (2), Ang et al. (2006) and Christensen & Nielsen (2007) also consider a

speci�cation where volatility innovations enter instead. In the present GARCH-framework, the

innovation to volatility is best understood as the news impact g(zt�1), yielding the alternative

return equation

rt = �+ �g(zt�1) + "t: (8)

Thus, g(zt�1) is the most recent innovation to �2t , and it is Ft�1-measurable, so in (8) the return
innovations are again the martingale di¤erences "t = rt � E(rtjFt�1), as in (2).

3 Application to the CRSP Value-Weighted Index, 1926-2006

Our application uses daily cum-dividend returns on the CRSP value-weighted index from January

2, 1926, the starting date of the CRSP series, to December 29, 2006, for a total of T = 21; 519

return observations. The CRSP series is more than twice as long as the S&P 500 series that was

considered by Bollerslev & Mikkelsen (1996) in the original FIEGARCH study. That series covered

the period January 2, 1953, to December 31, 1990, for a total of T = 9; 559 observations. The

3Note that if zt is Gaussian, then Ejztj =
p
2=�.
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CRSP and S&P series are very similar over the common subperiod, with a correlation coe¢ cient

of 0:9880.

Following Nelson (1991) and Bollerslev & Mikkelsen (1996), we include a variable Nt equal to

the number of nontrading days between t � 1 and t to account for the fact that volatility tends
to be higher following weekend and holiday nontrading periods, but with each nontrading day

contributing less to volatility than a trading day. Thus, our volatility equation with p = q = 1

becomes

ht = (1� L)d(ln�2t � ln(1 + �Nt)� !) = �1ht�1 + g(zt�1) +  1g(zt�2): (9)

Here, the parameter � measures the contribution of each nontrading day to variance, as a fraction

of the contribution from a trading day. To calculate the fractional di¤erences ht, we truncate

the in�nite sum in (5) at i = minft � 1; 1000g, following Baillie et al. (1996) and Bollerslev &
Mikkelsen (1996).

Using (9) for volatility and either (2) or (8) to de�ne the return innovations "t, the model is

estimated by quasi maximum likelihood (QML). Thus, the sample log-likelihood for return data

rt; t = 1; :::; T , is

lnL(�) = �T
2
ln(2�)� 1

2

TX
t=1

�
ln�2t +

"2t
�2t

�
; (10)

where � = (�; �; !; �; �; ;  1; :::;  q; �1; :::; �p; d) is the unknown parameter vector to be estimated,

of dimension p+q+7. Estimation is carried out by numerical maximization of lnL(�). To initialize

the recursions on (9) and (2) respectively (8) we use the unconditional sample average and variance

of rt for the presample (t = 0;�1; : : :) values of rt and �2t , and we use "t = 0 for t = 0;�1; : : :.
The distributional assumption behind the likelihood function is that the return innovations "t are

conditionally normal. For robustness against departures from Gaussianity, we calculate robust

standard errors based on the sandwich-formula H�1V H�1, where H is the Hessian of lnL(�) and

V the sum of the outer products of the individual quasi score contributions. Below, we verify the

validity of the QML robust standard errors using the wild bootstrap (Wu (1986)).

Table 1 about here

Estimation results for a number of alternative GARCH-type speci�cations are shown in Table

1, using a simple constant mean return equation rt = �+"t. In addition to the FIEGARCH model

(9), we consider the special case of the EGARCH model with d = 0, often used to model stock

returns, as well as a standard GARCH model and its fractional extension, given by

�2t = !(1 +  1)
�1 + [1� (1 +  1L)�1(1� �1L)(1� �2L)(1� L)�d]("2t � �Nt) + �Nt: (11)
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The IGARCH model has d = 1, and the standard GARCH model has d = 0. In the alternative

parametrization of the standard GARCH model given by

�2t � �Nt = ! + �(L)"2t + �(L)
�
�2t � ! � �Nt

�
;

where �(L) =
Pp

i=1 �iL
i and �(L) =

Pq
i=1 �iL

i are the ARCH and GARCH polynomials, we

have the equivalences �(L) = 1� �(L)� �(L) and  (L) = 1� �(L).
Recent literature has suggested a possible need for time-variation in unconditional variances,

in addition to that in conditional variances. This may be relevant in our case, considering the

length of our sample period (more than 80 years). The Adaptive FIGARCH (A-FIGARCH) model

of Baillie & Morana (2007) replaces the term !(1 +  1)
�1 in (11) with the trigonometric series

!t = !0 +
kX
j=1

[j sin(2�jt=T ) + �j cos(2�jt=T )]: (12)

In our estimation, j , j � 0 and �j , j � 3 were insigni�cant, as in Baillie & Morana (2007), so

these parameters are not estimated in the speci�cations reported in our tables. A similar e¤ect is

modeled by Engle & Rangel (2008) in their Spline-GARCH model where �2t = gt� t with

gt = !(1 +  1)
�1 + [1� (1 +  1L)�1(1� �1L)(1� �2L)](

"2t
� t
� �Nt) + �Nt; (13)

� t = c exp[w0t+
kX
i=1

wimaxf(t� ti�1)2; 0g];

and ti = iT=k. In our speci�cation we use k = 7 knots (estimated knot coe¢ cients not reported

in the tables) as in Engle & Rangel (2008).

The results in Table 1 con�rm the empirical relevance of each of the elements of the FIEGARCH

model. Thus, volatilities exhibit long memory, with the fractional di¤erencing parameter d positive

and strongly signi�cant (robust standard errors in parentheses). The special parameters (�; ) of

the news impact function present in the EGARCH and FIEGARCHmodels are strongly signi�cant,

including in particular the asymmetry parameter �, which takes a negative value, corresponding

to a leverage e¤ect. The nontrading-day count Nt gets a coe¢ cient � estimated to about 0.2 in the

EGARCH and FIEGARCH models, showing that weekend and holiday contributions to variance

per day are about 20% of those for trading days. The results for the FIEGARCH model in the

last column of Table 1 may be compared to those in Bollerslev & Mikkelsen (1996). In particular,

the point estimate of d, at 0.54, is slightly smaller for our longer data series than their estimate of

0.63. The robust t-statistic takes the value 19.31 in our data, compared to 10.05 for the shorter

sample.
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The Ljung-Box portmanteau statistics for serial correlation in the standardized return innova-

tions ẑt = "̂t=�̂t, reported as Q10 and Q100 for 10 and 100 lags, respectively, take the values 272.61

and 379.16. In GARCH-type models, p-values from standard �2-distributions are not reliable, but

the statistics are still useful for model comparison. So are the similar Ljung-Box statistics for

absolute standardized return innovations jẑtj, indicated with a superscript A in the table, since

absolute returns are serially correlated in GARCH models even when raw returns are not.

The table also shows the maximized log likelihood, the Akaike and Schwartz (Bayesian) in-

formation criteria, reported as AIC and SIC, and Engle & Ng (1993) sign bias and size bias

misspeci�cation tests, for which one and two asterisks denote rejection at the 5% and 1% level,

respectively. Of all the models, FIEGARCH clearly has the best AIC and SIC values, as well as

the best Engle & Ng (1993) tests.

Finally, the last two rows of the table show mean absolute forecast errors (MAFE) and squared

correlations (R2) for one-day-ahead out-of-sample forecasts of �2t for the last 200 days of our sample

period. For the construction of each forecast, the model is re-estimated using data through t� 1.
To measure true volatility we use realized volatility based on 5-minute returns throughout trading

day t. Among all the models, FIEGARCH has both the best (lowest) MAFE and the best (highest)

R2.

Table 2 about here

Estimation results for the models with in-mean e¤ects are shown in Table 2. The return

equation is

rt = �+ ��2t + "t (14)

in the GARCH-M, Spline-GARCH-M, FIGARCH-M, and A-FIGARCH-M speci�cations (�rst

four columns in the table) where �2t is given by (11)-(13). The EGARCH-M speci�cation in the

�fth column of the table uses the return equation (2). This is also used in the �rst of the two

FIEGARCH-M speci�cations in the table, denoted FIEGARCH-Mh, i.e., the FIEGARCH-M gen-

eralization with volatility changes ht in-mean. The last column is the speci�cation FIEGARCH-Mg

with news impacts g(zt�1) entering the return equation as in (8).

The reported estimates in Table 2 show that the in-mean parameter � governing the volatility-

return relation is negative throughout, and strongly signi�cant except in the Spline-GARCH-M

and EGARCH-M cases. The robust t-statistic for � is �6:80 in the FIEGARCH-Mh model and

�8:01 in the FIEGARCH-Mg model. These two models are considerably better than the other
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models with in-mean e¤ects in the table in terms of the AIC and SIC information criteria, Engle &

Ng (1993) tests, portmanteau statistics Q10 and Q100, and out-of-sample forecasting performance.

On the same criteria, they also clearly outperform the original FIEGARCH model without in-

mean e¤ect from the last column of Table 1. Indeed, the Ljung-Box statistics show a dramatic

drop in value when including the in-mean e¤ect in the FIEGARCH-M models, compared to the

pure FIEGARCH case, showing that changes in volatility account for a considerable portion of

changes in returns. Neither of the two FIEGARCH-M speci�cations is rejected by the Engle & Ng

(1993) tests. The FIEGARCH-Mg model with news impact g(zt�1) entering the mean equation

does somewhat better than the FIEGARCH-Mh model in terms of the AIC and SIC criteria and

so is perhaps the preferred speci�cation, based on these results. From the R2 statistic (last row),

volatility forecasts from the model explain 31% of the variation in future realized volatility, which

is the highest in the table.

The dramatic drop in the Ljung-Box statistics in the FIEGARCH-M models compared to

the pure FIEGARCH model suggests that the volatility-return relation might account for serial

dependence in observed daily returns. Bollerslev & Mikkelsen (1996) alternatively control for

return dependence using AR(m) speci�cations, i.e., the return equation is

rt = �0 + �1rt�1 + :::+ �mrt�m + "t: (15)

We therefore turn to the encompassing speci�cations including AR(m) as well as current and

lagged volatility-in-mean e¤ects.

Table 3 about here

Results including lagged returns and in-mean e¤ects are shown in Table 3, which is laid out

as Table 2. The return equation in the GARCH-M, Spline-GARCH-M, FIGARCH-M, and A-

FIGARCH-M cases is now

rt = �0 + �1rt�1 + :::+ �mrt�m + �1�
2
t + :::+ �m�

2
t�m+1 + "t: (16)

The EGARCH-M and FIEGARCH-Mh models use the return equation

rt = �0 + �1rt�1 + :::+ �mrt�m + �1ht + :::+ �mht�m+1 + "t (17)

and the FIEGARCH-Mg model uses the return equation

rt = �0 + �1rt�1 + :::+ �mrt�m + �1g(zt�1) + :::+ �mg(zt�m) + "t: (18)
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In the estimation, the parameter vectors (�0; : : : ; �m) and (�1; : : : ; �m) replace � and � in the

de�nition of � in the log-likelihood function (10), so there are now p+q+2m+6 parameters in the

most general speci�cations (except for the Spline-GARCH-M model, which of course has more).

The table shows results for m = 3, following Bollerslev & Mikkelsen (1996). In the FIEGARCH-M

models (the last two columns of the table), several of the parameters in both the autoregressive

and the volatility-in-mean terms are signi�cant at conventional levels. This suggests that the

in-mean terms indeed pick up a volatility-return relation, rather than only serial dependence in

returns, which is now controlled for.

The two FIEGARCH-M speci�cations are now about equally good in terms of information

criteria, Ljung-Box statistics, sign/size bias tests, and out-of-sample forecasting. These two models

are not rejected by the Q10 and Q100 tests, or the size bias and joint Engle & Ng (1993) tests. The

FIEGARCH-M models are clearly better than the other models in the table according to the AIC

and SIC information criteria and out-of-sample forecasting, showing the importance of both the

fractional and exponential features. These FIEGARCH-M speci�cations with both autoregressive

and volatility-in-mean e¤ects also clearly outperform the speci�cations without autoregression in

the previous tables, both in terms of the information criteria, and, particularly, in terms of the

portmanteau statistics Q10 and Q100.

Table 4 about here

Throughout, we have relied on the standard �sandwich-formula�robust QML standard errors.

To check the validity of the approach in our application, we also compute standard errors by the

wild bootstrap algorithm (999 replications) and compare. The results are shown in Table 4. We

focus on the FIEGARCH-M models from the last two columns of the previous table, and the

point estimates and robust standard errors from there are repeated in Table 4 for convenience.

The table in addition reports wild bootstrap standard errors in the second set of parentheses.

From the table, robust and wild bootstrap standard errors are quite similar, particularly for the

autoregressive and volatility-in-mean terms of the return equation. In the remaining cases, i.e.,

in the variance equation, the robust standard errors almost always exceed the wild bootstrap

standard errors, suggesting that the QML approach is valid and indeed perhaps conservative. The

biggest di¤erence is for the parameter � in the FIEGARCH-Mg model, where the robust standard

error is approximately ten times the wild bootstrap standard error.

Table 5 about here

12



The results in Tables 3 and 4 suggest that only the �rst lagged return is signi�cant in the

autoregressive speci�cation in the FIEGARCH-M models, once the volatility-in-mean e¤ects are

allowed for. Table 5 shows results for the �nal FIEGARCH-M models, in both cases maintaining

only the �rst lag in the return equation. In the FIEGARCH-Mg model we also drop the insigni�-

cant third lag of the in-mean e¤ect. Curiously, �1 is estimated to be negative and �2 positive. It is

conceivable that both a volatility feedback e¤ect and a risk-return relation are present at several

lags, but that which dominates varies with lag length. A possible nonlinearity in either relation

would make it more di¢ cult to separate the two e¤ects.4 If anything, the volatility feedback e¤ect

should induce an immediate price drop as the discount rate increases in response to an increase

in volatility, whereas the risk-return relation increases expected returns, which would show up in

realized returns with a lag, see Christensen & Nielsen (2007). Thus, it makes sense that coe¢ cients

are initially negative, then positive, under this interpretation.

From Tables 3 and 5, the likelihood ratio (LR) tests for the two �nal FIEGARCH-M models

against the corresponding full models take the values 3.82 and 6.44, for p-values of 14.8% and 9.2%

in their asymptotic �22 and �
2
3 distributions. The last column of the table shows results for the pure

FIEGARCH model with m = 3 autoregressive terms and no in-mean e¤ects selected in Bollerslev

& Mikkelsen (1996). Compared to Table 3, the pure FIEGARCH model comes about by dropping

the three in-mean terms in either of the FIEGARCH-M models, and the associated LR-statistics

take the values 15.56 and 15.60, each with a p-value of 0.1% in the asymptotic �23-distribution. At

conventional levels, the reduction to FIEGARCH is rejected, whereas reduction to either of the

FIEGARCH-M models with only one lagged return in the mean equation is not.

The LR-statistics for joint signi�cance of the volatility-in-mean � parameters in the models

in Table 5 take the values 32.94 and 30.36, respectively, for p-values < 0:1% in the asymptotic

�23 and �
2
2 distributions. The Ljung-Box and sign/size bias tests are similar for all three models

in Table 5, except that the sign bias test rejects the pure FIEGARCH model. The AIC and

SIC information criteria in Table 5 are better (lower) for the FIEGARCH-M models than for

the original FIEGARCH model. Thus, starting from the encompassing FIEGARCH-Mh model

in Table 3, dropping two lagged returns yields better information criteria than dropping three

in-mean terms. Similarly, in the FIEGARCH-Mg model in Table 3, dropping two lagged returns

4A recent strand of literature argues that the risk-return relation may be nonlinear. For example, Linton & Perron

(2003) suggest a semiparametric EGARCH-M model, while Conrad & Mammen (2008) propose a speci�cation test

for the functional form of the risk premium. Another potential explanation for the apparent negative risk-return

relation is an omitted variable bias (relevant pricing factors are omitted), as suggested by Scruggs (1998). Further

investigation of either of these possibilities is beyond the scope of this paper.
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and the last in-mean term yields better information criteria than dropping three in-mean terms.

Finally, comparing the two FIEGARCH-M speci�cations in Table 5, the AIC criterion selects the

model with volatility changes ht in-mean, whereas the SIC criterion, which rewards parsimony

more highly, points to the speci�cation with news impacts g(zt�1) in-mean as the �nal model. All

in all, the evidence points to an important role for the in-mean e¤ect, capturing a volatility-return

relation that remains signi�cant even when controlling for lagged returns in the return equation

and the standard �nancial leverage e¤ect (� < 0) in the volatility equation.

4 Concluding Remarks

We have introduced an in-mean version of the FIEGARCH model in which the long memory

property of volatility does not carry over to returns. This is accomplished through a �ltering

(fractional di¤erencing) of the in-mean volatility measure. Our empirical application of the re-

sulting FIEGARCH-M model to the daily CRSP value-weighted cum-dividend stock index returns

con�rms the long memory property of volatility and establishes the empirical relevance of including

the �ltered in-mean term.

Consistently across speci�cations, we �nd a negative coe¢ cient on the most recent �ltered

volatility-in-mean term. As we have discussed, a negative volatility-return relation could corre-

spond to a leverage e¤ect, a volatility feedback e¤ect, or both. According to asset pricing theory,

increased volatility should require investor compensation in the form of higher conditional ex-

pected returns, although this has proved hard to establish empirically, and would likely only apply

to holding periods considerably longer than a single day. The volatility feedback e¤ect considered

here is actually consistent with a positive tradeo¤ between risk and conditional expected return,

since it simply captures the initial drop in price following an increase in volatility, and hence in the

discount rate. The evidence suggests that at the daily frequency, any positive e¤ect of the risk-

return tradeo¤ on the most recent volatility-in-mean term in the return equation is dominated

empirically by a negative �nancial leverage or volatility feedback e¤ect. When including more

lagged in-mean-terms, the second gets a positive coe¢ cient, possibly picking up a positive risk-

return tradeo¤ e¤ect at this lag. Our results are consistent with the notion that when volatility

is increased, the immediate consequence is an increase in discount rate and hence a drop in stock

price, producing a negative contemporaneous volatility-in-mean or feedback e¤ect, whereas the

subsequent impact through increased conditional expected return generates a positive risk com-

pensation or tradeo¤ in-mean e¤ect at a one period lag. In the �nal models, these in-mean e¤ects

are jointly signi�cant, even when controlling for autocorrelation in returns as well as a classical
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�nancial leverage e¤ect (the asymmetric or exponential feature) in the volatility equation.

Although the �nancial leverage and volatility feedback e¤ects are mutually consistent, we

conjecture that our results on the negative sign of the �rst in-mean term more likely re�ect the

volatility feedback e¤ect, since this should be strongest at the market level which we consider,

whereas �nancial leverage should show up most strongly for individual stocks. Recent develop-

ments in asset pricing, e.g., Ang et al. (2006), also point to negative premia in the return equation

in cross-sectional regressions where innovations to volatility rather than volatility levels enter the

return equation, as in our FIEGARCH-M model with news impact in-mean. Thus, we contribute

with aggregate time series evidence complementing the cross-sectional �ndings on the sign of the

volatility-return relation.
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Table 1: GARCH models for CRSP value-weighted cum-dividend returns, 1926.1.2�2006.12.29

Parameter GARCH IGARCH Spline-GARCH FIGARCH A-FIGARCH EGARCH FIEGARCH
� 7:147� 10�4

(5:193�10�5)
7:117� 10�4
(5:621�10�5)

7:285� 10�4
(5:087�10�5)

7:362� 10�4
(5:132�10�5)

7:453� 10�4
(5:063�10�4)

5:530� 10�4
(5:488�10�5)

5:781� 10�4
(5:211�10�4)

! 6:702� 10�7
(1:128�10�7)

5:362� 10�7
(9:173�10�8)

8:020� 10�7
(2:253�10�7)

2:272� 10�6
(4:276�10�8)

7:249� 10�7
(8:747�10�8)

�9:029
(0:1250)

�8:941
(0:1500)

� 7:493� 10�6
(1:434�10�6)

7:029� 10�6
(1:327�10�6)

5:108� 10�6
(1:652�10�6)

7:312� 10�6
(1:403�10�6)

6:639� 10�6
(1:370�10�6)

0:2328
(0:03698)

0:2297
(0:03771)

� � � � � � �0:1093
(0:01147)

�0:1151
(0:01333)

 � � � � � 0:2321
(0:01769)

0:2236
(0:01697)

�1 0:9953
(1:917�10�3)

1:000 0:9825
(3:118�10�3)

0:2807
(0:03072)

0:2752
(0:03235)

0:9916
(1:302�10�3)

0:7910
(0:07042)

�2 0:03868
(0:01627)

0:04224
(0:01668)

0:03462
(0:01565)

� � � �

 1 �0:9238
(7:068�10�3)

�0:9247
(6:989�10�3)

�0:9057
(8:379�10�3)

�0:5989
(0:04113)

�0:5776
(0:04737)

�0:4648
(0:05297)

�0:5990
(0:1107)

d � � � 0:4274
(0:03561)

0:4179
(0:04060)

� 0:5368
(0:02782)

�1 � � � � 0:02008
(8:339�10�3)

� �

�2 � � � � �0:03152
(9:261�10�3)

� �

lnL(�) 71; 870:97 71; 864:58 71; 960:76 71; 939:22 71; 966:12 72; 149:68 72; 222:39
AIC �143; 729:94 �143; 719:17 �143; 891:51 �143; 866:46 �143; 912:23 �144; 285:35 �144; 428:79
SIC �143; 682:08 �143; 679:28 �143; 771:86 �143; 818:60 �143; 832:47 �144; 229:52 �144; 364:97

Q10 267:76 273:30 285:19 288:56 298:65 255:20 272:61
Q100 364:02 369:32 381:68 390:29 400:43 354:35 379:16
QA10 21:91 21:03 18:25 11:39 11:80 42:03 38:68
QA100 105:61 106:97 144:29 132:06 146:46 128:93 197:59

Sign Bias 65:31�� 64:90�� 73:90�� 69:32�� 71:07�� 8:23�� 5:35��

Negative Size Bias 40:10�� 32:51�� 45:95�� 44:00�� 42:19�� 1:64 1:25
Positive Size Bias 35:48�� 39:86�� 38:37�� 35:96�� 38:10�� 2:77�� 1:61

Joint Test 76:36�� 74:88�� 85:94�� 81:03�� 82:22�� 6:95 5:37

MAFE 2:178� 10�5 2:213� 10�5 1:693� 10�4 2:144� 10�5 2:180� 10�5 2:258� 10�5 1:858� 10�5
R2 0:1978 0:2036 0:0818 0:1649 0:1709 0:2300 0:3052

Note: QML estimates are reported with robust standard errors in parentheses (knot coe¢ cients

for Spline-GARCH not reported). Also reported are lnL(�), the value of the maximized log-

likelihood function, and the Akaike and Schwarz (or Bayesian) information criteria, respectively.

The values of the Ljung-Box portmanteau statistic for up to K�th order serial dependence in the

standardized residuals, "̂t=�̂t, and the absolute standardized residuals, j"̂t=�̂tj, are denoted QK and
QAK , respectively. Finally, we report the Engle & Ng (1993) sign/size bias tests, for which one and

two asterisks denote rejection at the 5% and 1% level, respectively, and the mean absolute forecast

error (MAFE) and squared correlation (R2) for 200 one-day-ahead out-of-sample forecasts.
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Table 2: GARCH-M models for CRSP value-weighted cum-dividend returns, 1926.1.2�2006.12.29

Parameter GARCH-M Spline-GARCH-M FIGARCH-M A-FIGARCH-M EGARCH-M FIEGARCH-Mh FIEGARCH-Mg

� 9:143� 10�4
(7:040�10�5)

1:213� 10�3
(9:279�10�5)

9:587� 10�4
(7:080�10�5)

9:657� 10�4
(6:924�10�5)

4:759� 10�4
(1:088�10�4)

4:727� 10�4
(5:649�10�5)

4:957� 10�4
(5:354�10�5)

� �3:824
(0:8419)

�1:736
(1:210)

�4:277
(0:8779)

�4:289
(0:8612)

�6:609� 10�5
(8:182�10�5)

�3:019� 10�3
(4:442�10�4)

�3:654� 10�3
(4:563�10�4)

! 6:889� 10�7
(1:166�10�7)

7:455� 10�7
(4:601�10�7)

2:308� 10�6
(4:415�10�7)

7:318� 10�7
(9:038�10�8)

�8:995
(0:1317)

�8:937
(0:1609)

�8:990
(0:1471)

� 7:750� 10�6
(1:463�10�6)

4:763� 10�6
(2:805�10�6)

7:567� 10�6
(1:433�10�6)

6:852� 10�6
(1:409�10�6)

0:2330
(0:03698)

0:2372
(0:03931)

0:2365
(0:03906)

� � � � � �0:1106
(0:01229)

�0:1364
(0:01342)

�0:1285
(0:01263)

 � � � � 0:2326
(0:01761)

0:2231
(0:01327)

0:2068
(0:01482)

�1 0:9948
(1:939�10�3)

0:9802
(3:384�10�3)

0:2815
(0:03087)

0:2750
(0:03272)

0:9919
(1:350�10�3)

0:7842
(0:06595)

0:7337
(0:08663)

�2 0:03960
(0:01628)

0:03688
(0:01541)

� � � � �

 1 �0:9232
(7:118�10�3)

�0:9035
(8:717�10�3)

�0:5925
(0:04148)

�0:5698
(0:04781)

�0:4664
(0:05282)

�0:6364
(0:09476)

�0:4976
(0:1327)

d � 0:4213
(0:03544)

0:4113
(0:04008)

� 0:5676
(0:02308)

0:5475
(0:02554)

�1 � � � 0:02104
(8:308�10�3)

� � �

�2 � � � �0:03181
(9:302�10�3)

� � �

lnL(�) 71; 882:63 71; 990:86 71; 953:29 71; 980:50 72; 150:14 72; 267:63 72; 280:53
AIC �143; 751:27 �143; 949:71 �143; 892:57 �143; 942:99 �144; 284:27 �144; 517:26 �144; 543:05
SIC �143; 695:43 �143; 822:09 �143; 836:74 �143; 871:20 �144; 220:46 �144; 445:47 �144; 471:26

Q10 268:84 380:78 290:60 300:83 252:16 127:94 102:13
Q100 365:57 722:52 393:01 403:70 351:04 233:69 208:25
QA10 20:65 31:35 12:26 13:05 42:67 45:04 34:83
QA100 103:33 147:18 134:36 149:71 130:04 231:86 239:79

Sign Bias 60:71�� 24:82�� 63:21�� 64:50�� 7:05�� 1:86 2:62��

Negative Size Bias 40:11�� 20:69�� 43:37�� 41:29�� 1:48 2:84� 10�4 0:58
Positive Size Bias 29:97�� 0:12 29:31�� 30:83�� 2:64�� 0:10 0:07

Joint Test 71:16�� 33:49�� 74:19�� 74:59�� 7:19 2:77 3:04

MAFE 2:176� 10�5 1:537� 10�4 2:145� 10�5 2:115� 10�5 2:253� 10�5 1:862� 10�5 1:884� 10�5
R2 0:2037 0:0094 0:1697 0:1761 0:2312 0:3051 0:3122

Note: QML estimates are reported for models with in-mean terms, using the same de�nitions and

layout as Table 1. Mh applies ht in the mean equation, Mg applies g(zt�1), the �rst four models

apply �2t , and EGARCH-M applies ln(�2t )� ! � ln(1 + �Nt) in the mean equation.

19



Table 3: GARCH-M models with lagged returns for CRSP value-weighted cum-dividend returns,

1926.1.2�2006.12.29

Parameter GARCH-M Spline-GARCH-M FIGARCH-M A-FIGARCH-M EGARCH-M FIEGARCH-Mh FIEGARCH-Mg

�0 8:283� 10�4
(6:803�10�5)

1:089� 10�3
(9:259�10�5)

8:744� 10�4
(6:860�10�5)

8:788� 10�4
(6:588�10�5)

4:382� 10�4
(9:954�10�5)

4:848� 10�4
(5:221�10�5)

4:882� 10�4
(5:133�10�5)

�1 0:1119
(7:764�10�3)

0:1100
(7:591�10�3)

0:1141
(7:668�10�3)

0:1332
(7:993�10�3)

0:1003
(5:911�10�3)

0:1037
(8:863�10�3)

0:1036
(9:798�10�3)

�2 �0:04510
(7:502�10�3)

�0:04598
(7:441�10�3)

�0:04545
(7:498�10�3)

�0:04492
(7:482�10�3)

�0:02117
(8:653�10�3)

�0:01657
(7:997�10�3)

�0:01717
(0:01092)

�3 8:502� 10�3
(7:593�10�3)

5:002� 10�3
(7:478�10�3)

5:754� 10�3
(7:633�10�3)

8:995� 10�3
(7:569�10�3)

7:563� 10�3
(6:188�10�3)

�2:155� 10�3
(7:697�10�3)

�2:259� 10�3
(8:741�10�3)

�1 �9:457
(4:471)

�4:860
(3:887)

�9:080
(4:361)

�6:712
(4:508)

�7:461� 10�4
(4:575�10�4)

�7:795� 10�4
(4:449�10�4)

�7:908� 10�4
(4:642�10�4)

�2 7:698
(3:882)

2:855
(2:573)

7:472
(4:061)

7:126
(4:255)

1:321� 10�3
(4:584�10�4)

1:284� 10�3
(4:305�10�3)

1:073� 10�3
(4:163�10�4)

�3 �1:645
(4:262)

�0:2449
(1:469)

�2:256
(4:283)

�4:391
(4:268)

�5:969� 10�4
(4:221�10�4)

�6:978� 10�4
(3:416�10�4)

�5:436� 10�4
(3:396�10�4)

! 6:773� 10�7
(1:173�10�7)

5:137� 10�7
(4:272�10�7)

2:341� 10�6
(4:471�10�6)

6:793� 10�7
(8:968�10�7)

�9:036
(0:1266)

�8:956
(0:1479)

�8:959
(0:1476)

� 7:653� 10�6
(1:579�10�6)

3:237� 10�6
(2:914�10�6)

7:428� 10�6
(1:548�10�6)

6:369� 10�6
(1:542�10�6)

0:2240
(0:03741)

0:2191
(0:03795)

0:2194
(0:03793)

� � � � � �0:1122
(0:01183)

�0:1189
(0:01347)

�0:1187
(0:01332)

 � � � � 0:2225
(0:01695)

0:2141
(0:01647)

0:2141
(0:01622)

�1 0:9950
(1:938�10�3)

0:9803
(3:747�10�3)

0:2670
(0:03168)

0:2496
(0:03487)

0:9915
(1:382�10�3)

0:7232
(0:08853)

0:7226
(0:08785)

�2 0:03544
(0:01631)

0:03048
(0:01519)

� � � � �

 1 �0:9227
(7:611�10�3)

�0:9024
(9:598�10�3)

�0:4192
(0:03509)

�0:5346
(0:04963)

�0:4388
(0:05541)

�0:4803
(0:1372)

�0:4791
(0:1349)

d � � 0:5803
(0:04338)

0:3937
(0:03591)

� 0:5472
(0:02654)

0:5470
(0:02642)

�1 � � � 0:02744
(8:453�10�3)

� � �

�2 � � � �0:02825
(9:182�10�3)

� � �

lnL(�) 72; 008:65 72; 116:28 72; 083:13 72; 136:59 72; 269:34 72; 353:62 72; 353:64
AIC �143; 993:30 �144; 190:55 �144; 142:26 �144; 245:17 �144; 512:68 �144; 679:24 �144; 679:27
SIC �143; 897:58 �144; 023:04 �144; 046:54 �144; 133:50 �144; 408:99 �144; 567:57 �144; 567:60

Q10 18:33 62:13 21:66 16:46 15:73 17:12 17:16
Q100 112:62 318:59 121:28 117:03 112:48 121:53 121:56
QA
10 25:01 30:18 13:18 14:87 40:97 37:01 37:00

QA
100 110:00 133:73 135:12 146:09 128:57 199:97 199:88

Sign Bias 48:93�� 38:27�� 50:95�� 49:99�� 5:08�� 4:08�� 4:13��

Negative Size Bias 42:16�� 69:43�� 46:55�� 44:06�� 1:75 1:39 1:41
Positive Size Bias 27:46�� 4:82�� 27:83�� 25:90�� 0:99 0:68 0:69

Joint Test 64:17�� 73:34�� 68:09�� 65:16�� 5:14 4:16 4:20

MAFE 2:141� 10�5 3:268� 10�5 2:075� 10�5 2:683� 10�5 2:361� 10�5 1:861� 10�5 1:861� 10�5
R2 0:1946 0:0035 0:1777 0:1759 0:1733 0:2982 0:2982

Note: QML estimates are reported for models with lagged returns and in-mean terms, using the

same de�nitions and layout as Table 2. All models include three volatility-in-mean terms and

three lagged returns.
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Table 4: FIEGARCH-M models with lagged returns and bootstrap standard errors for CRSP

value-weighted cum-dividend returns, 1926.1.2�2006.12.29
Parameter FIEGARCH-Mh FIEGARCH-Mg

�0 4:848� 10�4
(5:221�10�5)
(7:296�10�5)

4:882� 10�4
(5:133�10�5)
(4:854�10�5)

�1 0:1037
(8:863�10�3)
(7:811�10�3)

0:1036
(9:798�10�3)
(8:596�10�3)

�2 �0:01657
(7:997�10�3)
(8:759�10�3)

�0:01717
(0:01092)

(9:133�10�3)

�3 �2:155� 10�3
(7:697�10�3)
(8:066�10�3)

�2:259� 10�3
(8:741�10�3)
(8:402�10�3)

�1 �7:795� 10�4
(4:449�10�4)
(4:218�10�4)

�7:908� 10�4
(4:642�10�4)
(3:784�10�4)

�2 1:284� 10�3
(4:305�10�4)
(4:703�10�4)

1:073� 10�3
(4:163�10�4)
(3:984�10�4)

�3 �6:978� 10�4
(3:416�10�4)
(3:498�10�4)

�5:436� 10�4
(3:396�10�4)
(3:526�10�4)

! �8:956
(0:1479)

(0:1128)

�8:959
(0:1476)

(0:06511)

� 0:2191
(0:03795)

(0:01642)

0:2194
(0:03793)

(3:823�10�3)
� �0:1189

(0:01347)

(8:154�10�3)

�0:1187
(0:01332)

(0:01029)

 0:2141
(0:01647)

(0:01425)

0:2141
(0:01622)

(0:01018)

�1 0:7232
(0:08853)

(0:09775)

0:7226
(0:08785)

(0:04792)

 1 �0:4803
(0:1372)

(0:06773)

�0:4791
(0:1349)

(0:08151)

d 0:5472
(0:02654)

(0:02688)

0:5470
(0:02642)

(0:02117)

Note: QML estimates are reported with robust standard errors in the �rst parentheses, and wild

bootstrap standard errors in the second parenthesis.
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Table 5: FIEGARCH-M models for CRSP value-weighted cum-dividend returns, 1926.1.2�

2006.12.29
Parameter FIEGARCH-Mh FIEGARCH-Mg FIEGARCH

�0 4:812� 10�4
(5:273�10�5)

5:024� 10�4
(4:911�10�5)

4:804� 10�4
(5:019�10�5)

�1 0:1019
(7:488�10�3)

0:1008
(3:542�10�3)

0:1134
(5:923�10�3)

�2 � � �0:03377
(4:079�10�3)

�3 � � 7:074� 10�3
(5:267�10�3)

�1 �8:357� 10�4
(4:311�10�4)

�8:896� 10�4
(3:796�10�4)

�

�2 1:676� 10�3
(3:537�10�4)

1:456� 10�3
(3:398�10�4)

�

�3 �7:505� 10�4
(3:321�10�4)

� �

! �8:972
(0:1473)

�8:989
(0:1449)

�8:945
(0:1487)

� 0:2175
(0:03782)

0:2183
(0:03746)

0:2176
(0:03792)

� �0:1206
(0:01165)

�0:1208
(0:01271)

�0:1180
(0:01318)

 0:2116
(0:01342)

0:2115
(0:01476)

0:2153
(0:01633)

�1 0:7210
(0:08537)

0:7142
(0:09048)

0:7250
(0:08976)

 1 �0:4739
(0:1242)

�0:4679
(0:1384)

�0:4826
(0:1381)

d 0:5466
(0:02631)

0:5482
(0:02616)

0:5446
(0:02687)

lnL(�) 72; 351:71 72; 350:42 72; 345:84
AIC �144; 679:42 �144; 678:85 �144; 669:69
SIC �144; 583:70 �144; 591:11 �144; 581:94

Q10 20:97 22:23 17:64
Q100 126:14 127:59 121:75
QA
10 35:44 35:00 36:73

QA
100 199:60 199:53 198:42

Sign Bias 1:72 1:78 4:13��

Negative Size Bias 1:15 1:12 1:50
Positive Size Bias 0:63 0:61 0:78

Joint Test 3:12 3:32 4:19

MAFE 1:864� 10�5 1:867� 10�5 1:851� 10�5
R2 0:2993 0:2999 0:2996

Note: QML estimates are reported for the �nal models, using the same layout and de�nitions as

Table 2.
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