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Abstract

In this paper, we characterize a mechanism for reducing pollution emissions in which coun-

tries, acting non-cooperatively, commit to match each others’ abatement levels and may

subsequently engage in emissions quota trading. The analysis shows that the mechanism

leads to efficient outcomes. The level of emissions is efficient, and if the matching abate-

ments process includes a quota trading stage, the marginal benefits of emissions are also

equalized across countries. Given the equilibrium matching rates, the initial allocation

of emission quotas (before trading) reflects each country’s marginal valuation for lower

pollution relative to its marginal benefit from emissions. These results hold for any num-

ber of countries, in an environment where countries have different abatement technologies

and different benefits from emissions, and even if the emissions of countries are imperfect

substitutes in each country’s damage function. In a dynamic two-period setting, the mech-

anism achieves both intra-temporal and inter-temporal efficiency. We extend the model

by assuming that countries are voluntarily contributing to an international public good, in

addition to undertaking pollution abatements, and find that the level of emissions may be

efficient even without any matching abatement commitments, and the marginal benefits

of emissions may be equalized across countries even without quota trading.

Keywords: Voluntary pollution abatement, matching commitments, emissions quota trad-

ing

JEL classification: H23, H41, H87



1 Introduction
International agreements on pollution reduction targets are difficult to achieve and sustain

in the absence of a central authority with the ability to enforce the abatement objectives

of national governments. Cooperative initiatives also require that countries be able to

agree on the overall objectives of emissions reduction and on how abatement efforts should

be distributed across countries. This is particularly challenging given that the costs and

benefits of pollution abatement vary considerably across countries. Without cooperative

agreements, emission reductions rely essentially on the voluntary contributions of countries.

In this paper, we show that voluntary pollution abatement by countries behaving non-

cooperatively can lead to efficient outcomes provided that countries can commit to match-

ing the abatement efforts of each other at some announced rates. The efficiency of vol-

untary contributions to international public goods when countries can commit has been

established by Guttman (1978), Danziger and Schnytzer (1991), Varian (1994) and Boad-

way, Song and Tremblay (2007). We show how similar reasoning can be adapted to the

case of international pollution abatement when countries have different abatement tech-

nologies and may be able to engage in emissions quota trading. Remarkably, we also find

that efficiency can occur even in the absence of commitment provided that countries are

also contributing to an international public good.

Recently, a number of papers have proposed mechanisms for implementing efficient con-

tributions by countries to international public goods, such as pollution abatement. In

particular, Gersbach and Winkler (2007) and Gerber and Wichardt (2009) have proposed

schemes in which countries make up-front payments to a neutral institution as a way of

pre-committing to contributions. The payments are eventually refunded, at least in part,

if countries provide their intended contributions. The neutral institution’s ability to deny

refunds induces countries to act according to prior commitments. In principle, these mech-

anisms can be designed to implement any desired emission reduction objectives, although

they require some prior cooperative agreement to establish such objectives, as well as the

distribution of the surplus across countries. In contrast, we take the commitment ability of

countries as given, but focus on a non-cooperative mechanism that can emerge and induce

1



full efficiency in emission abatement when countries are making commitments voluntarily

and are acting in their own self-interest.

Altemeyer-Bartscher, Rübbelke and Sheshinski (2009) consider another form of commit-

ment mechanism whereby each of two countries voluntarily makes a take-it-or-leave-it offer

of a payment to the other country conditional on the tax rate that the latter imposes on

a polluting good. They show that such a mechanism can induce the efficient level of

pollution. While their mechanism is based on side-payments between countries, the mech-

anism we characterize relies on matching abatement commitments and, crucially, allows

emissions quota trading. Both mechanisms can lead to efficient allocations, although they

do not generally result in the same distribution of net benefits across countries. More-

over, as Altemeyer-Bartscher, Rübbelke and Sheshinski recognize, their mechanism does

not easily generalize to more than two countries, since any given country would receive

take-it-or-leave-it offers from all other countries simultaneously.

Our static one-period base case without quota trading resembles the case analyzed by

Guttman and Schnytzer (1992) who demonstrate the existence of a Pareto efficient equilib-

rium in a mechanism where two individuals are matching each others’ externality-producing

activities. The pollution reduction case that we study has some features that go beyond the

simple externality case. Countries have access to different pollution abatement technolo-

gies, which gives rise to the issue of the optimal allocation of emissions across countries. In

this case, the possibility of emissions quota trading provides an instrument for achieving

that optimal allocation alongside the use of a matching mechanism to influence to aggre-

gate level of abatements. We also extend the mechanism both to a multi-country setting

and to a dynamic two-period setting where emissions in one period determine the initial

stock of pollution in the next period.

Specifically, the pollution abatement process we consider works as follows. Each country

simultaneously (and non-cooperatively) announces a rate at which it will match the abate-

ment efforts of the other countries. Countries then choose their direct abatement efforts

simultaneously, taking the previously announced matching rates as given. After these two

stages of decisions, countries are committed to achieving a total emissions quota equal to
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their initial emissions minus the sum of their direct and matching abatement efforts. How-

ever, these commitments may be contingent in the sense that once they are determined,

countries may trade emissions quotas at the competitively determined price.

The analysis shows that the subgame perfect equilibrium of this emission abatement pro-

cess is efficient. The efficient level of pollution abatement is achieved, and if the mechanism

allows for quota trading, the marginal benefits of emissions are equalized across countries.

The equilibrium displays other interesting properties. For one, the effective marginal cost

to a country from inducing an increase in world abatements is the same whether they do

so directly through their own abatements or indirectly through matching the other coun-

try’s abatements. For another, in equilibrium, a country’s total abatements, both direct

and matching, just equals its marginal valuation of pollution abatement times total world

abatements. Thus, the countries’ effective costs of abatement are the analogs of Lindahl

prices in the context of this model.

As mentioned, the non-cooperative mechanism that we consider is easily applicable to a

setup with any number of countries. Under a matching rate mechanism, the simultaneous

offers of several countries readily add up to an aggregate matching rate applying to the

abatement effort of an individual country. We also consider a dynamic two-period extension

and find that the mechanism achieves intra-temporal and inter-temporal efficiency: the

total level of emissions is efficient as well as its allocation between periods. And, we extend

the model by adding an international public good provided by the voluntary contributions

of countries. If contributions to the public good are made after the pollution abatement

process, we find that the level of emissions and their allocation across countries are efficient

even in the absence of matching abatement commitments and quota trading.

In the next section, we describe the main features of the model. We then characterize

the abatement process equilibrium in a simple two-country case. Various extensions of

the basic model are considered in Section 4, while contributions to an international public

good are added in Section 5. In Section 6, we show that the mechanism leads to efficient

levels of emissions even if countries’ emissions are imperfect substitutes in each countries’

damage function. Concluding remarks are provided in the last section.
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2 The Basic Two-Country Model
There are two countries denoted by i, j = 1, 2. In the absence of any abatement effort, the

fixed level of emissions by country i is equal to ei. Both countries can undertake costly

abatements which will reduce actual emissions. In the basic model, country i chooses a level

of direct abatements ai, as well as committing to match the direct abatement of country j

at a rate mi. Therefore, country i’s total choice of abatements equals Ai = ai + miaj . In

some extensions of the basic model, we allow for emissions quota trading. In these cases, the

initial choice of abatements Ai is contingent since countries can then trade emission quotas

at market price p. In these cases, we can interpret county i’s initial choice of emissions

ei − Ai as its pre-trade emissions quota. The number of emission quotas purchased by

country i is denoted by qi, where q1 = −q2. Given the number of quotas traded, the actual

emissions of country i are ei = ei−Ai+qi. Note that aggregate emissions by both countries

are equal to the sum of their initial commitments before quota trading. The latter simply

reallocates emissions from one country to another.

The benefits of actual emissions to country i is given by the function Bi(ei), where B′
i > 0

and B′′
i < 0.1 The damage to country i is a function of the total emissions of both countries,

Di(e1 + e2), with D′
i > 0 and D′′

i > 0. Hence, the emissions of both countries are assumed

to be perfect substitutes, although we later relax this assumption in an extension of the

basic model.

The analysis will characterize the equilibrium levels of abatement in a number of cases,

starting with the basic case where there are matching abatements but no emissions quota

trading. We then consider the various extensions of the basic model mentioned in the

Introduction.

Before turning to the basic two-country case without quota trading, it is useful to char-

acterize the social optimum. To do so, we solve a Pareto problem where the emissions

of both countries are chosen to maximize the net benefits of one country, say country 1,

1 The marginal benefits of emissions can be viewed as the negative of a marginal cost of abatement
function, B′(e) = −C′(A). A cost of abatement function has been used by Roberts and Spence
(1976), for example.
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subject to the constraint that the net benefits of country 2 equals some fixed level Π2:

max
{e1,e2}

B1(e1)−D1(e1 + e2) + λ
[
B2(e2)−D2(e1 + e2)−Π2

]
The first-order conditions can be written as:

D′
1

B′
1

+ D′
2

B′
2

= 1 (1)

This condition is the analog of the Samuelson condition for public goods, but in the context

of a public bad. It says that efficient emissions in each country are such that the sum of

the two countries’ ratios of marginal damages to marginal benefits is equal to unity.

The social optimum just defined is restrictive in the sense that the only instruments for

redistributing between countries are emissions e1 and e2. To understand the implications

of this, suppose we allow the possibility of a transfer T from country 2 to country 1, where

T R 0. The above Pareto optimizing problem then becomes:

max
{e1,e2,T}

B1(e1)−D1(e1 + e2) + T + λ
[
B2(e2)−D2(e1 + e2)− T −Π2

]
and the first-order conditions would give (1) above as well as:

B′
1(e1) = B′

2(e2) (2)

In effect, while (1) characterizes the efficient level of total emissions, (2) characterizes it

efficient allocation across countries. We can think of the solutions to the latter problem

for various values of Π2 as tracing out the first-best utility possibilities frontier, while

the solution to the problem without transfers traces out a restricted utility possibilities

frontier. The two would only coincide where T = 0 solves the latter problem. In the basic

model to which we turn next, it is the restrictive problem that is relevant. However, as we

shall see, outcomes on the first-best frontier can be achieved in some of our extensions.

In the absence of international corrective action, country emissions would satisfy B′
1 = D′

1

and B′
2 = D′

2, and would not be optimal. A world government could achieve the restricted

social optimum by imposing Pigouvian taxes on the emissions in each country at the tax
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rates t1 = D′
2 and t2 = D′

1. In the absence of transfers, these tax rates would generally dif-

fer. If the world government could also make inter-country transfers, the optimal Pigouvian

tax would be uniform across countries.2 Our analysis explores commitment mechanisms as

a way of achieving efficiency in the absence of a world government.

In what follows, we focus on the case where the socially optimal abatements of the two

countries are both interior. That is, the levels of emissions e∗1 and e∗2 corresponding with

the solution to the social optimum satisfy 0 < e∗1 < e1 and 0 < e∗2 < e2.

3 Matching Abatements without Quota Trading
In this section, we examine the basic case where two countries can commit to matching

the abatement efforts of each other, and where there is no quota trading. The timing

of decisions is the following. In Stage 1, both countries simultaneously choose the rate

mi at which they will match the direct abatements of the other country. Countries then

simultaneously choose direct abatement levels ai in Stage 2. We characterize the subgame

perfect equilibrium of this two-stage process by backward induction.3

Stage 2: Choosing Direct Abatements a1 and a2

Taking (m1,m2) as given from Stage 1, country 1 chooses a1 to solve the following:

max
{a1}

Π1 = B1 (e1 − a1 −m1a2)−D1

(
e1 − (1 + m2)a1 + e2 − (1 + m1)a2

)
The first-order condition, assuming an interior solution, is:

F 1(a1, a2,m1,m2) ≡ −B′
1(·) + (1 + m2)D′

1(·) = 0 or D′
1(·)

B′
1(·) = 1

1 + m2
(3)

The solution to this first-order condition is country 1’s reaction function a1(a2; m1,m2).

For any a2, country 1 will choose its level of abatements such that the ratio of marginal

2 This point is made by Sandmo (2006). He emphasizes the distinction between carbon prices in
high-and low-income countries when there are limited international transfers.

3 Multi-stage processes of matching contributions to public goods have been analyzed in Guttman
(1978), Danziger and Schnytzer (1991), Varian (1994) and Boadway, Song and Tremblay (2007),
among others.
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damage to marginal benefit equals the effective cost at which it can increase world abate-

ments by one unit, 1/(1 + m2). Differentiating (3), we have:

F 1
a1 = B′′

1 − (1 + m2)2D′′
1 < 0, F 1

a2 = m1B
′′
1 − (1 + m1)(1 + m2)D′′

1 < 0,

F 1
m1 = a2B

′′
1 − a2(1 + m2)D′′

1 < 0, F 1
m2 = −a1(1 + m2)D′′

1 + D′
1 >< 0

(4)

The problem of country 2 is analogous and its reaction function is a2(a1; m1,m2). The

slopes of the two countries’ reaction curves in (a1, a2)–space are da2/da1 = −F 1
a1/F 1

a2 for

country 1 and the analog for country 2, −F 2
a1/F 2

a2 .

The simultaneous solution to both reaction functions gives the Nash equilibrium abate-

ments as functions of matching rates, a1(m1,m2) and a2(m1,m2) (with some abuse of

notation). Differentiating F 1(·) and F 2(·), we obtain:

∂a1
∂m1

∣∣∣∣
m2

=
−F 1

m1F
2
a2 + F 2

m1F
1
a2

H
, and ∂a2

∂m1

∣∣∣∣
m2

=
−F 1

a1F
2
m1 + F 2

a1F
1
m1

H
(5)

where H ≡ F 1
a1F

2
a2 − F 2

a1F
1
a2 . To have a stable interior Nash equilibrium in Stage 2, the

slope of country 2’s reaction curve in (a1, a2)–space must be less negative than that of

country 1, that is, −F 2
a1/F 2

a2 > −F 1
a1/F 1

a2 , which in turn implies that H > 0.

Stage 1: Choosing Matching Rates m1 and m2

At this stage, both countries anticipate the subsequent Nash equilibrium choices of direct

abatements. Country 1 chooses its matching rate m1 to maximize its net benefit:

Π1 = B1

(
e1 − a1(m1,m2)−m1a2(m1,m2)

)
−D1

(
e1 − (1 + m2)a1(m1,m2) + e2 − (1 + m1)a2(m1,m2)

)
Differentiating this expression with respect to m1 gives:

dΠ1
dm1

= −B′
1

[
∂a1
∂m1

+ a2 + m1
∂a2
∂m1

]
+ D′

1

[
(1 + m2) ∂a1

∂m1
+ a2 + (1 + m1) ∂a2

∂m1

]
(6)

Using (3), (5) and the expressions for F i
ai

, F i
aj

, F i
mi

, F i
mj

and H, (6) can be written as

(assuming an interior solution for Stage 2):

dΠ1
dm1

= − (1−m1m2)D′
1D

′
2F

1
a1

H
(7)
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A similar expression holds for country 2. Using (2) and its analog for country 2, we can

derive

H = (1−m1m2)
[
B′′

1 B′′
2 − (1 + m1)B′′

1 D′′
2 − (1 + m2)B′′

2 D′′
1

]
(8)

The expression in the square brackets in (8) is positive, and therefore

H R 0 ⇐⇒ 1−m1m2 R 0

As a result, the value of dΠ1/dm1 in (6) is positive if m1m2 6= 1. The same holds for

country 2. If m1m2 > 1, so that H < 0, interior equilibria in direct abatements (a1, a2)

are unstable. Moreover, at such equilibria, both countries would want to increase their

matching rates until direct abatements fall to zero. We rule out such an equilibrium

given that it requires that both countries anticipate unstable equilibria in Stage 2 and it

eventually leads to an allocation that is Pareto dominated by allocations involving strictly

positive abatements. If m1m2 < 1, each country would want to increase its matching

rate and induce a greater level of abatement from the other country until m1m2 = 1

where dΠ1/dm1 and dΠ2/dm2 become indeterminate. Therefore, the only stable interior

equilibrium must be such that m1m2 = 1.4

Using (4), the slope of country 1’s reaction curve when m1m2 = 1 becomes

da2
da1

= −F 1
a1

F 1
a2

= − B′′
1 − (1 + m2)2D′′

1
m1B′′

1 − (1 + m1)(1 + m2)D′′
1

= −1 + m2
1 + m1

An analogous calculation for country 2 reveals that the slope of its reaction curve is the

same. Thus, when m1m2 = 1, reaction curves are linear and parallel. In fact, at the

equilibrium matching rates, reactions curves will also coincide in the interior, as represented

by the solid line in Figure 1. To see this, note first that the effective cost to country 1

of increasing world abatement by one unit, through an increase in its direct abatement,

is equal to 1/(1 + m2). On the other hand, the effective cost to country 1 of a one unit

increase in world abatement induced by an increase in the direct abatement of country 2 is

4 See Boadway, Song and Tremblay (2007) for a similar demonstration in the context of interna-
tional public goods.
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m1/(1 + m1).5 When m1m2 = 1, we have 1/(1 + m2) = m1/(1 + m1), that is, the effective

costs of direct and matching abatements are equal. The same holds for country 2.

If the Stage 2 reaction curves were parallel but did not coincide, there would be a corner

solution in Stage 2 with only one country making direct abatements. Suppose country

2’s reaction curve is outside country 1’s reaction curve, as depicted by the dashed lines in

Figure 1, so a1 = 0 and a2 > 0. In this case, the Stage 2 first-order condition of country 1

would not be binding, so D′
1(·)/B′

1(·) < 1/(1 + m2) = m1/(1+m1). The cost of both direct

or matching abatements would be larger than the ratio of marginal damages to marginal

benefits of emissions. Therefore, country 1 would want to decrease m1 so as to induce

lower world abatements. The same argument would hold if country 1’s reaction curve was

outside that of country 2. Therefore, there cannot be an equilibrium with matching rates

for which m1m2 = 1 but reaction curves do not coincide.

Finally, note that the subgame perfect equilibrium cannot involve a corner solution in Stage

2 along with matching rates for which m1m2 6= 1. To see this, suppose that abatements

were initially a1 > 0 and a2 = 0, so that D′
1(·)/B′

1(·) = 1/(1 + m2) and D′
2(·)/B′

2(·) <

1/(1 + m1). Assume that matching rates are such that m1m2 < 1. Since country 2’s

direct contribution is zero, there is no cost to country 1 of increasing its matching rate

until country 2’s Stage 2 first-order condition is just binding. With both Stage 2 first-order

conditions satisfied with equality and m1m2 < 1, we have shown above that both countries

would want to increase their matching rates. Suppose now that m1m2 > 1, so that

1/(1 + m1) < m2/(1 + m2). This implies that D′
2(·)/B′

2(·) < 1/(1 + m1) < m2/(1 + m2).

Therefore, world abatements would be too high from country 2’s perspective, so country

2 would reduce m2.

Properties of the Equilibrium

The demonstration above shows that the subgame perfect equilibrium is such that m1m2 =

1 and the Stage 2 reaction curves coincide. A few other properties of the equilibrium are

5 To see this, note that since A = (1+m2)a1+(1+m1)a2, a change of a2 equal to ∆a2 = 1/(1+m1)
will cause an increase in A of ∆A = 1. The cost to country 1 will be m1∆a1 = m1/(1 + m1).
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noteworthy.

First, since the Stage 2 reaction curves coincide, direct abatements (a1, a2) are indetermi-

nate. However, total abatements by each country are determinate. That is, all combina-

tions of a1 and a2 along the common reaction curve yield the same levels of total abatement

A1 and A2, and therefore the same levels of net benefits for the two countries. Thus, along

the common reaction curves, ∆a2/∆a1 = −(1 + m2)/(1 + m1). Since A1 = a1 + m1a2,

∆A1 = ∆a1 + m1∆a2 =
(

1−m1
1 + m2
1 + m1

)
∆a1 = 0 since m1m2 = 1

The same demonstration applies for A2. The implication is that net benefits are the same

for the two countries along the common reaction curves:

Π1 = B1

(
e1 −A1

)
−D1

(
e1 −A1 + e2 −A2

)
Π2 = B2

(
e2 −A2

)
−D2

(
e1 −A1 + e2 −A2

)
Second, the equilibrium is efficient. The two Stage 2 first-order conditions together give:

D′
1 (e1 −A1 + e2 −A2)

B′
1 (e1 −A1) + D′

2 (e1 −A1 + e2 −A2)
B′

2 (e2 −A2) = 1
1 + m2

+ 1
1 + m1

= 1 (8)

using m1m2 = 1 in the last step. This is condition (1) characterizing the efficient levels of

emissions by the two countries derived in Section 2.

Third, the direct cost at which country 1 can abate emissions, 1/(1 + m2), which is equal

to D′
1/B′

1 by the first-order condition in Stage 2, is the analog of a Lindahl price in the

context considered here: it is the amount that country 1 would be willing to pay for the

total abatements A1 +A2. To see this, simply note that the product of this price and total

world abatements equals the total direct and matching abatement of country 1 (using

m1 = 1/m2):

1
1 + m2

(A1 + A2) = (1 + m2)a1 + (1 + m1)a2
1 + m2

= a1 + 1 + m1
1 + m2

a2 = a1 + m1a2 = A1

Thus, country 1’s direct and matching abatements A1 equals its marginal valuation for

reduced pollution relative to its marginal valuation of the benefits of emissions, D′
1/B′

1,
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applied to the world’s total abatements, (A1 +A2). The same applies for country 2. Thus,

the total abatement each country makes can be seen as quasi-Lindahl abatement efforts.6

Finally, in equilibrium, country 1 and country 2 are indifferent between making direct

abatements and matching abatements. As explained earlier, the effective cost to country

1 of direct abatements is 1/(1 + m2), whereas its effective cost of matching abatements is

m1/(1+m1). When m1m2 = 1, 1/(1+m2) = m1/(1+m1) and 1/(1+m1) = m2/(1+m2).

Thus, the cost to either country of reducing the world’s pollution by one unit through direct

abatement efforts or through matching abatement efforts are equal. If country 1 were

to increase its matching rate, starting from an equilibrium with m1m2 = 1, it would be

reducing emissions indirectly at a cost higher than the cost at which it can reduce emissions

directly. The same would apply for country 2. Therefore, neither country would want to

increase their matching rate beyond m1m2 = 1. By the same token, when m1m2 < 1,

1/(1 + m2) > m1/(1 + m1). It will be cheaper for country 1 to match the abatement of

country 2 than to reduce emissions through its own direct abatements, so it will increase

m1. The same holds for country 2.

The main results of this section are summarized in the following proposition.

Proposition 1. The subgame perfect equilibrium of the abatement process has the following

properties:

i. Direct abatements are indeterminate, but matching rates and total abatements are

uniquely determined;

ii. Matching rates satisfy m1m2 = 1 and countries are indifferent between direct and

indirect contributions to abatements;

iii. The levels of emissions are Pareto efficient; and

iv. The effective cost of abatement faced by each country is the analog of a Lindahl price.

6 Danziger and Schnytzer (1991) have shown that the Lindahl equilibrium in a public good con-
tributions game can be implemented through a process where players can voluntarily subsidize
the contributions of each other. Recently, Nishimura (2008) characterized the properties of the
Lindahl equilibrium in the context of international emissions reduction, and examined different
implementation mechanisms.
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4 Extensions to the Basic Case
In this section, we consider three extensions to the basic case. First, we investigate the

consequences of adding emissions quota trading. Then, we extend our model to a setting

with more than two countries. Finally, we characterize the equilibrium of the abatement

process in a dynamic two-period setting. In each case, the analysis is a straightforward

extension of the basic case so detailed analysis is not necessary.

4.1 The Mechanism with Emissions Quota Trading

With quota trading, the abatement mechanism involves three stages. The matching rates

and the direct abatements chosen in the first two stages determine the emission quotas to

which countries are committed. In the third stage, countries can trade these quotas at the

equilibrium price, which we assume is competitively determined.7 Note that in the absence

of a central government with the authority to administer a quota trading system, the three-

stage abatement process with quota trading requires a stronger form of commitment from

countries than the two-stage process of the previous section. Again, we characterize the

subgame perfect equilibrium by backward induction, starting with Stage 3.

Stage 3: Emissions Quota Trading

Direct abatements (a1, a2) and matching rates (m1,m2), and therefore total abatement

commitments (A1, A2), have been determined in the previous two stages. The demand for

emission quotas by country 1 at price p solves (assuming an interior solution and assuming

that both countries are price-takers):

max
{q1}

B1(e1 −A1 + q1)− pq1

where, recall, A1 = a1 + m1a2. Since the total level of emission abatements for the two

countries is fixed, the damage function can be left out of the problem. The first-order

7 Although we are considering a two-country model, we assume that countries take the price of
quotas as given so as to abstract from issues of market power which is not the focus of our
analysis. The model is extended to a multi-country setting in the next section.
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condition to this problem gives B′
1(e1 − A1 + q1) = p, whose solution is the demand for

emissions quotas, q1(p, A1). Differentiating the first-order condition B′
1(·) = p yields

∂q1
∂a1

= ∂q1
∂A1

= 1,
∂q1
∂m1

= a2,
∂q1
∂a2

= m1 (10)

Similarly, the demand for quotas by country 2 satisfies B′
2(e2−A2 +q2) = p and is denoted

by q2(p, A2). In equilibrium, q1(p, A1) + q2(p, A2) = 0, and the price satisfies

p(A1, A2) = B′
1(e1 −A1 + q1) = B′

2(e2 −A2 + q2)

Therefore, quota trading leads to an equalization of the marginal benefits of emissions,

which is condition (2) for an efficient allocation of abatements across countries.

Stage 2: Choosing Direct Abatements a1 and a2

We assume that countries correctly anticipate the price of quotas in Stage 3 and take it

as given when making their abatement commitments. Given (m1,m2) from Stage 1, the

problem of country 1 is:

max
{a1}

Π1 = B1

(
e1 −A1 + q1(p, A1)

)
−D1

(
e1 + e2 −A1 −A2

)
− pq1(p, A1)

The first-order condition, using p = B′
1, and assuming an interior solution, is:

F 1(a1, a2,m1,m2) ≡ −B′
1

(
e1−A1 +q1(p, A1)

)
+(1+m2)D′

1

(
e1 +e2−A1−A2

)
= 0 (11)

or,
D′

1(·)
B′

1(·) = 1
1 + m2

Condition (11) has the same form as condition (3) characterizing the choice of direct

abatement in the previous case without quota trading. Its solution gives country 1’s

reaction function, a1(a2; m1,m2), and an analogous derivation for country 2 gives F 2(·)
and a2(ai; m1,m2).

In an interior solution (including at the boundary), differentiating F 1(·) and F 2(·) and

using (10) yields the following properties of the two countries’ reaction functions:

∂a1(a2,m1,m2)
∂a2

= −1 + m1
1 + m2

,
∂a2(a1; m1,m2)

∂a1
= −1 + m2

1 + m1

13



Thus, the reaction curves for the two countries are linear and their slopes in (a1, a2)−space

are the same regardless of the values of m1 and m2. That is, Figure 1 applies for all values

of m1 and m2. The fact that reaction curves are parallel for any matching rates implies

that either there will be a corner solution in Stage 2, or the curves will overlap in the

interior so the solution is indeterminate.

Stage 1: Choosing Matching Rates m1 and m2

In Stage 1, both countries simultaneously choose their matching rates, m1 and m2, antic-

ipating the outcomes of Stages 2 and 3. The equilibrium has the same form as in the case

without quota trading, so there is no need to go through its derivation in detail. Equilib-

rium matching rates will be such that m1m2 = 1 and Stage 2 reaction curves will coincide.

In contrast to the case without quota trading, since Stage 2 reaction curves are parallel for

any set of matching rates in this case, the equilibrium in direct abatements will be a corner

solution whenever the reaction curves do not coincide. However, it is straightforward to

show that if either m1m2 < 1 or m1m2 > 1, countries would have incentives to change

their matching rates in ways that would cause the Stage 2 reaction curves to move closer

together until they coincide and m1m2 = 1.

To see that matching rates for which m1m2 = 1 and reaction curves coincide constitute an

equilibrium in the presence of a quota trading system, consider country 1’s net benefits

Π1 = B1 (e1 −A1 + q1(p, A1))−D1 (e1 + e2 −A1 −A2)− pq1(p, A1) (12)

Differentiating (12) with respect to m1, we obtain, using p = B′
1 and the Stage 2 first-order

condition (11):
dΠ1
dm1

= D′
1 ·

(
−m2

∂A1
∂m1

+ ∂A2
∂m1

)
(13)

Since A1 = a1 + m1a2, at m1m2 = 1 we have A1m2 = m2a1 + a2 = A2. Therefore, at

m1m2 = 1,

m2
∂A1
∂m1

= ∂A2
∂m1

which implies that dΠ1/dm1 = 0. Hence, country 1 would not want to change its matching

rate when reaction curves coincide and m1m2 = 1. Since the same argument applies to

country 2, such matching rates constitutes an equilibrium in Stage 1.

14



The equilibrium has all the properties of the equilibrium without quota trading. In partic-

ular, using the first-order conditions of the countries’ Stage 2 problem, and m1m2 = 1, we

obtain D′
1/B′

1 + D′
2/B′

2 = 1, so the levels of emissions are Pareto efficient. However, with

quota trading, the allocation of emissions across countries is also such that the marginal

benefits of emissions are equalized, B′
2 = B′

1, which does not necessarily hold in the ab-

sence of quota trading. In terms of our discussion of the social optimum earlier, quota

trading combined with matching abatement commitments results in an allocation along

the first-best utility possibilities frontier, unlike with matching abatements in the absence

of quota trading.

Hence, we have the following proposition:

Proposition 2. With emissions quota trading, the equilibrium of the abatement process

satisfies the properties in Proposition 1, and the marginal benefits of emissions are equalized

across countries, B′
2 = B′

1.

4.2 The Mechanism with More than Two Countries

In this section, we show that all the results of the basic two-country model with quota

trading can be generalized to the case where there are more than two countries. To do

so, let us now assume that there are n countries denoted by i, j = 1, ..., n, and let mij be

the matching rate offered by country i on the direct abatement commitment of country j.

Thus, countries can commit to matching the direct abatements of all other countries at

different rates. As in the two-country case, countries simultaneously choose their matching

rates in Stage 1, then set their direct abatement commitments in Stage 2. Finally, countries

trade emission quotas in Stage 3.

Stage 3: Emissions Quota Trading

At this stage, the total abatement commitment of country i is Ai = ai +
∑n

j=1 mijaj .

The demand for emission quotas by country i maximizes Bi (ei −Ai + qi)−pqi. The first-

order condition is B′
i (ei −Ai + qi) = p, and the solution is country i’s demand for emission

quotas qi(p, a1, ..., an,mi1, ...,min) = qi(p, Ai), for i, j = 1, ..., n and i 6= j. In equilibrium,
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∑
i qi(p, Ai) = 0, and the price is such that p(Ai, ..., An) = B′

i(ei−Ai + qi) for all i. Quota

trading therefore leads to an equalization of the marginal benefits of emissions across all

n countries.

Stage 2: Choosing Direct Abatements ai

Matching rates are determined at this stage, and all countries take the price of quotas as

given. The direct abatement commitment of country i solves the following:

max
{ai}

Πi = Bi(ei −Ai + qi(p, Ai))−Di

( n∑
j=1

(ej −Aj)
)
− pqi(p, Ai)

The first-order condition, using p = B′
i from the emissions quota trading equilibrium, is:

F i(a1, ..., an,mi1, ...,min) ≡ −B′
i(·) +

(
1 +

n∑
j 6=i

mji

)
D′

i(·) = 0

or,
D′

i(·)
B′

i(·)
= 1

1 +
∑n

j 6=i mji
(14)

The effective cost at which country i can increase world abatements by one unit depends

on the total rate at which its direct abatement will be matched by all other countries.

Country i chooses ai to equalize this effective cost to the ratio of marginal damages and

marginal benefits of emissions.

Stage 1: Choosing Matching Rates mij

The equilibrium matching rates turn out to satisfy similar properties as in the two-country

case. In fact, with n countries, matching rates are such that mijmji = 1 and mkimijmjk =

1 (or equivalently mkimij = mkj). Since the equilibrium is analogous to that in the two-

country case, we need not go through its full derivation. Rather, we simply show that a

set of matching rates satisfying these conditions constitute an equilibrium in Stage 1.

Start by considering country i’s net benefit which is given by the following:

Πi = Bi (ei −Ai + qi(p, Ai))−Di

( n∑
j=1

(ej −Aj)
)
− pqi(p, Ai)

16



Differentiating with respect to mij and using p = B′
i, as well as (14) characterizing the

choices of ai in Stage 2, we obtain:

dΠi

dmij
=

(
−

n∑
k 6=i

mki
∂Ai

∂mij
+

n∑
k 6=i

∂Ak

∂mij

)
D′

i(·)

Noting that
n∑

k 6=i

mkiAi =
n∑

k 6=i

mki

(
ai +

n∑
j 6=i

mijaj

)
and using mkimij = 1 if k = j and mkimij = mkj if k 6= j, we can show, after straightfor-

ward manipulations, that
n∑

k 6=i

∂Ak

∂mij
=

n∑
k 6=i

mki
∂Ai

∂mij

which in turn implies that dΠi/dmij = 0. Therefore, when matching rates satisfy mijmji =

1 and mkimij = mkj , no country has any incentive to deviate. The equilibrium matching

rates of any pair of countries are the reciprocals of each other, and as in the two-country

case, direct contributions are indeterminate but matching rates and total contributions are

uniquely determined.

The other properties of the equilibrium matching rates derived in the two-country case

apply here as well. In particular, with matching rates satisfying mijmji = 1 and

mkimijmjk = 1, it is also the case that
n∑

i=1

1
1 +

∑n
j 6=i mji

=
n∑

i=1

D′
i(·)

B′
i(·)

= 1

Thus, equilibrium abatements are efficient and the marginal benefits of emissions are equal-

ized across all countries.

The total abatement of each country are again quasi-Lindahl abatement efforts. To see

this, note that country i’s quasi-Lindahl price is D′
i/B′

i, which is equal to 1/(1+
∑n

j 6=i mji)

by (14), and that country i’s quasi-Lindahl abatement effort is:

1
1 +

∑n
j 6=i mji

(A∗
1 + · · ·+ A∗

n)

= 1
1 +

∑n
j 6=i mji

[(
a1 +

n∑
j 6=1

m1jaj

)
+ · · ·+

(
ai +

n∑
j 6=i

mijaj

)
+ · · ·+

(
an +

n−1∑
j=1

mnjaj

)]
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= ai +
n∑

j 6=i

mijaj = A∗
i

using mijmji = 1 and mkimij = mkj . Thus, country i’s marginal rate of substitution,

1/(1 +
∑n

j 6=i mji), multiplied by the world’s total abatements,
∑n

j=1 A∗
j , equals its total

abatement before quota trading, A∗
i .

Finally, when mijmji = 1 and mkimij = mkj , 1/(1+
∑n

j 6=i mji) = mik/(1+
∑n

j 6=k mjk) for

all i and k. Each country faces equal direct and indirect costs of reducing the world’s emis-

sions by one unit. Each country is therefore indifferent between making direct abatements

or matching abatements.

The analysis of this section leads to the following:

Proposition 3. When there are n countries that can commit to matching the abatement

efforts of each other at country-specific rates, and emissions quota trading exists, the equi-

librium matching rates satisfy mijmji = 1 and mkimijmjk = 1 for i, j, k = 1, ..., n, parts i,

iii and iv of Proposition 1 hold, and the marginal benefits of emissions are equalized across

all n countries.

4.3 A Two-Period Model

In this section, we extend the analysis to a two-period setting and show that the three-

stage abatement process can induce full efficiency even in a dynamic context where current

emissions increase the stock of pollution that will exist in the future. For simplicity,

we return to the two-country case. We assume that, in each period, countries can offer

to match each other’s abatement commitments in the current period before engaging in

emissions quota trading. Matching rates and direct abatement commitments determine

the number of period-specific emission quotas that each country holds. Trading takes

place in each period and countries are not permitted to transfer emission quotas across

periods. Therefore, the three-stage process of the one-period model is undertaken in each

period, and in the first period, both countries anticipate the impact of their decisions on

the second-period equilibrium.

In what follows, superscripts will denote time periods and subscripts will denote countries.
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We normalize the initial stock of pollution to S0. In period 1, the actual emissions of

country 1 and country 2 are e1
1 and e1

2, respectively, while the initial stock S0 decays at

the rate γ, with 0 < γ < 1. Therefore, the stock of pollution at the end of period 1 is:

S1 = (1− γ)S0 + e1
1 + e1

2

Similarly, the stock of pollution at the end of period 2 is:

S2 = (1− γ)S1 + e2
1 + e2

2 = (1− γ)
[
(1− γ)S0 + e1

1 + e1
2
]

+ e2
1 + e2

2

The levels of emissions in the absence of any abatements are assumed to be constant in both

periods and equal to e1 and e2. Before characterizing the equilibrium of the abatement

process, let us briefly examine the social optimum in this two-period case.

The Social Optimum

The socially efficient levels of emissions of each country in each period can be characterized

by maximizing the discounted sum of country 1’s benefits net of damages over both periods,

subject to the constraint that the discounted sum of country 2’s net benefits equals some

given level Π2. As in Section 2, we allow lump-sum transfer of T from country 2 to country

1 in order to characterize efficient points along the first-best utility possibilities frontier.

The transfer is assumed to take place in the first period, although it makes no difference.

The social optimum is the solution to the following problem:

max
{e1

1,e1
2,e2

1,e2
2,T}

B1(e1
1)−D1(S1) + T + δ(B1(e2

1)−D1(S2))

+λ
[
B2(e1

2)−D2(S1)− T + δB2(e2
2)− δD2(S2)−Π

2]
where δ is the common discount factor and S1 and S2 are given by the expressions defined

above. The first-order conditions imply the following:

D′
1(S2)

B′
1(e2

1) + D′
2(S2)

B′
2(e2

2) = 1,
D′

1(S1) + δ(1− γ)D′
1(S2)

B′
1(e1

1) + D′
2(S1) + δ(1− γ)D′

2(S2)
B′

2(e1
2) = 1

B′
1(e1

1) = B′
2(e1

2), B′
1(e2

1) = B′
2(e2

2)
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In period 2, efficient emissions are such the sum of the ratios of marginal damages to

marginal benefits of the two countries is equal to one. Efficient emissions in period 1

are such that the sum of the two countries ratios of period 1 marginal damages plus the

discounted and decay-adjusted period 2 marginal damages, over period 1 marginal benefits,

is equal to one. As well, marginal benefits of emissions are equalized across countries in

each period.

The Two-Period Equilibrium

In period 1, countries 1 and 2 offer matching rates m1
1 and m1

2 and make direct abatement

commitments a1
1 and a1

2, and similarly in period 2. Their actual emissions are:

e1
1 ≡ e1 − a1

1 −m1
1a

1
2 + q1

1 , e1
2 ≡ e2 − a1

2 −m1
2a

1
1 + q1

2

e2
1 ≡ e1 − a2

1 −m2
1a

2
2 + q2

1 , e2
2 ≡ e2 − a2

2 −m2
2a

2
1 + q2

2

These actual emissions result in stocks of pollution in each period given by:

S1 ≡ (1− γ)S0 + e1
1 + e1

2 = (1− γ)S0 + (e1 − a1
1 −m1

1a
1
2) + (e2 − a1

2 −m1
2a

1
1)

S2 ≡ (1− γ)S1 + e2
1 + e2

2 = (1− γ)[(1− γ)S0 + e1
1 + e1

2] + e2
1 + e2

2

= (1−γ)[(1−γ)S0++(e1−a1
1−m1

1a
1
2)+(e2−a1

2−m1
2a

1
1)]+(e1−a2

1−m2
1a

2
2)+(e2−a2

2−m2
2a

2
1)

We characterize the two-period equilibrium by backward induction starting with period 2.

Period 2

Since emission quotas cannot be transferred across periods, the decisions in the first period

(a1
1, a1

2, m1
1, m1

2) will only affect the period 2 equilibrium through their effects on the

pollution stock at the end of the first period, S1. It is straightforward to see that, for

a given level of S1, the three-stage abatement process that countries face in period 2 is

essentially the same as in the basic one-period case, and the equilibrium will have the same

characteristics. In particular, the equilibrium in period 2 will be fully efficient, given the

pollution stock S1. Denote the efficient total abatements in the second period by A2∗
1 and
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A2∗
2 , where A2∗

1 = a2
1 + m2

1a
2
2 and A2∗

2 = a2
2 + m2

2a
2
1. The demand for quotas by countries

1 and 2 satisfy B′
1(e1 − A2∗

1 + q2
1) = p2 and B′

2(e2 − A2∗
2 + q2

2) = p2, with ∂q2
i /∂A2

i = 1

and ∂q2
i /∂A2

j = 0 for i, j = 1, 2, and can be written as q2
1(p2, A2∗

1 ) and q2
2(p2, A2∗

2 ). In

equilibrium, q2
1(·) + q2

2(·) = 0 and p2(A2∗
1 , A2∗

2 ) = B′
1(e1 −A2∗

1 + q2
1) = B′

2(e2 −A2∗
2 + q2

2).

Given that the outcome in period 2 is fully efficient, the marginal effect of the period 1

pollution stock on total abatements in period 2 can be derived from the condition that

characterizes the social optimum:

f(·) ≡ D′
1(S2)

B′
1(e2

1) + D′
2(S2)

B′
2(e2

2)

≡ D′
1
(
(1− γ)S1 + e1 −A2∗

1 + e2 −A2∗
2

)
B′

1 (e1 −A2∗
1 + q2

1(·)) +
D′

2
(
(1− γ)S1 + e1 −A2∗

1 + e2 −A2∗
2

)
B′

2 (e2 −A2∗
2 + q2

2(·)) = 1

Differentiating the above and using ∂q2
i /∂A2

i = 1 and ∂q2
i /∂A2

j = 0 for i, j = 1, 2, we have:

fA2
1

= fA2
2

= −D′′
1 (S2)

B′
1(e2

1) −
D′′

2 (S2)
B′

2(e2
2)

fS1 = (1− γ)D′′
1 (S2)

B′
1(e2

1) + (1− γ)D′′
2 (S2)

B′
2(e2

2) = −(1− γ)fA2
1

= −(1− γ)fA2
2

from which we obtain:
∂A2∗

i

∂S1 = − fS1

fA2∗
i

= 1− γ

Consequently, the change in the net benefit of country 1 in period 2 resulting from a change

in the stock of pollution at the end of period 1 is given by

d(B1(e2
1)−D1(S2)− p2q2

1)
dS1 =B′

1(e2
1) ·

[
−∂A2∗

1
∂S1 + ∂q2

1
∂A2∗

1

∂A2∗
1

∂S1

]
−D′

1(S2) ·
[
(1− γ)− ∂A2∗

1
∂S1 − ∂A2∗

2
∂S1

]
− p2

[
∂q2

1
∂A2∗

1

∂A2∗
1

∂S1

]
=− (1− γ)

[
B′

1(e2
1)−D′

1(S2)
]

< 0

A similar expression holds for country 2. An increase in the stock of pollution in period

1, of which a proportion (1 − γ) will remain in period 2, will induce an increase in the

total abatement of country 1 in period 2, reducing the period 2 net benefit of country 1 by

an amount equal to the difference between its benefit from emission and its own damages
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from pollution
(
B′

1(e2
1)−D′

1(S2)
)
. Let Π2

1 (S1) and Π2
2 (S1) denote the second period net

benefits of countries 1 and 2, respectively.

Period 1

Since quota trading in the third stage does not affect the stock of pollution at the end of

period 1, the quota trading process has no impact on the second period. Therefore, the

quota trading equilibrium has the same properties as in the static one-period case, and

there is no need to characterize it again.

In Stage 2, country 1 chooses its direct abatement a1
1, taking matching rates (m1

1,m
1
2) and

country 2’s direct abatement a1
2 as given and anticipating the effect of a1

1 on the second-

period equilibrium, in order to maximize the discounted sum of its net benefits over both

periods. Thus, it solves the following:

max
{a1

1}
B1(e1

1)−D1(S1)− p1q1
1 + δΠ2

1 (S1)

for which the first-order condition is

F (·) ≡ −B′
1(e1

1) + (1 + m1
2)D′

1(S1) + δ(1− γ)
[−B′

1(e2
1) + D′

1(S2)
] [−(1 + m1

2)
]

= 0

This condition can be written as

D′
1(S1)

B′
1(e1

1) −
δ(1− γ)

[
D′

1(S2)−B′
1(e2

1)
]

B′
1(e1

1) = 1
1 + m1

2

The second term in the expression above is the discounted reduction in country 1’s second-

period net benefits resulting from higher first-period pollution as a ratio of the marginal

benefit of first period emissions. Country 1 chooses its level of direct abatement such

that the sum of this discounted cost and of the ratio of first-period marginal damages

to marginal benefits of emissions equals the effective cost to country 1 of reducing world

emissions by one unit, given that its own abatements are matched at the rate m1
2 by

country 2. The solution to this condition gives the reaction function of country 1, which

can be shown to satisfy the following:

∂a1
1

∂a1
2

= −Fa1
2

Fa1
1

= −1 + m1
1

1 + m1
2
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The analog holds for country 2. Hence, as in the one-period case, reaction curves are linear

and parallel in the (a1, a2)–space for any matching rates (m1
1,m

1
2). As in the one -period

model, we could again show that the equilibrium matching rates in Stage 1 are such that

m1
1m

1
2 = 1, and that the subgame perfect equilibrium has same properties as in the one-

period case. Hence, the equilibrium replicates the social optimum derived earlier, so both

intra-temporal efficiency and inter-temporal efficiency are achieved. Total emissions are

efficient, and they are efficiently allocated across periods.

The results of this section are summarized below.

Proposition 4. In a two-period setting where both countries can commit to match each

others abatements and engage in emissions quota trading in both periods, the subgame

perfect equilibrium is such that:

i. The properties listed in Proposition 1 apply in each period;

ii. The marginal benefits of emissions are equalized across countries in both periods;

iii. Inter-temporal efficiency is achieved: emissions are efficiently allocated across periods.

5 Adding Contributions to an International Public Good
In this section, we explore how the introduction of an international public good provided

through the voluntary contributions of countries will affect the pollution abatement pro-

cess. For ease of exposition, we return to the basic one-period two-country case. Let the

level of provision of the international public good be denoted by G and the contributions

of each country by g1 and g2. Contributions are assumed to be perfect substitutes, so

G = g1 + g2.

Utility in country i is ui(G, xi), where xi is private consumption net of the benefits and

damages of emissions. Utility is increasing and quasi-concave in both arguments. Both G

and xi are assumed to be normal, and the latter is given by

xi = wi − gi + Bi

(
ei − ai −miaj + qi

)
−Di

(
e1 − (1 + m2)a1 + e2 − (1 + m1)a2

)
− pqi

where wi is the initial endowment of country i. This formulation assumes that the benefits

23



of emissions, net of damages, as well as the revenues from emissions quota trading are

perfect substitutes for consumption.

The timing of decisions is important. We assume that countries choose their level of

pollution abatement first, and then contribute to the international public good. With this

order of decisions, we find that even without matching commitments and quota trading, the

levels of emissions are efficient and the marginal benefits of emissions are equalized across

countries. Although we will not go through the analysis of the case where contributions to

the public good are determined first, it is straightforward to show that, in this case, the

equilibrium of the abatement process will only be efficient if countries are making matching

rate commitments and are engaging in emission quota trading, as in the basic case without

contributions to a public good.

As will become apparent, with contributions to the public good determined after abatement

decisions, commitments to matching abatements and emission quota trading turn out to

be irrelevant so we can ignore them. The sequence of decisions is then simply as follows. In

Stage 1, the two countries simultaneously choose emission abatements ai. Both countries

then set their contributions to the international public good gi in Stage 2. We consider

Stage 2 first.

Stage 2: Choosing Contributions to the International Public Good gi

At the beginning of this stage, the available resources of the two countries are w1 +B1(e1−
a1)−D1(e1 − a1 + e2 − a2) and w2 + B2(e2 − a2)−D2(e1 − a1 + e2 − a2), given the levels

of abatements (a1, a2) chosen in the previous stage. Country i chooses its contribution to

maximize ui(g1 +g2, wi−gi +Bi(·)−Di(·)), taking the contribution of the other country as

given. Assuming an interior solution to public good contributions, gi is such that ui
G/ui

x =

1. The provision of the public good is inefficiently low given that efficient contributions

would satisfy u1
G/u1

x + u2
G/u2

x = 1. More importantly, the well-known Neutrality Theorem

(Shibata, 1971; Warr, 1983; Bergstrom, Blume, and Varian, 1986) implies that the net

private consumptions of the two countries x1 and x2 and the level of public good provision

G will depend only on the sum of resources, and not on their distribution across the two
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countries. The sum of resources here is w1 + w2 + I, where

I ≡ B1(e1 − a1)−D1(e1 − a1 + e2 − a2) + B2(e2 − a2)−D2(e1 − a1 + e2 − a2)

Thus, the two countries’ utilities after the second stage can be written as u1[G(I), x1(I)]

and u2[G(I), x2(I)], since w1 +w2 is constant. Given that G, x1, and x2 are normal goods,

and that utilities are increasing in both arguments, maximizing I will also maximize the

utility of each country. As a result, the objectives of the two countries in Stage 1 will be

perfectly aligned.

Stage 1: Choosing Emission Abatements ai

In this stage, the countries choose their abatement efforts, anticipating the outcome

of Stage 2. The problem of country i consists in choosing ai, given aj , to maximize

ui[G(I), xi(I)], and the first-order condition implies that

−B′
i(ei − ai) + D′

i(e1 − a1 + e2 − a2) + D′
j(e1 − a1 + e2 − a2) = 0, i, j = 1, 2

It is immediately clear that the first-order conditions for the two countries taken together

coincide with the condition characterizing the social optimum derived in Section 2, i.e.

D′
1/B′

1 + D′
2/B′

2 = 1, as well as the condition that B′
1 = B′

2. Remarkably, the equilibrium

is such that the levels of emissions are efficient and the marginal benefits of emissions are

equalized across countries, despite the fact that countries do not commit to match each

other’s abatements and there is no emission quota trading. Moreover, it can readily be

shown that even if countries are able to commit to matching the abatement efforts of each

other, they cannot derive any gain from making such commitments.

The main results of this section are stated below.

Proposition 5. If countries make voluntary contributions to pollution abatement and then

contribute voluntarily to an international public good, the equilibrium has the following

properties:

i. If contributions to the public good are strictly positive for both countries, the levels

of emissions are efficient and the marginal benefits of emissions are equalized across

countries without any matching rate commitments and quota trading;
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ii. Countries cannot gain by offering strictly positive matching rates;

ii. Contributions to the public good are inefficient.

6 Imperfect Substitutability of Emissions in Damage Functions
In this section, we show that the matching mechanism also achieves efficiency in abatements

even if the emissions of each country are not perfect substitutes in the damage functions.

To do so, we go back to the basic setting of Section 3, but assume that the damage function

of country i is given by Di(e1, e2). We first characterize the social optimum in this case.

The Social Optimum

Efficient emissions will solve the following Pareto optimization problem:

max
{e1,e2}

B1(e1)−D1(e1, e2) + λ
[
B2(e2)−D2(e1, e2)−Π2

]
Combining the first-order conditions, we get

D1
1(e1, e2)
B1

1(e1) + D2
2(e1, e2)
B2

1(e2) + D1
2(e1, e2)D2

1(e1, e2)−D1
1(e1, e2)D2

2(e1, e2)
B1

1(e1)B2
1(e2) = 1 (15)

The last term on the left side of the condition above will be negative if countries suffer

higher marginal damages from their own emissions than from the emissions of the other

country, and will tend to zero as emissions become perfect substitutes.

The Decentralized Equilibrium

In Stage 2, each country chooses its level of abatements, taking matching rates as given.

The problem of country 1 is the following:

max
{a1}

Π1 = B1(e1 − a1 −m1a2)−D1(e1 − a1 −m1a2, e2 − a2 −m2a1)

The first-order condition is

F 1 ≡ −B1
1(e1 −A1) + D1

1(e1 −A1, e2 −A2) + m2D
1
2(e1 −A1, e2 −A2) = 0
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The problem of country 2 is analogous. In an interior solution (including at the boundary),

country 1’s reaction curve in (a1, a2)−space satisfies the following (differentiating the first-

order condition above):

∂a1
∂a2

= −F 1
a2

F 1
a1

= −m1B
1
11 −m1D

1
11 − (1 + m1m2)D1

12 −m2D
1
22

B1
11 −D1

11 − 2m2D1
12 −m2

2D
1
22

Note that if m1m2 = 1, we have F 1
a1 = m2F

1
a2 , and:

∂a1
∂a2

= −1 + m1
1 + m2

Similarly, when m1m2 = 1, the slope of country 2’s reaction function is:

∂a2
∂a1

= −1 + m2
1 + m1

Therefore, the slopes of the two reaction curves in (a1, a2)−space are the same when

m1m2 = 1, and as in the basic model analyzed in Section 3, matching rates for which

Stage 2 reaction curves coincide and m1m2 = 1 constitute a subgame perfect equilibrium.

To see this, consider country 1’s net benefits of emissions:

Π1 = B1(e1 −A1)−D1(e1 −A1, e2 −A2)

Differentiating with respect to m1, and using the first-order condition from Stage 2, we

obtain:
dΠ1

dm1
= D1

2

(
−m2

∂A1
∂m1

+ ∂A2
∂m1

)
Using A1 = a1 + m1a2 and m1m2 = 1, we have:

m2A1 = m2a1 + a2 = A2

Therefore, at m1m2 = 1,

m2
∂A1
∂m1

= ∂A2
∂m1

which implies that dΠ1/dm1 = 0. The same holds for country 2, which implies that neither

country has any incentive to change its matching rate.
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We can readily verify that, when m1m2 = 1 and reaction curves coincide, the first-order

conditions from the Stage 2 problems of both countries together yield condition (15) char-

acterizing the Pareto efficient levels of emissions. Moreover, the properties of the subgame

perfect equilibrium derived in Section 3 all apply in the current case where emissions are

imperfect substitutes in the damage functions.

7 Concluding Remarks
Our purpose in this paper has been to characterize a process of pollution emissions re-

duction in which countries can commit to match each others’ abatement efforts and may

subsequently engage in emissions quota trading. The mechanism that we considered is

non-cooperative in the sense that each country, acting in its own self-interest, voluntarily

offers to match the emission abatements of the other country’s at some announced rates,

anticipating the subsequent abatement equilibrium and the outcome of emissions quota

trading. The analysis has shown that this mechanism leads to an efficient outcome. The

level of emissions is efficient, and quota trading leads to an equalization of the marginal

benefits of emissions across countries. This result holds independently of the number of

countries involved, and in an environment where countries have different abatement tech-

nologies as well as different benefits from emissions. Efficient levels of emissions also occur

even if countries’ emissions are imperfect substitutes in the damage function of each coun-

try. In a dynamic setting where the quality of the environment depends on cumulative

emissions over two periods, the mechanism is found to achieve both intra-temporal and

inter-temporal efficiency.

The mechanism also has appealing distributional implications. The initial allocation of

emission quotas across countries (before trading) emerges endogenously without central

coordination and reflects each country’s net marginal benefits from reducing pollution.

This result also implies that all countries will find it in their own interest to participate.

Countries with relatively low net marginal valuations for pollution reduction will face

relatively low effective costs of abatement, given the set of equilibrium matching rates.

We extended the model by considering the case where countries are voluntarily contribut-
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ing to an international public good in addition to undertaking pollution abatement. We

found that if public good contributions are determined after abatement efforts, the level

of emissions is efficient even in the absence of any matching abatement commitments. In

fact, the incentive for countries to match the abatements of each other vanishes entirely.

Moreover, the marginal benefits of emissions are equalized across countries even in the

absence of emissions quota trading.

Throughout, our analysis has assumed that all countries were able to commit to match the

other countries’ abatements. It would be interesting to extend the analysis to characterize

the pollution abatement process when only a subset of countries are able to commit. In this

case, different forms of commitment could emerge as well as different distributions of the

gains from achieving more efficient allocations. What determines the commitment ability

of countries remains an open question. The recent papers of Gersbach and Winkler (2007)

and Gerber and Wichardt (2009) suggest potential mechanisms to address that issue.
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Figure 1. Stage 2 reaction curves
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