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skill distributions are given, and it is shown that the pattern of marginal tax rates depend

critically on whether the skill distribution is truncated at the upper end.
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OPTIMAL INCOME TAXATION WITH QUASI-LINEAR
PREFERENCES REVISITED
by
Robin Boadway, Katherine Cuff and Maurice Marchand

I. INTRODUCTION

The properties of resource allocations under optimal non-linear income taxes are notori-
ously difficult to characterize explicitly. As a result, authors commonly rely on numerical
calculations to give some idea about the structure of the tax schedule.! The difficulty
with this approach is that these calculations leave somewhat obscure the features of the
problem which give rise to the tax structures computed. For example, the relative roles
played by the form of the policy-maker’s objective function, the substitutability of leisure
for consumption in household preferences, the distribution of wages, and the government
revenue requirement are difficult to infer from numerical calculations. As well, the intuition

behind some of the results is not altogether clear.

It turns out that there is a special case in which a closed-form solution can be obtained
for the optimal structure of tax rates, and that is when consumer preferences are quasi-
linear in leisure and the objective function is utilitarian. The possibility of obtaining an
explicit solution in this case was first pointed out by Lollivier and Rochet (1983), and
some of the properties for this case were derived by Weymark (1986a, 1986b, 1987) for the
discrete case (finite number of skill levels) and by Ebert (1992) for the continuous case.
It turns out that the maxi-min case leads to an even simpler solution. The purpose of
this paper is to provide a full characterization of the optimal non-linear income tax for
the quasi-linear preference case under utilitarian and maxi-min objectives. In particular,
we can determine the structure of marginal and average tax rates as well as the patterns
of consumption and income. We are also able to provide an intuitive explanation of the
shadow price of public funds and its relevance for the structure of taxes, as well as for the
effect of the government’s revenue requirement on the shadow price and therefore on the

progressivity of the tax.

1 For a summary of the literature, see Tuomala (1990).
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Our approach allows us to show explicitly the conditions under which bunching can
occur at the bottom or elsewhere in the wage distribution, and to explain the intuition
behind such bunching. The explanation builds on Ebert’s insight in the continuous case
that bunching can be caused by a failure of the second-order conditions characterizing the
households’ self-selection constraints. But we also demonstrate that bunching can occur for
another reason, and that is when the non-negativity constraint that must be imposed on
household income is binding. Although the need for such a constraint has been recognized
in the above literature (Weymark, 1986a), its consequences have not been studied. We

show that if such a constraint is active, it drastically affects the optimal tax structure.

The assumption that preferences are quasi-linear in leisure is not unreasonable. But,
it is also rather restrictive. The benefit of using this case is that it does allow us to gain
some new insight into the optimal tax problem. Its ease of solution is also of obvious
pedagogical value. Moreover, it provides an interesting contrast with the recent results of
Diamond (1998), who characterized the pattern of optimal marginal income taxes when
preferences are quasi-linear in consumption rather than leisure. Some of our results on
the structure of marginal tax rates parallel those he obtained. We show however that his
main finding of a U-shaped pattern of marginal tax rates depends critically on the skill
distribution being unbounded at the top. If the maximum skill level is finite, his results

no longer apply.

We begin in the next section with an outline of the basic features of the model. Section
III considers the properties of the optimal tax function for the utilitarian case, paying
particular attention to the validity of the first-order approach and the consequences for the
tax structure of the second-order incentive constraint being binding over various ranges
of the skill distribution. In section IV, the tax structure under the maxi-min objective
function is studied. Qualitative results for some specific skill distributions are considered
in the next section. Sections VI and VII then take up the determination of the pattern of
before-tax incomes in the optimum, and analyze the consequences for the tax structure of
the non-negative income constraint being binding at the bottom. The final section provides

some concluding comments.



II. THE BASIC MODEL

Our setting is similar to the standard approach of Mirrlees (1971), except for the assump-
tion of quasi-linear preferences. Household utility functions are given by u(x) — £, where z
is consumption, /£ is labour, and wu(z) is increasing and strictly concave. Households differ
in their abilities (or skills), which correspond with their wage rates. Households are dis-
tributed by wage rates w according to the distribution function F'(w), for w € W = [w, W],
where w > 0 and w can be either finite or infinite. It turns out that the value of the
upper bound on skills is of some importance in determining the shape of the marginal tax
structure. In particular, truncating the distribution at a finite upper bound can cause the
marginal tax rates at the upper end to decline more rapidly than in the untruncated case,
and this can have a qualitatively important effect on the tax structure. The corresponding
density function, f(w), is assumed for simplicity to be differentiable and strictly positive

for all wages in W. Population size is normalized to unity, so F(w) = 1.

As is standard in the optimal income tax literature, the government can observe
incomes but not wage rates. Households obtain all their income from wages, so before-tax
income is given by y = wf. Therefore, we can rewrite household utility as u(z) —y/w. The
difference between y and z is simply the tax paid to the government, 7' = y — x, which can
be either positive or negative (i.e. a transfer to the household). Given some tax function,
the government can effectively observe both y and z. In (z,y)-space with 2 and y on the
horizontal and vertical axes respectively, the indifference curves of households earning a
given wage w are horizontally parallel, and at any given point in this space the higher is the
wage rate of a household the flatter is its indifference curve. The first of these properties
is equivalent to the absence of income effects on the household’s choice of consumption,

and the second implies that the monotonicity or single-crossing property is verified.

The government chooses the tax imposed on each household or, equivalently, the
consumption-income bundle intended for each household {(z(w),y(w)),w € W}, subject
to three sorts of constraints. The first is the government budget constraint, which takes

the form:

[ ) = sl > R 0

w

where y(w) and z(w) denote the income and consumption of a type-w person, and R is an

eX0ogenous revenue requirement.



The second is the set of incentive-compatibility, or self-selection, constraints. These
require that a household of type w choose the consumption-income bundles intended for
it, that is, u(zx(w)) — y(w)/w > u(z(w")) — y(w')/w for any w and w’ € W. Following
Lollivier and Rochet (1983), it is analytically convenient to transform a household’s utility

function by multiplying it by its wage rate and defining V (w) as follows:
V(w) = wu(z(w)) —y(w)

This transformation allows us to substitute y(w) out of the problem readily, thereby ex-

ploiting the quasi-linearity property to simplify the incentive-compatibility conditions.?
The latter can indeed be written as wu(z(w)) — y(w) > wu(z(w')) — y(w'), or:
V(w) = V(w') + (w - w')u(z(w)) (IC)

Since w’ can be either lower or higher than w, this requires that for w’ approaching w, we
have in the limit V' (w) = u(z(w)), for all w € W, where we use a ‘dot’ to refer to derivatives
with respect to w. This is the so-called first-order incentive-compatibility (FOIC) condition.
And, given that u(xz(w)) is the slope of V(w) at w, the inequality in condition (IC) requires
that V (w) be strictly convex, or dV (w)/dw = u/(x)4(w) > 0. Since u'(z) > 0, z(w) must
then be increasing in w, which is called the second-order incentive-compatibility (SOIC)
condition. It should also be noted for future purposes that the first-order conditions for

the household maximization problem imply that g(w) takes on the same sign as i(w).3

The third constraint requires that labour supply and therefore before-tax income be

non-negative (y(w) > 0, w € W).* For now, we ignore the non-negativity constraint on

2 The usual approach in the literature is to substitute z out of the problem and treat y as
a control variable (Mirrlees, 1971; Tuomala, 1990; Diamond, 1998). With quasi-linear in
leisure preferences, it is more convenient to do the reverse.

In response to the pair of functions imposed by government policy {z(w),y(w)}, w € W,
households of skill w maximize wu(z(w)) —y(w) with respect to @w. This yields the first-order
condition wu'z () — (@) = 0, which under incentive compatibility will be satisfied at @ = w.
Therefore, #(w) and y(w) take the same sign.

It seems reasonable also to assume an upper bound on labour supply and therefore income.
The implications of a binding maximum income constraint are considered briefly below, but
until then the constraint is assumed to be non-binding.
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income and assume it to be satisfied. In a later section, we consider the circumstances in

which it might be violated.

III. UTILITARIAN OBJECTIVE FUNCTION

We can now formulate the government’s problem. In this section, we assume that the
objective function is utilitarian: the government maximizes the sum of individuals’ utilities.
In a later section, a maxi-min social welfare function is considered. Using the definition of

V(w) to eliminate y(w) from the government budget constraint, the problem is:
vV
max / ﬂf(w)dw (P)

subject to:

If we let z(w) = (w), the non-negativity constraint on #(w) (the SOIC condition) can be
written as z(w) > 0. We can treat z(w) as the control variable, and V(w) and z(w) as

state variables in this dynamic optimization problem. The Hamiltonian function is:
w
——+A[wu(z(w)) =V (w)—z(w)]f (w)+r(w)u(z(w))+p(w)z(w)+r(w)z(w)

where A can be interpreted as the shadow price of government funds, w(w) is the co-state
variable associated with V(w) = wu(z(w)), p(w) is the co-state variable associated with
#(w) = z(w), and k(w) is the shadow value of the non-negativity constraint on z(w). The

optimal solution must satisfy the following necessary conditions:

aff@ = 0= p(w) + r(w) (2)

aiﬁu) = —fu(w) = Alww/ (z(w)) = 1]f (w) + 7 (w)u' (z(w)) (3)
OH f (w)

V(w) ~ )= T M) (4)

m(w) = 7(W) = p(w) = pw) =0 %)



k(w) >0 — 2(w)=0; z(w)>0—k(w)=0 (6)

The first three conditions are the standard necessary conditions on the control and state
variables. Relations (5) are the transversality conditions. Conditions (6) are required
to ensure that the SOIC condition is satisfied: if they are not binding for a given w,
then k(w) = 0. The rest of this section is concerned with interpreting these necessary

conditions.®

It is useful to begin by solving for A and 7(w), both of which turn out to depend
solely on the skill distribution and can be given intuitive interpretations. Using the fact

that m(w) = 0 by the transversality conditions (5), we can solve (4) for m(w):

wtw) = [ (A=) sy = AP (@) - G(w) 7)

w

where, following Ebert (1992), we have defined G(w) = ["(f(m)/m)dm. The function
G(w) is simply the expected value of 1/m over the interval w < m < w multiplied by
the proportion of individuals on the interval, or G(w) = E(1/m|m < w)F(w). Using the

transversality condition 7(w) = 0 we obtain from (7):

1
A= G(w) :E<E> (8)

Thus, the shadow price of government revenue depends only upon the distribution of
the population. The intuition for this is as follows. With quasi-linear preferences, an
increase in the revenue required by the government (dR) will come entirely from increased
labour income: the consumption of any household will not change because it is not affected
by income. It turns out, as shown below, that if more tax revenue is needed, all households
will be required to increase their labour incomes by the same amount. That will impose
a utility cost of 1/w on a type-w household. The aggregate effect of this utility cost on

the utilitarian objective is simply its expected value over the entire distribution F(1/w),
or G(w).

> We assume throughout that the second-order conditions for the government’s problem (P)
are satisfied. These, of course, should not be confused with the SOIC condition, which refers
to the household’s incentive problem.



Turning back to 7(w), we can derive an alternative expression for m(w) from (4) using

the transversality condition 7 (w) = 0:

tw) =~ [ ) (A=) sty

The co-state variable 7(w) is the shadow price of increasing V(w) = wu(z(w)) — y(w) by
one unit. To do this, the government reduces the income that type-w households must
earn by one unit. To ensure the incentive-compatibility constraints continue to be satisfied,
the government must reduce by the same amount the income required from all households
with skill greater than w. This income reduction lowers tax revenue and at the same time
increases the utility of all households with skill above w. The total welfare cost from the
lost revenue and the total welfare benefit from the increases in utility are given by the
first and second term in the above expression, respectively. Substituting (8) into (7), we
obtain:

m(w) = GW)F(w) - G(w) (9)

Except at w = w, the shadow price of increasing V (w) is negative (that is, an increase will
result in a net social loss)® and, as already mentioned, depends only on the distribution of
skills.

Equation (3) can now be used to determine the pattern of consumption and marginal
tax rates. We begin by considering the case where the SOIC condition is satisfied over
the entire population distribution, so the ‘first-order approach’ is adequate. Then we
consider the possible violations of the SOIC condition and its consequences for the optimal

consumption path.

First-Order Approach

So let us first assume that @(w) > 0 for all w, so kK(w) = 0 by (6), and u(w) = 0 by (2).
Then, using (3) the path of consumption is determined by:

Alwd (z(w)) = 1]f (w) + m(w)e (z(w)) = 0 (10)

6 The sign of (9) follows from the fact that the expected value of the reciprocal of the wage
rate for w < w, normalized by the size of the population at w, G(w)/F(w)), will be less than
the expected value of the reciprocal of the wage rate over the entire distribution, G(w).
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As both A and 7(w) depend only on the distribution of skills, expression (10) indicates
that the pattern of u/'(z(w)) depends only on the distribution of skills, which simplifies
the characterization of the optimal tax allocation considerably. Using (8) and (9), we can

rewrite (10) as follows:”

f(w)
wf(w) + F(w) - G(w)/G(w)

From the negativity of m(w) in (9) and the transversality conditions (5), we obtain that

u'(z(w)) =

(11)

u'(z(w)) < 1/w except at the end points of the skill distribution. Also, when preferences
are quasi-linear in leisure, the optimal path of consumption z(w) depends only on the skill

distribution and the functional form for u(x).

Next, we can obtain an expression for the pattern of marginal tax rates. Let T'(y(w))
be the tax function. Then, from the household optimization problem, the marginal tax

rate for a type-w household is given by:®

1

T'(y(w)) =1—- i (2 ()

Using (11), the marginal tax rate for a person of type w can be rewritten as:

G(w)/G(w) — F(w)
wf(w) (12)

Unlike the pattern of consumption which also depends on the form of u(x), the pattern of

T'(y(w)) =

tax rates depends only upon the distribution of skills. The above yields the standard result
(Seade, 1977) that (in the absence of bunching) the marginal tax rates at the top and bot-
tom of the distribution are zero, T"(y(w)) = T'(y(w)) = 0. Moreover, it is straightforward
to show that 0 < T'(y(w)) < 1 for all w in the interior of W.? Therefore, the marginal tax

" BEquation (10) could alternatively be written u(z(w)) = 1/@(w), where @(w) is analogous
to the adjusted wage introduced by Weymark (1986a) and is defined here as w(w) = w +

[F(w) — G(w)/G(w)] / f(w).

8 The household chooses y to maximize u(y — T'(y)) — y/w. The first-order condition immedi-
ately yields the expression for T"(y).

9 To see this, recall from footnote 6 that G(w) > F(w)G(w@) for allw € (w, @), so T' (y(w)) > 0
for all w in the interior. From footnote 3, sign{#(w)} = sign{y(w)}. Since z(w) > 0 and
z(w) = y(w) — T(y(w)), so &(w) = §(w)(1 — T’ (y(w)), it follows that 1 — T"(y(w)) > 0 and
thus, 7" (y(w)) < 1.



rate must rise on an interval starting at the lower bound y(w) and decrease on an interval
close to the upper bound y(w). Between these two extreme income intervals it is difficult

in general to infer the optimal pattern of the marginal tax rates from (12).

To get a better idea of the shape of the marginal tax rate schedule, let us multiply
and divide (12) by 1 — F(w) to obtain:

T'(y(w)) = B(w) - C(w) (13)
where
B(w) = G(w){(i(z;;)(;)ﬁ’(w) and C(w) = 71;;(75;})

The factors B(w) and C(w) are the analogues of those in Diamond (1998) (his equation
(10)): C(w) is identical, while B(w) has the same interpretation in our setting.!® To
determine the shape of 7', we can look at either the patterns of B(w) and C'(w) or the
patterns of B(w)(1—F(w)) and C(w)/(1—F(w)), whichever is more instructive for the case
at hand. To investigate these different patterns, let w,, denote the modal wage rate for a
single peaked distribution (f(w,,) = 0) and w, denote the wage rate such that w, = 1/G(w)
(referred to as the ‘critical wage rate’ by Diamond, reflecting the fact that at this wage
rate the marginal disutility of labour income in terms of forgone leisure just equals the
shadow price of government revenue). For the unimodal distributions we consider below,

we suppose (as in Diamond, 1998) that w,, > w..!' Given this, the following properties
of B(w), C(w), B(w)(1 — F(w)), and C(w)/(1 — F(w)) are proved in the Appendix:

Properties:
i) B(w) is positive and increasing for all w € (w, W] and zero at w;

ii) B(w)(1 — F(w)) is increasing in w for w < w,, decreasing in w for w > w,., and zero

at w and w;

10 The factor B(w) represents the value of the additional income the government would receive

by increasing T'(y(w)) from all individuals of skill level greater than w given that their
labour supply distortions are unchanged (Diamond, 1998), or in this case where preferences
are linear in leisure, given that their consumption is unaffected. Diamond also has a third
factor, A(w) = 14e~(w), where e(w) is the elasticity of labor supply and takes into account
the marginal labour supply distortions. In our context, A(w) = 1.

11 This follows whenever the mode of a distribution is greater than its mean. Since 1/w is a

strictly convex function, the mean of 1/w is always greater than one over the mean of w by
Jensen’s inequality.



iii) C(w) is decreasing in w for w < w,, and depends on the specific skill distribution for

W > Wy

iv) C(w)/(1— F(w)) is decreasing in w for w < wy, and depends on the specific distribu-

tion for w > w,,.

As these results indicate, except in special cases, B(w) and C(w) (and B(w)(1—F(w))
and C(w)/(1 — F(w))) can have conflicting effects on 7' as w rises. Only in the range
we < w < Wy, is there no ambiguity: by Properties ii) and iv), 7" is decreasing in this
range. For w < w,, the two factors B(w) and C(w) (as well as B(w)(1 — F(w)) and
C(w)/(1 — F(w))) change in opposite directions, so it is not clear on this basis alone
whether T is rising or falling (except, of course, near w = w). For w > w,,, the pattern
of T is also ambiguous and depends critically on the distributional assumptions (except,
again, near w = w). In the next section, we consider various skill distributions and

characterize the shape of the marginal tax rate schedule under each distribution.

It is worth stressing that we are investigating how the marginal tax rate (the change
in total tax liability in response to a change in income) changes as the wage rate w — and
not income y — rises. This is the typical approach in the literature. To determine how
the marginal tax rate varies with income, note that

dT"(y(w))

LD Ty () (w) (14)

where T"(y(w)) is the second derivative of the total tax function T'(y) with respect to
y. This allows us to make some inferences about the shape of the total tax function
in (T,y)-space. We know from (12) that the marginal tax rate is always non-negative,
T'(y(w)) > 0, so total tax liabilities rise with y. Given the first-order approach is valid,
it must be g(w) > 0. Therefore, the second derivative of the tax function with respect to

income will take on the same sign as dT”(y(w))/dw.'?

So far our analysis has been conducted as if the first-order approach is valid. It will
be as long as (11) yields a solution for z(w) which is everywhere increasing in w. We now

consider the possibility that x(w) is not everywhere increasing in w.

12 If it is necessary to take into account the SOIC condition, then ¢(w) > 0, such that g (w) > 0
over any non-bunched region and §(w) = 0 over any bunched interval. All individuals in the
bunched region earn the same income and have the same tax liabilities.
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Second-Order Approach

To check for a violation of the SOIC condition under the first-order approach, we need de-
termine whether z(w) is increasing with w. To verify this, rewrite (11) using the definition

of the marginal tax rate:
1

W @) = A Blw) )

Then, z(w) will be increasing with w if «'(z(w)) is decreasing with w. Therefore, the SOIC

(15)

condition will be satisfied if w(1 — B(w)C(w)) is increasing in w. A sufficient, though not
necessary, condition for this to be true is that B(w)C(w) be decreasing, that is, that 7’
be decreasing. As we have seen above, there is no guarantee that this will be the case.
Note that whether the SOIC condition is satisfied depends solely on the form of the skill

distribution function.

That leaves open the possibility that the SOIC condition will be violated for some
w under the first-order approach. If so, there must be some range over which x(w) > 0,
so #(w) = 0. In this range, y(w) = 0 as well, so there is bunching. This illustrates
the insight in Ebert (1992) that bunching will be induced by a violation of the SOIC
condition. We shall see later that bunching can occur for another reason as well — the
violation of a non-negativity constraint on income. For now, we concentrate on bunching
induced by a violation of the SOIC condition. In principle, bunching can occur anywhere
in the distribution of skills. It is useful to consider separately the consequences for the tax

structure of bunching at the bottom and bunching in the interior.'3

Bunching at the Bottom

Bunching occurs at the bottom of the skill distribution if the derivative of the denominator

of (15) is negative at the lowest skill level. This can be shown to be equivalent to having

13 As pointed out by Ebert (1992), there cannot be bunching at the highest income y(w).
He shows that if the second-order conditions are satisfied, then the marginal tax rate at
the highest income level is zero and the marginal tax rates at all other income levels are
positive (unless there is no bunching at y(w), in which case T’ (w) = 0). From the house-
holds’ optimization problem, the marginal tax rate is increasing over the bunched interval,
dT' (y(w))/dw = 1/(wu'(x)) > 0, where u'(z) is fixed over the interval. This implies that
if there is bunching at the highest income level those bunched individuals with w < w will
have a negative marginal tax rate which violates the above result. Weymark (1986b) shows
this result also holds in the discrete case when the non-negativity constraint on consumption
is satisfied.
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w < 1/(2G(w)). So there will be bunching at the bottom if w is small enough, and this

can occur for any skill distribution.!*

Suppose there is a wage rate wy such that for all w > ws, &(w) > 0 so the SOIC
condition is satisfied (x(w) = 0), while for w < w < wy, it is not (k(w) # 0). There
will therefore be a range of skills, say [w, wg], such that all households obtain the bundle
(x(wp),y(wp)). In this range, u(w) # 0, and p(w) is determined by integrating (3) and
using (5), (8), and (9) to give:

p(w) = /M[G(ﬁ)(l — mu! (z(wo))) f (m) — (G(W) F(m) — G(m))u’ (x(wo))]dm

w

Since p(wp) = 0, we obtain using (11) and after some simplification:

P _ [ S,

o)) ~ Sy @) (16)

where u/(xz(w) in the integral is given by (11) simply ignoring the SOIC condition. This
equation, along with the requirement that u'(x(wy)) satisfies (11) for w = wy, determines

wp and x(wy).

Figure 1 illustrates the case of bunching at the bottom. The J-shaped consumption
profile depicts the pattern of consumption which would be generated by condition (11).
The portion with the negative slope violates the SOIC condition. The minimum point
on the consumption curve occurs at the skill level we have called ws. The point wy is
determined where (16) is satisfied. The value of 1/u/(z(wo)) just equals the average value
of 1/u'(z(w)) over the range w < w < wg. This, of course, implies that wg > wy. Outside
the bunching range, the path of consumption and the marginal tax rates are precisely the
same as under the first-best approach. This implies that the tax rate faced by households

with skill wy will be positive.

— FIGURE 1 NEAR HERE —

14 Mirrlees (1971), in his simulations, assumed that w = 0, implying that there is necessarily
bunching at the bottom.
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Bunching in the Interior

The same argument can be extended with relatively little amendment to bunching ranges

in the interior.'®

Suppose, as in Figure 2, that there is a range in the interior of the
consumption profile from wsys to wy that would be generated by the first-order approach
(11) such that consumption is declining. This implies that there will be a range over which
the non-negativity constraint on 4(w) is binding, or (w) > 0. Suppose the bounds of that
range are denoted by wgo and wg. Over this range z(w) is constant at z(wg) as shown in
the diagram. To determine the values of wy, woo and z(wy), note that p(wp) = p(weo) = 0,

but pu(w) # 0 for wey < w < wy.

Proceeding as above, integrating (3) now yields for the range wgy < w < wy:

p(w) = /w [G(@)(1 — mu' (z(wo))) f(m) — (G@)F(m) — G(m))u'(z(wo))]dm

woo

Using p(wg) = 0, this simplifies to:

F(wo) — F(woo) /wo f(w) duw

@) S @ @) (17)

In this case, wg, wop and xg are jointly determined by (17) and by the requirement that
u'(z(wo)) satisfy (11) for both w = wy and w = wpg. As in the case of bunching at
the bottom, (17) indicates that the bunching range is determined by the condition that
the reciprocal of u'(z(wp)) equals the average value of the reciprocal of u'(x(w)) over the
bunching interval. Figure 2 depicts the consumption pattern when the SOIC condition

fails over the range [wa2, w] so that bunching occurs in the interior.

— FIGURE 2 NEAR HERE —

The upshot of the above discussion is that with preferences that are quasi-linear in
leisure, bunching induced by a violation of the SOIC condition affects neither the consump-
tion path nor the marginal taz rates in the non-bunched interval(s). It will, however, affect

average tax rates, as will become clear later.

15 The possibility of this case was considered by Ebert (1992) as an example of the relationship
between bunching and violation of the SOIC condition, though not explicitly solved.
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IV. MAXI-MIN OBJECTIVE FUNCTION

The above analysis is based on the government adopting a utilitarian objective function
in which all households’ utilities are given equal weight.'® In this section, we consider
the case of a maxi-min objective function where the concern of the government is solely
with the least able persons (those with w = w). This case, though extreme, enables us
to obtain additional results on the pattern of the tax structure, which turns out to take a
very simple form. For the sake of simplicity, the SOIC condition is assumed to be satisfied
everywhere as well as the non-negativity condition on income. Therefore, our analysis will
not consider the possibility of bunching although we shall spell out the conditions for the
first-order approach to be valid. It is straightforward to extend our analysis to account for

bunching, but no new insights are gained.

In this case, the government’s problem can be written:

w

subject to:

and

where the first constraint is the budget constraint and the second constraint is simply the

integral of the FOIC condition, V (w) = u(z(m)).

Substituting the second constraint into the first allows us to eliminate V (w) for w > w

16 14 ig straightforward to extend our analysis to a general quasi-concave additive social welfare
function with differing weights on individuals’ utilities. The results on the optimal path of
consumption and marginal tax rates are analogous to those obtained in (11) and (13) except
the term B(w) now depends on the social welfare weights given to each individual. If the
individual weights take a very simple linear weighting scheme, it is possible to characterize
the amount of aversion to inequality the government’s objective function has with a single
parameter. It can then be shown that the marginal cost of public funds and the optimal
path of consumption in the interior of the skill distribution is decreasing in the government’s
aversion to inequality.

14



from the problem. The revenue constraint becomes:!”

[ ) =1+ Fl)utew) = o(w)s (o)l dw - Vw) 2 R

The government problem is then simply to choose V(w) and z(w) to maximize V(w)

subject to this revenue constraint. The Lagrangian expression is:

z:KQ&+A(/wmwvw—1+memmw»—xwwvwww—V@n—R)

w w
The first-order conditions with respect to V(w) and x(w) may be written:

1
A= —
w

and

(18)
where C(w) is defined as before.

The first condition indicates that the shadow price of public funds is simply 1/w: a unit
increase in revenue will cause all households, including the least skilled to supply one more
unit of income.'® Only the latter is accounted for as far as social welfare is concerned.
From the second equation, we conclude that u'(z(w)) < 1/w except at the top of the

distribution where it is equal to the wage rate. And, since T"(y(w)) =1 — 1/(wu/(z(w))),
T'(y(w)) = C(w) (19)

which is useful to compare with (13) in the utilitarian case.!® As usual, the marginal
tax rate is zero at the top (T'(y(w)) = 0), while in the interior 1 > 7" (y(w)) > 0. But,
at the bottom, T'(y(w)) = 1/(wf(w)) > 0 contrary to the utilitarian case in which the

17 We have again used the rule for iterative integration referred to earlier.

18 As will be shown later, income changes on a one-for-one basis with the government’s required
revenue. That is, dy(w)/dR = 1.

19 Solving the maxi-min problem for the case where preferences are quasi-linear in consumption
(the Diamond (1998) case), it is straightforward to show that T'(y(w)) = C(w)A(w) where
A(w) is defined as in footnote 10. As in Diamond, when the elasticity of labour supply is
constant, so is A(w). Then, qualitatively the same pattern of marginal tax rates emerges.
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marginal tax rate is zero in the absence of bunching at the bottom of the skill distribution.2°

From Property iii), we infer that with a unimodal distribution 7" is declining in the range

(w, wn,).

To determine whether or not this first-order approach is valid, i.e. the SOIC condition
is satisfied, we first note from (18) that #(w) > 0 if w(1 — C(w)) is increasing in w which

is equivalent to: ‘
w f(w)
f(w)

For f(w) > 0, (20) will be positive and the SOIC condition will be satisfied.

2+ C(w) >0 (20)

V. RESULTS FOR SPECIFIC DISTRIBUTIONS

In the above analysis, we showed that both the marginal tax rates and violations of the
SOIC condition depend solely on the skill distribution. This is true whether the govern-
ment has a utilitarian or maxi-min objective function. In this section, we adopt specific
skill distributions and use our general analytical results to characterize the marginal tax
rates and the possible violations of the SOIC condition under the two different objective
functions. The distributions we consider include the uniform, the log-normal, the trun-
cated and untruncated Pareto, and the exponential. For the last two distributions, we

consider that they only apply after the modal skill level.

Uniform Distribution (Lollivier and Rochet (1983))

As shown by Lollivier and Rochet (1983), the uniform distribution enables one to obtain

clear-cut results. This is the reason why we consider it here despite its unrealistic form.

Marginal Tax Function

The density function of the uniform distribution is given by f(w) = 1/(w — w) for w €
[w,w]. Using (13), we obtain the following expression for the marginal tax rate under the

utilitarian objective:

_ |logw —logw

T’ = -
W) = e T Togw

gl| &
|
SIS
g

20 For a discussion of the possibility of a non-zero marginal tax rate at the bottom for the
maxi-min case, see Seade (1977), page 231, footnote 29.
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As expected, the marginal tax rate is nil at both the lower and upper bounds of the skill
support. Differentiating the above expression yields:

dl"(y(w)) _w—w [1+logw —logw  w

dw w? logw — logw w— w
which is positive at w = w and negative at w = w, also as expected. Since both factors on
the right-hand side of the above expression decrease with w, the marginal tax function is

concave with respect to w and so has an inverted-U shape under the utilitarian objective.

These results may be contrasted to those obtained under the maxi-min objective. In
this case, we infer from (18):

-1

g gl

T'(y(w)) =
implying that starting from a positive value at w = w the marginal tax rate is monoton-

ically decreasing in w and is nil at w = w. Furthermore, the marginal tax rate is convex

with respect to w.

Violations of the SOIC Condition

From (13) and (15) (or (18) and (19) for the maxi-min case), the SOIC condition is satisfied
if w(l —T'(y(w))) increases with w. Under the utilitarian objective, this can be shown to

be equivalent to:
w—w

>
v 2(logw — logw)

implying that there may only be bunching on an interval of skills starting at the bottom
of the distribution. Moreover, for bunching to occur w must be small enough.?! On the
contrary, under the maxi-min objective there is never any bunching since w(1 —T"(y(w)))

always rises with w.

Log-Normal Distribution (Mirrlees (1971))

A more realistic skill distribution is the log-normal, according to which logw is normally

distributed for w € W. We can show that C'(w)/(1— F(w)) is increasing in w for w > wy,.

Unfortunately, other than the general results given above, no further results can be

derived analytically under either the utilitarian or maxi-min objectives. That is, T’ declines

21 Lollivier and Rochet (1983) show that under a quasi-concave additive social welfare function
with an arbitrary linear weighting scheme for individuals utilities, the SOIC condition can
only be violated on an interval at the bottom of the uniform distribution.
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in w over the range w € [w.,wy,] under a utilitarian objective and declines in w for all
w < w,, under a maxi-min objective. This implies that the SOIC condition is satisfied

below the modal skill level, but may be violated at some w > w,.

As in the more general case where preferences are not quasi-linear, we would have to
rely on simulations to get further results. Such simulations have proven to be somewhat
inconclusive. For example, Tuomala (1990), following Mirrlees (1971), takes the mean of
log w to be —1 and allows the standard deviation to vary from 0.39 to 1.0. Then for a variety
of assumptions about the elasticity of substitution between consumption and leisure, he
finds that, except close to the bottom of the income distribution, the schedule of marginal
tax rates is monotonically declining regardless of whether the objective function utilitarian
or maxi-min. Other authors have adopted more realistic assumptions on the variance of
the skill distribution and have shown that the optimal marginal tax rate schedule increases

over most skill levels and declines near the top of the distribution.??

Pareto Distribution (Diamond (1998))

Suppose instead a Pareto skill distribution. By assumption, this distribution only applies
after the modal skill level. That is, over the range (w,w) where W > w,,. As a standard,
we adopt the realistic assumption that w < oo. However, we also consider the case when
w = oo. This is the assumption used in Diamond (1998). As we shall see, his qualitative
results depend critically on the Pareto distribution being untruncated, that is, on there

being some households of infinitely large productivity.

Marginal Tax Function

Over the range (@,w) the density of the Pareto distribution is f(w) = Aw~(1+%) where
a>0and A= a(@®*—w*)"[1 — F(®)]. Solving for C(w), it can be shown that C(w) =
(1/a) [1 — (w/w)"], which implies that with an untruncated distribution (w = o0), C(w) =
1/a. Differentiating C'(w) in the truncated case (W < oo) yields C(w) = — (1/w)* aw®™!
which is negative. Therefore, under a truncated Pareto distribution C'(w) is decreasing,

while with an untruncated Pareto distribution C(w) is constant.

22 Qee Kanbur and Tuomala (1990). In their paper, they assume a CES utility function and set
the standard deviation of logw to 0.7 and 1.0. In both cases, the optimal marginal tax rate
schedule exhibits an inverse U-shape when the government maximizes a utilitarian social
welfare function.
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From Property i), this implies that when the Pareto distribution is untruncated, 7"
is increasing in w under a utilitarian objective function. This indicates that Diamond’s
result (his Proposition 1), which generates the U-shaped pattern of 7" above w,,, applies
not only to the case where preferences are quasi-linear in consumption, but also to the
case when they are quasi-linear in leisure. But, this is clearly a very special result. As
soon as the distribution is truncated, the Diamond result no longer applies: C(w) is now

decreasing rather than constant.

To get a better idea of the shape of the marginal tax rate under the utilitarian objec-

tive, we use expression (13) to solve for 7" under the Pareto distribution:

1 (AN 1 1 fwye 1
o= ()] e [ (2
(y(w) a w * Gw)(l+a) |w \w w
Differentiating T"(y(w)) with respect to w, we obtain after some simplification

w = w'! (%) [ﬁ G(;)m B 1] T W@+ a)

The first term in this expression is negative, and therefore, whether the marginal tax
rate is increasing or decreasing when the distribution is truncated depends on the relative
magnitudes of the two terms. When a > 1, both terms are decreasing in w, which means
that the marginal tax rate is concave in w; and, there is a range of skills starting with @
over which T" increases with w if and only if the above derivative is positive at w = .
When a < 1, it is impossible to reach unambiguous conclusions in the utilitarian case. By
contrast, if the distribution is untruncated (w = oo), then the marginal tax schedule is

increasing and strictly concave in w, as in Diamond.

Turning to the maxi-min objective function, clear-cut results are obtained for the
Pareto distribution. Using (19), the marginal tax rate in this case is given by

T(y(w) = [1 - (2)']

w

which implies that with a truncated Pareto distribution, the marginal tax rate is decreasing
in w and is zero at w = w < oo. In addition, it will be strictly concave when a > 1 and
strictly convex when a < 1. If the distribution is untruncated, then the marginal tax rate

is constant and equal to 1/a.
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Violations of the SOIC Condition

The SOIC condition is satisfied if w(1 —T'(y(w))) increases with w. Under the utilitarian
objective, this can be shown to be equivalent to:

1_1+(g>a{1+a_ 1 }>0

a w a G(w)w

where the expression in the square brackets is positive. As the left-hand side is monotoni-
cally increasing in w, bunching may only occur on an interval of skills starting at @w when
the distribution is truncated. For very small values of a > 0, it is possible that the SOIC
condition is violated even at w close to w. If the distribution is untruncated, then the
above expression reduces to 1 — 1/a > 0 which is satisfied for all a > 1. If a < 1, then the

SOIC condition is always violated when the Pareto distribution is untruncated.

Under a maxi-min objective function, expression (20) must be positive for the SOIC
condition to be satisfied. If the distribution is truncated, expression (20) is equivalent to
(w/w)* > (1 —a)/(1 4+ a), which is everywhere satisfied when a > 1. If a < 1, then it
is possible that the SOIC condition is violated. However, since the left-hand side of the
expression is monotonically increasing in w, if there is bunching it must only occur on an
interval (@, 1/1\7) where @ < w. If instead the distribution is untruncated, then the SOIC
condition under a maxi-min objective is equivalent to a > 1. Thus, if the distribution is

untruncated the SOIC condition can nowhere be satisfied when a < 1.

Exponential Distribution

An alternative distribution which we also assume to apply after the modal skill level
(W > wy,) is the exponential distribution. Although this distribution is not used in the
literature, we adopt it here to contrast the results obtained with it to those obtained under

a Pareto distribution.

Marginal Tax Function

The density of an exponential distribution is f(w) = Ae~%/?, where A > 0, the ex-
ponential rate of decline (1/b) is positive, and @ > w,,. This distribution yields

C(w) = (b/w) (1 — e“’/b/em/b). Differentiating this expression, we find
C(w) = —(b/w?) (1 - ew/b/eﬁ/b) /b (1Y)
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which is everywhere negative whether w is finite or not. On the other hand, differentiating
C(w)/(1—F(w)) gives d(1/(wf(w)))/dw = [1/(w?f(w))] [w/b — 1] which is negative when
w < b, and positive otherwise. Therefore, from Property ii), 7’ is decreasing in w under
the utilitarian objective function in the range [@w,b). On the contrary, if the objective is

maxi-min then 7" is necessarily decreasing over the entire exponential distribution.

Violations of the SOIC Condition

Under a utilitarian objective, the SOIC condition is satisfied in the range [w, b) since the
denominator of (15), i.e. w(1 —T"), is increasing in this range. Using the same argument,
under a maxi-min objective, the SOIC condition is always satisfied above @w since T" is

decreasing.

VI. THE PATTERN OF INCOME AND AVERAGE TAX RATES

So far we have studied the optimal path of consumption and the tax structure that it
implies, but we have said little about the path of income. In the above problem, y has
been substituted out of the revenue constraint (1) using the definition of V(w). We can
therefore determine y(w) by working back through the revenue constraint. As we shall see,
there is no guarantee that this yields a pattern of income, and therefore of labour supply,
which is non-negative throughout the income range. This implies that we need to introduce
explicitly a non-negativity constraint on income; following the standard literature we so far
have implicitly assumed it to be satisfied. We show in this section that such a constraint

can affect the patterns of both tax payments and consumption across households.

We begin by showing how y(w) can be recovered from the above model. Let us for
the moment continue to assume that the non-negativity constraint on y(w) is not binding.
From the definition of V(w), we have y(w) = wu(x(w)) — V(w). To obtain an expression
for V(w), we integrate the first-order IC condition, V(w) = u(z(w)), to give V(w) =

V(w) + [ u(z(m))dm, which we substitute in the above relation to obtain:

y(w) = wu(z(w)) = V(w) —/ u(z(m))dm (21)

w

Then, integrating this over the entire population and rearranging, we obtain V(w) =
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Eg|

[wu(m(w))—y(w)]f(w)dw—ff u(z(w))(1-F(w))dw.?® Eliminating from this expression
y(w) f(w)dw by using the government budget constraint yields:

H %
ISl

Vi) = [ Twutew) — st)lfw)do = [ @)1 - Fw)du - R

w w

Finally, using this expression in (21), we obtain:

y(w) = K(w) + R (21)

w

K(w) = o)) = [ fua@)lof ) +1 - F)] - o) f@)hdw = [ uam)dn

w w

Note that K(w) depends only on the distribution of skills and the functional form of
u(x), since z(w) depends only on these two elements.?* This implies that:

dy(w)

p =1 Yw e W (22)

Thus, an increase in revenue requirement causes all persons to increase their income by an
equal amount. This has a number of implications. First, the effect on the path of y(w)
of a change in revenue requirements confirms our earlier intuition for the interpretation of
A as the shadow price of public funds in (8). Since all household incomes change by the
same amount when revenue requirements change, a unit increment of tax revenue involves
a household of type w increasing its labour supply by 1/w with no change in consumption.
The utility cost of these labour supply changes is simply 1/w summed over the entire

population, which is E(1/w), or G(w).

23 We have made use of Fubini’s Theorem to evaluate the iterated integral as follows:

/ﬂm (/: u(x(m))dm> f(w)dw = /jU(x(w))(l — F(w))dw

See, for example, Stewart (1991).

24 Gince R is independent of w, it must be that §(w) = (w) Using the above expression

for K(w), K (w) = wu' (z(w))i(w) + u(z(w)) — u(z(w)) = wu' (z(w))i(w) (as in footnote 3)
which equals @(w)/(1 — T'(y(w))), implying §(w) > &(w).
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Following Musgrave and Thin (1948), we define the tax system to be progressive
if the average tax rate increases with income, where the average tax rate is given by
A(w) = T(y(w))/y(w). The slope of a ray from the origin to the tax function T'(y(w))
in (y,T)-space is equal to the average tax rate A(w). How the slope of this ray changes
as y increases determines the progressivity of the tax system and will depend on both
the distributional assumptions and the amount of required revenue to be raised. The
distributional assumptions determine the shape of the total tax function as shown above.
To see how the degree of progressivity depends on the amount of revenue to be raised,

rewrite A(w) as follows:

Using (22), differentiating yields:

dA(w)  z(w)

= 0
iR~ W)

Thus, not surprisingly, average tax rates increase for all households if the revenue require-

ment increases.

To illustrate how changes in R affect the progressivity of the tax system consider two
persons in some non-bunched range with wages ws > w;. Suppose initially that the tax is
progressive, so A(wy) > A(wi). This implies that c¢(w1)/y(w1) > ¢(ws)/y(ws). Therefore,
since y(wz2) > y(wy), dA(w1)/dR > dA(w2)/dR: the average tax rate increases more for
the low-wage person than for the high-wage one. Consider the effect of an increase in R
on the ratio A(wq)/A(ws). If this ratio increases, the tax system becomes less progressive.
Differentiating A(wq)/A(ws) with respect to R yields:

dR <A(w2)> = A2(wy) {A(U’Z) g AR >0

In words, if the tax system is progressive, increasing the revenue requirement makes it less
so. On the other hand, if the tax system is regressive to begin with (A(wq) > A(ws)), we
cannot predict whether an increase in required revenue causes it to become more or less

progressive.

Finally, the fact that incomes for all households change by one-to-one with the revenue

requirement, as shown by (22), implies that we need to take account of the possibility that a
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non-negativity constraint on income may be required. Suppose, for example, that the SOIC
condition is satisfied, so that bunching of the sort discussed earlier does not occur. In this
case, consumption is everywhere increasing in w, and incomes will be determined by (21’),
at least assuming they are all positive, and will also be increasing. Imagine now decreasing
the revenue requirement. As R decreases, so too will y(w). Eventually a point will be
reached where incomes for the lowest wage households fall to zero. Obviously, incomes
cannot, fall below zero. As R is reduced further, an increasing range of low-wage persons
find their incomes reduced to zero. Since they must all obtain the same consumption, we
have a situation in which bunching at the bottom occurs even though the SOIC condition

is not violated. Let us turn to a more formal analysis of this case.

VII. THE NON-NEGATIVE INCOME CONSTRAINT

To analyze what happens to the stream of consumption and tax rates when a non-negativity
constraint on incomes is binding but the SOIC condition #(w) > 0 is not active, let us
amend the first-order approach to our optimal income tax problem to incorporate the non-
negativity constraint on income. The latter can be written y(w) = wu(zx(w)) — V(w) > 0.
Associating the Lagrange multiplier §(w) with this non-negativity constraint, the Hamil-
tonian becomes:

Fw)

w

H =V (w) A wu(z(w)) =V (w) —z(w)]f (w) +m(w)u(z(w)) +6(w) (wu(z(w)) - V(w))

where z(w) now becomes a control variable (since we have assumed the constraint (w) > 0

is not binding). The necessary conditions are now:

0H

o) Alwa (z(w)) — 1]f (w) + 7 (w)u'(z(w)) + 6 (w)ww' (z(w)) (23)
oH . _ f(w)

TV w) —ir(w) = == = Af(w) = &(w) (24)

m(w) = m(w) =0 (25)

d(w)>0—=y(w)=0; y(w)>0—6w)=0 (26)

By assumption, R is low enough for there being at the optimum a range of skills w < w <
w,, such that the non-negative income constraint is binding. Thus, §(w) > 0 for w < w,,

and zero elsewhere. Denote the level of consumption for those earning zero income by z.
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Using the transversality condition 7(w) = 0, we can integrate (24) to obtain m(w) for
W 2> Wyt

7mw=/EQ—§Qfmmm w> w, (27)

since d(w) = 0 for w > w,. Then, substituting é(w) from (24) into (23) yields for w <
W < Wy
, , Jwr (w)
(u'(w0) — A) f(w) +u (Sﬂo)aT =0, w<w,

Integrating this, and using the transversality condition 7(w) = 0, we obtain:
(0! (20) — N F (1) + (o) wy (1) = 0 (28)

Finally, substituting 7(w,) from (27) into this expression provides us with the following

formula of the shadow price of public funds:

Flwy) + fw_y #f(m)dm

Wy

ey + (1= Flwy))

wyu'(zo)

(29)

where A now depends on the value of z¢ and w,. This must be compared with (8),
which holds when the non-negativity constraint y(w) > 0 is not binding at any skill
level. The difference between the two formulas is easily understood. To see this, let us
increase the labour income of households with skills w > w, by one unit. This increase
yields 1 — F(w,) in tax revenue and causes a loss in social welfare of ffy(l/m)f(m)dm.
To continue satisfying the incentive compatibility constraint of households with skill w,,
zo = z(wy) needs to be adjusted by dzog = —(1/(v/(zo)w,))dy < 0. As any household
with w < w, has its utility decreased by the same amount as households with skill w,,
this causes a loss in social welfare equal to F'(w,)/w,. It also decreases public expenses

by an amount given by the first term in the denominator in (29).

Substituting m(w) from (27) into (23), the path of consumption for households with

skill above w, can be inferred from the following condition:
o (w(w)) = ) L wsw, (30)
wf(w)+ 5 w, Lf(m)dm -1+ F(w)

where, v'(z(w)) < 1/w for w, < w < w and A is given by (29). As earlier, we can also find

an expression for the marginal tax rate faced by households with skill above w,:

ML= Fw) — [ & f(m)dm

T'(w) = N (w)

(31)
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where A is given by (29). The expression for 7" is positive except for w = w where it is nil,
and individuals at the end of the bunching interval (type-w, households) have a positive

marginal tax.?5

It is worth emphasizing that once the non-negativity constraint y > 0 is binding on
some range of skill, the property that the pattern of marginal tax rates depends only upon
the skill distribution no longer holds. The level of revenue requirements R also matters
because it affects the values of w, and z( and so that of A (see (29)), which in turn
influences the consumption path (see (30)). The larger is the level of R the higher will be

the value of A, and therefore for a given skill w > w,, the lower consumption will be.

So far, our discussion of income constraints has focused on the case of a mini-
mum income constraint. This is a natural case to consider since it generates bunch-
ing at the bottom of the skill distribution, a phenomenon which has been widely em-
phasized in the optimal income tax literature. But, a maximum income constraint is
equally plausible, especially in our model with quasi-linear preferences. To see this, con-
sider the full-information analogue of our model, where the government can observe abil-
ity. With no incentive constraint to contend with, the government simply chooses z(w)
and y(w) to maximize ff[u(aﬁ(w)) — y(w)/w]f(w)dw subject to the revenue constraint
ff[y(w) — z(w)]f(w)dw _Z R, the non-negative income constraint y(w) > 0, and a max-
imum income constraint of the form y(w)/w < £, where £ is the maximum amount of
labour that can be supplied to the market. With A denoting the shadow price of public
funds, the solution to this problem is such that «'(z(w)) = XA Vw € W, implying that
all individuals receive the same consumption allocation in the first-best outcome. Income
allocations, on the other hand, will be such that only individuals with skill above some
level 1 provide labour, and this at the maximum amount of labour (£). This level is such

that o’ (ng mf(m)dm) = 1/w(= A). For all w < @, income is zero and the non-negative

income constraint binds, while for all w > @, income is equal to w/.

When the government cannot observe skill levels, this stark result will not occur.
Nonetheless, it is certainly conceivable that, as well as there being some low skill levels
for which the non-negative income constraint is binding, there will be some individuals

supplying the maximum amount of labour, £. Unlike the non-negativity constraint, the

25 This follows from evaluating expression (31) at w = wy.
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maximum income constraint does not cause people to be bunched at a given (z, y)-bundle
as they have differing skill levels, and therefore, different maximum incomes. In addition,
although ¢(w) > 0 by the SOIC condition, labour supply does not have to rise monotoni-
cally with ability. Therefore, the maximum income constraint may bind only in the interior
and/or at the bottom of the skill distribution in the second-best outcome. Simulations us-
ing a log-normal skill distribution illustrate this result, i.e. #(w) < 0 near and at the top
of the skill distribution (Tuomala, 1990). However, if the highest skilled individuals are
constrained to earn their maxi-min income then they will have a positive marginal tax

rate.26

VIII. CONCLUDING REMARKS

Our purpose in this paper has been to provide as full a characterization as possible of the
solution to the optimal income tax problem when preferences are quasi-linear in leisure.
This case has the unique feature that under utilitarian and maxi-min objective functions,
closed-form solutions can be obtained for the path of the marginal utility of consumption
and the pattern of income tax rates in terms of the skill distribution function. This is
obviously of some pedagogical value. But in addition, in the process of examining this case,
we have uncovered a number of interesting features of the optimal income tax problem and

its solution. These include the following.

First, bunching at the bottom of the skill distribution can occur for two reasons.
Either the SOIC condition is violated, as emphasized by Ebert (1992), or a non-negativity
constraint on incomes is binding. In the former case, bunching will generally involve a
positive income for those bunched, while in the latter it necessarily involves zero income.
Bunching can also occur in the interior if the SOIC condition is violated there. In the case
where bunching arises because of a failure of the SOIC condition, the solutions for the
marginal utility of consumption and the marginal tax rates in the non-bunched regions are

identical to those obtained using the first-order approach.

Second, a maximum income constraint reflecting the maximum available labour supply

26 This can be shown be adding the constraint, y(w)/w > £ to the government’s optimization
problem in the non-negativity section and noting that increases in £ increase the value of the
Hamiltonian. Deriving an expression for the optimal marginal tax rate, and evaluating it at
w = W given the maximum income constraint is binding at w = w, we obtain T'(y(w)) > 0.
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must also be specified for the optimal income tax problem. It may be binding at the top of
the income distribution, but will not lead to bunching since the maximum labour supply

reflects different maximum incomes for different skilled persons.

Third, with preferences that are quasi-linear in leisure, as long as the minimum and
maximum income constraint are not binding, changes in government revenue requirement
induce equal per person changes in income, with no change in consumption. This obviously
reflects the zero income elasticity of labour supply, and results in a very simple representa-
tion of the shadow price of public funds under the two objective functions. A consequence
of this is that as government revenue is reduced, eventually some bunching will be induced
at the bottom as the non-negative income constraint becomes binding. Once that happens,

further reductions in the revenue requirement will affect the entire path of consumption.

Fourth, in the absence of bunching, interesting patterns for the tax structure emerge.
Under fairly plausible assumptions about the skill distribution, the pattern of marginal tax
rates takes an inverted U—shape for the utilitarian case. This implies that the tax function
itself is concave at lower skill levels and convex at higher ones. The implication is that
while the tax structure can be progressive at the lower end (average tax rates can be rising
with skills), it will be regressive for higher skill levels. The skill level at which regressivity
sets in depends upon the amount of revenue to be raised, it being lower the greater the
revenue requirement. For the other case of the maxi-min objective function, the results
are even more stark. In this case, the tax function is concave throughout under fairly mild
restrictions on the distribution function. Thus, even in this case of extreme inequality
aversion, the tax can be regressive over a significant range of the skill distribution. These

general qualitative results will continue to hold when there is bunching at the bottom.

28



Zo

S

sl

Figure 1
Bunching at the Bottom
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Figure 2

Bunching in the Interior
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APPENDIX

Proof of Property i): By (13), B(w) = [G(w)/G(w) — F(w)]/[1 — F(w)]. From (9)
and the transversality conditions (5), B(w) > 0 for w € (w,w) and zero at w = w. By
L’Hopital’s rule, B(w) =1 — 1/(wG(w)) > 0. Differentiating B(w):

flw) SR - G@) - Gw)| )T fla)de — w [T L f(x)da]

PO = Gma-Fwy G- Fw) A
which is positive for all w < w.
Proof of Property ii): Differentiate B(w)(1 — F(w)) to obtain:

which is positive for all w < 1/G(w) = w,, negative for all w > w,, and zero for w = w,.

Proof of Property iii): By (13), C(w) = (1 — F(w))/(wf(w)), which is positive for all

w € [w,w) and zero for w = w. Differentiating C'(w):

Clw) = —~ [1 + 1_TFJL(M (1 + u}{fﬂ?)] (A4)

For any unimodal skill distribution up to the modal skill level, f(w) > 0 and (A4) is

negative.
Proof of Property iv): Differentiate C'(w)/(1 — F(w)) = 1/(wf(w)) to obtain:

A/ i) _ 1
o = sy f )+ fw (45)

For any unimodal skill distribution up to the modal skill level, f(w) > 0 and (A5) is

negative.
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