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Abstract

This paper employs response surface regressions based on simulation
experiments to calculate distribution functions for some well-known unit
root and cointegration test statistics. The principal contributions of the
paper are a set of data files that contain estimated response surface coef-
ficients and a computer program for utilizing them. This program, which
is freely available via the Internet, can easily be used to calculate both
asymptotic and finite-sample critical values and P values for any of the
tests. Graphs of some of the tabulated distribution functions are provided.
There is also an empirical example.

JEL Classification Number: C22

Keywords: unit root tests, Dickey-Fuller tests, cointegration tests,
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1. Introduction

Tests of the null hypothesis that a time-series process has a unit root
have been widely used in recent years, as have tests of the null hypothesis
that two or more integrated series are not cointegrated. The most com-
monly used unit root tests are based on the work of Dickey and Fuller
(1979) and Said and Dickey (1984). These are known as Dickey-Fuller
(DF) tests and Augmented Dickey-Fuller (ADF') tests, respectively. These
tests have nonstandard distributions, even asymptotically. The cointegra-
tion tests developed by Engle and Granger (1987) are closely related to DF
and ADF tests, but they have different, nonstandard distributions, which
depend on the number of possibly cointegrated variables.

Although the asymptotic theory of these unit root and cointegration
tests is well developed, it is not at all easy for applied workers to calcu-
late the marginal significance level, or P value, associated with a given
test statistic. Until a few years ago (MacKinnon, 1991), accurate critical
values for cointegration tests were not available at all. In a recent paper
(MacKinnon, 1994), I used simulation methods to estimate the asymptotic
distributions of a large number of unit root and cointegration tests. I then
obtained reasonably simple approximating equations that may be used to
obtain approximate asymptotic P values. In the present paper, I correct
two deficiencies of this earlier work. The first deficiency is that the ap-
proximating equations are considerably less accurate than the underlying
estimated asymptotic distributions. The second deficiency is that, even
though the simulation experiments provided information about the finite-
sample distributions of the test statistics, the approximating equations were
obtained only for the asymptotic case.

The key to overcoming these two deficiencies is to use tables of response
surface coefficients, from which estimated quantiles for any sample size may
be calculated, instead of equations to describe the distributions in question.
In effect, these tables, the construction of which is discussed in Section 4,
provide numerical distribution functions. The tables are sufficiently large
that it would make no sense to print them, but they are not so large that
modern computers should have any trouble dealing with them. A computer
program can easily read them and use them to compute critical values or
P values, either for the asymptotic case or for any reasonable sample size.
Using this program is no harder than using a program to compute the
approximations derived in MacKinnon (1994), and it is significantly easier
than trying to compute the latter by hand.

Both the tables of estimated response surface coeflicients and a com-
puter program called urcdist that uses them are available via the Inter-
net. Interested readers should ftp to qed.econ.queensu.ca and then go to
the directory pub/uroot. This directory contains the fortran source code

-1-



for urcdist, a compiled version of the program for DOS-based personal
computers with at least 4 MB of memory and a numeric coprocessor, and
12 zipped files containing the estimated response surface coefficients. The
urcdist program is run interactively and prompts the user for input. Those
who wish to compute large numbers of critical values or P values should
write their own main programs to call the routines in urcdist.

2. Unit Root and Cointegration Tests

The literature on unit root and cointegration tests is enormous and
growing rapidly. Banerjee, Dolado, Galbraith, and Hendry (1993) is a rea-
sonably accessible reference. In this paper, I deal only with the distributions
of tests that are well known, widely used, and easy to compute. More re-
cently proposed tests, which have different asymptotic distributions, are not
dealt with; see, for example, Pantula, Farias-Gonzales, and Fuller (1994).

A Dickey-Fuller test of the null hypothesis that the series y; has a unit
root may be based on OLS estimates of any of the following regressions:

Ay = (a — 1)ys—1 + ut (1)
Ayt = o+ (. — 1)ys—1 + ue (2)
Ay = Bo + Pt + (@ — 1)ys—1 + ue (3)
Ay: = Bo + Pt + Bot® + (o — V)ys—y + us, (4)

where Ay; = y: — y¢—1, t is a linear time trend, u; is an error term, and «
is a parameter that equals unity under the null hypothesis. The u;’s must
be independent, but neither normality nor homoskedasticity needs to be
assumed. The number of observations actually used in the regressions is T

There are two types of DF tests, one based on ¢ statistics and one based
directly on the estimate of a. I shall refer to these as 7 tests and z tests,
respectively. For the former, the test statistic is the ordinary ¢ statistic for
a — 1 to equal zero, and for the latter it is T'((& — 1). Following MacKinnon
(1994), I shall refer to the 7 statistics based on equations (1) through (4) as
Tney Tey Tet, and Teer, respectively, and to the corresponding z statistics as
Znes Zecy Zcty, and zey. The subscripts stand for “no constant,” “constant,”
“constant and trend,” and “constant, trend, and trend squared.”

Equations (1) through (4) impose successively less restrictive assump-
tions. Equation (1) makes sense for a < 1 only if y; has (population) mean
zero. In contrast, equation (2) allows y; to have a nonzero mean, (3) al-
lows it to have a trend, and (4) allows it to have a trend that changes over
time, under both the null and alternative hypotheses. The most commonly
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encountered tests are based on equations (2) and (3). Ouliaris, Park, and
Phillips (1989) have advocated tests based on (4).

The tests described above require that the u;’s be serially indepen-
dent. When this assumption is unreasonable, as it often is, there are two
asymptotically equivalent approaches. One is to employ “nonparametric”
T or z tests, as proposed by Phillips (1987) and Phillips and Perron (1988).
An easier approach is to use “augmented ” Dickey-Fuller, or ADF, tests, in
which lags of Ay; are added to equations (1) through (4) so as to whiten
the residuals. The 7 statistics, computed as ordinary ¢ statistics, remain
asymptotically valid in the presence of serial correlation when this is done,
provided the number of lags of Ay, is allowed to increase at an appropriate
rate. Asymptotically valid z statistics may be obtained by dividing T times
the coefficient on y;—1 by one minus the sum of the coefficients on the lags
of Ay;. The results of ADF tests can be quite sensitive to the way the
number of lags is chosen; see Ng and Perron (1995).

Engle and Granger (1987) developed tests of the null hypothesis that
two or more integrated time series are not cointegrated. Let Y denote a
T x | matrix of observations on ! time series that are believed to be I(1).
Then if y; denotes one column of Y, Y; denotes the remaining [—1 columns,
and X denotes a matrix of nonstochastic regressors such as a constant and
possibly one or more trend terms, the equation

n=XB+Yim+v (5)

can be estimated by OLS. If all the variables in Y are cointegrated, equation
(5) is a cointegrating equation, and the error vector v should be stationary.
Otherwise, ¥ must have a unit root. Thus the null hypothesis of noncoin-
tegration may be tested by using a DF or ADF test on the residuals from
OLS estimation of (5). For the ADF case, the test regression is

J
Aty = (a— 1Dy + Z'yjAﬁt_j + residual, (6)
i=1
where 7 denotes the ¢*® residual from OLS estimation of equation (5), and
ADy_j = Dy_j — Uy_j_1. An alternative to including the Ad;_;’s is to use
“nonparametric” T and z tests, as proposed by Phillips and Ouliaris (1990).

The asymptotic distributions of these tests depend on k, which is equal
to one more than the number of elements of 7; that have to be estimated,
so that £ = [ when all elements of 7; are unknown. They also depend
on the form of the matrix X, which may be empty or may consist of a
constant, a constant and a linear trend, or a constant, a linear trend, and
a quadratic trend, by analogy with (1) through (4). Unless k£ = 1, these
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asymptotic distributions are not the same as those of the DF and ADF
tests. In MacKinnon (1991, 1994), I only considered k£ = 1,...,6, but in
this paper I obtain results for k =1,...,12.

The techniques of this paper could be applied to other types of co-
integration tests, such as the VAR-based ones of Johansen (1991) and the
ECM tests discussed by Kremers, Ericsson, and Dolado (1992). In related
work, which is joint with Neil Ericsson and is still in progress, I have in fact
applied these techniques to ECM tests.

3. The Simulation Experiments

The simulation experiments which are at the heart of this paper are
similar to, but considerably more extensive than, those used in my earlier
papers. Each experiment involves 200,000 replications. For the unit root
tests, there are 100 experiments for each of 14 sample sizes, and for the
cointegration tests, there are 50 experiments for each of up to 14 sample
sizes. How the sample sizes were chosen will be discussed in the next section.
The number of experiments is the same as in MacKinnon (1994). However,
in order to obtain estimates that are reasonably accurate even in the tails
of the distributions, the number of replications per experiment is four times
as large.

There were several reasons for doing 50 or 100 experiments for each
set of test statistics instead of a single experiment with 10 million or 20
million replications. First, the finite size of computer memories means that
it would have been quite difficult to handle that many replications at once.
Secondly, the observed variation among the 50 or 100 experiments provides
an easy way to measure experimental randomness. Finally, it was some-
times convenient to be able to interrupt the computer programs without
losing results for experiments that had already been completed. The exper-
iments were performed on several different IBM RS /6000 workstations over
a period of several months. Because some of the workstations were faster
than others, it is difficult to estimate total CPU time. A rough estimate
is 1360 hours on the fastest of the machines used (a Model 3AT), or 3130
hours on the slowest (a Model 355).

Because so many random numbers were used, it was vital to use a
pseudo-random number generator with a very long period. The generator
I used was also used in MacKinnon (1994). It combines two different uni-
form pseudo-random number generators recommended by L’Ecuyer (1988).
The two generators were started with different seeds and allowed to run
independently, so that two independent uniform pseudo-random numbers
were generated at once. The procedure of Marsaglia and Bray (1964) was
then used to transform them into two N(0,1) variates.
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It would have been totally impractical to store all the simulated test
statistics. Therefore, for each experiment, 221 quantiles were estimated
and stored. These quantiles were: .0001, .0002, .0005, .001, ..., .010,
.015, ..., .985, .990, .991, ..., .999, .9995, .9998, .9999. The 221 quantiles
provide more than enough information about the shapes of the cumulative
distribution functions of the various test statistics. Storing these estimated
quantiles for each set of 50 (or 100) experiments required about 11 (or 22)
megabytes of disk space.

4. Response Surface Estimation

The estimated finite-sample quantiles from the simulation experiments
were used to estimate response surfaces in which the quantiles of the asymp-
totic distributions of the various test statistics appear as parameters. Con-
sider the estimation of the p quantile for some test statistic. Let ¢P(T;)
denote the estimate of that quantile based on the i*® experiment, for which
the sample size is T;. Then the response surface regressions have the form

(7) qP(T;) = 02, + OPT; Y + 0PT2 + 0PT % + ¢;.

The first parameter here, 6%, is the p quantile of the asymptotic distribu-
tion, which is what we are trying to estimate. The other three parameters
allow the finite-sample distributions to differ from the asymptotic ones. In
MacKinnon (1991, 1994), equation (7) with 87 = 0 was employed, and it
was generally found to work well. However, it does not always work suffi-
ciently well when the experiments involve very small sample sizes, especially
when the number of possibly cointegrated variables is large. That is why,
in this paper, 6} = 0 is not always set to zero.

In MacKinnon (1994), the smallest sample size used in the experiments
was T = 50, and the choice of sample sizes was rather arbitrary. Since the
functional form of the response surface regressions is known to be (7), it
is possible to choose sample sizes somewhat more scientifically. If we write
(7) as

P =Z0+ec=0%+2Z2"0" +¢, (8)

it is easy to derive the standard error of the OLS estimate of 62 . This
standard error will be proportional to (¢! M*t)~'/2 where ¢ is a vector of
ones and M* =1— Z*(Z¥Z*)"1Z*.

For any possible set of m T;’s, it is easy to evaluate the standard error
of 62, and the computation cost of performing that set of experiments. As
a rough approximation, it appears that the computation cost for a sample
of size T is proportional to T + 16. Thus what we wish to minimize is



the product of the square of the standard error and the computation cost,
which is proportional to

(M)~ (g;(T,- - 16)). (9)

This expression was evaluated for 50,000 sets of randomly chosen T;’s, and
several interesting results emerged. First of all, it is extremely desirable for
there to be some small values of T;. The smaller the smallest value of T;,
the more trouble Z* has explaining a constant term, and thus the larger
is ¢'M*¢. Of course, if some of the values of T; are too small, equation
(7) may not fit satisfactorily. Secondly, it is also desirable for there to be
some values of T; that are reasonably large, although it does not appear to
be cost-effective to use values as large as 1000. Finally, it does not appear
to be cost-effective to use certain intermediate values of T, such as ones
between 50 and 80 or ones between 100 and 400.

Based on these results, I used the following 14 different values of T; in
the simulations: 20, 25, 30, 35, 40, 45, 50, 80, 90, 100, 400, 500, 600, 700.
For cointegration tests with larger values of k, it was generally necessary to
omit some of the smaller values of T; in order to obtain response surfaces
that fit acceptably well. Indeed, it was because of this phenomenon that
the values 45 and 50 were included. This set of sample sizes worked much
better than the set used in MacKinnon (1994). Expression (9) was reduced
by up to 54%, depending on whether 62 in (7) was set to zero and how
many of the smallest sample sizes had to be dropped.

Equation (7) was estimated 221 times for each of 96 different test
statistics. There were up to 1400 observations for each of the unit root
tests and up to 700 for each of the cointegration tests. In MacKinnon
(1994), I used the GMM estimator of Cragg (1983) to allow for the fact
that the error terms of (7) are heteroskedastic. Suppose that §2 denotes
the covariance matrix of the error vector € in equation (8). Since all the
experiments are independent, §2 is certainly a diagonal matrix, but it is
not the identity matrix. The Cragg estimator can be written as

0= (ZWW' QW) 'W'Z) ' ZWW'QW)'W'g?.  (10)

Here W is a matrix of up to 14 zero-one dummy variables, the first equal
to 1 when T} = 20, the second equal to 1 when T; = 25, and so on, and §2
is a diagonal matrix, the principal diagonal of which consists of the squared
residuals from an OLS regression of g? on W. The estimator (10) can
easily be computed by a weighted least squares regression with as many
observations as there are distinct values of T;; see MacKinnon (1994) for
details.
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The problem with this approach is that it ignores some valuable in-
formation about £2. The variances of the error terms in (7) are not ho-
moskedastic only because they vary systematically with T'. A more efficient
estimate of §2 may be obtained by regressing the diagonal elements of §2
on a constant and either powers of 1/T or powers of 1/(T — p), where p
is the number of parameters estimated in the course of computing the test
statistic under analysis. In practice, using 1/T and its square generally
worked well for the z tests, and using 1/(T — p) and its square generally
worked well for the 7 tests. The fitted values from one of these auxiliary
regressions are then used as the diagonal elements of 2, which replaces §2
in the GMM estimator (10) above.

This GMM estimation procedure automatically generates a statistic for
testing the specification of the response surface equation (7). This GMM
test statistic, which is the minimized value of the objective function, is the
quadratic form

(¢° — 26)'W (W'QW) "' W'(¢q? — Z9). (11)

Standard results about GMM estimation imply that, under the null hypo-
thesis that (7) is a correct specification, (11) is asymptotically distributed
as x%(r), where r is equal to the number of distinct 7;’s (which may be 14
or less) minus the number of parameters in (7).

The GMM test statistic (11) played a key role in the specification of
the response surfaces. In order to avoid discontinuities caused by changes
in functional form, the same response surface regression was estimated for
every one of the 221 quantiles for a given distribution. The average value
of the 221 test statistics was used to choose whether to set 6 = 0 in (7)
and to determine how many small values of T; to drop. The objective was
to obtain efficient estimates of 62 . It was therefore desirable to set 6F = 0,
if possible, and to throw out as few small T;’s as possible.

On average, for a correctly specified response surface, reducing by one
the number of distinct T;’s, or dropping the constraint that 65 = 0 in (7),
would be expected to reduce the value of (11) by 1.0, because the mean
of a random variable with a x2(r) distribution is 7. In most cases, I chose
to reject a model when such a change reduced the value of (11) by more
than 1.5, an amount that is, admittedly, somewhat arbitrary. For example,
for the 7.(2) test, estimating model (7) with 67 = 0 using all 14 sample
sizes yielded an average GMM test statistic of 8.80. Dropping the data for
T; = 20 reduced this to 8.18, and estimating the full model using all the
observations reduced it to 7.94. Since both these reductions in the GMM
test statistic are well under 1.5, the preferred model has 5 = 0 and is
estimated using all the data.



There were some very clear patterns in the response surface estimates.
More values of T; had to be dropped, and/or the restriction that 67 = 0
relaxed, as either k or the number of nonstochastic regressors was increased.
Also, it was generally easier to obtain response surfaces that fit well for
the 7 tests than it was for the z tests. I sometimes used these empirical
regularities to help decide which response surface regression and how many
T;’s to use, by taking results for nearby tests into account.

All of the response surface estimates appear to be remarkably pre-
cise. At one extreme, for example, the .05 asymptotic critical value for the
7¢(1) test is estimated to be 2.8614 with a standard error of 0.000226. The
response surface regression in this case has ) = 0 and uses all 1400 obser-
vations. At the other extreme, the .05 critical value for the z;::(11) test is
estimated to be —79.052 with a standard error of 0.0113. The response sur-
face regression in this case is unrestricted and uses only 450 observations;
this was one of just two cases in which observations for 7; = 40 had to be
dropped. Of course, because the standard errors for égo reported by the
GMM estimation procedure are based on the assumption that the response
surfaces are specified correctly, they are probably somewhat too small.

5. Numerical Distributions

The principal results of this paper are 21,216 (= 221 x 8 x 12) sets of
response surface regression coefficients. In the next section, I discuss how
these may be used to obtain approximate P values or critical values. But
first, it seems worthwhile to see what the distributions obtained in this way
actually look like.

Figures 1 through 3 graph the asymptotic distribution functions of the
Tne(k), Te(k), Tet(k), and 7cee(k) tests for k = 1,...,12. Each plotted curve
simply joins the 221 estimated quantiles for a given test statistic, without
any smoothing. One striking feature of these figures is the regular and
predictable way in which all the curves move to the left as k increases. It
seems plausible that we could estimate the asymptotic distributions of 7
tests quite accurately for ¥ = 13, k¥ = 14, and probably even for larger
values of k, without doing any more simulation experiments.

Another striking result is evident in Figure 3, where the distributions
of the 7. tests are plotted as solid lines and those of the 7.4 tests are plotted
as dotted lines. This was not done simply to save space. From the figure, it
is evident that, for large values of k¥ but not for small ones, the distribution
of 7ci(k) is extremely similar to the distribution of 7.¢(k — 1). This also
holds for the distributions of 7.(k) and 7c¢(k—1) and for those of 7,.(k) and
Tc(k—1). It seems plausible to speculate that, as ¥ — oo, the effect of adding



the next higher level of constant or trend term becomes identical to the
effect of adding an additional I(1) variable in the cointegrating regression.

Figures 4 through 6 graph the asymptotic distribution functions of the
Znc(k), zc(k), zce(k), and zqee(k) tests for k = 1,...,12. These distributions
are much less symmetric than those of the 7 tests, but in other respects
they are similar. Once again, there is a steady and predictable movement
to the left as k increases. Also, as k becomes large, the distribution of
zc¢(k) becomes extremely similar to the distribution of z¢¢(k — 1).

The response surface regressions allow us to graph finite-sample dis-
tributions as well as asymptotic ones. Of course, the former depend on the
details of how the test statistic is computed and on the strong assumption
of i.i.d. normal errors, and they may not be accurate for values of T' much
smaller than the smallest value used in estimating the response surface.
The finite-sample distributions differ most strikingly from the asymptotic
ones in the left-hand tails. For the 7 tests, these differences are quite mod-
est for £k = 1, but they increase sharply as k increases. This is illustrated
in Figure 7, which shows the left-hand tails of the distributions of 7¢(1)
and 7.¢(12) for various sample sizes. For the z tests, on the other hand,
the differences between finite-sample and asymptotic distributions can be
substantial even for £ = 1. This is illustrated in Figure 8, which shows the
left-hand tails of the distributions of z,:(1) for various sample sizes.

6. Local Approximations

The response surface coefficient estimates obtained in Section 4 may be
used to obtain approximate P values and approximate critical values for 96
sets of asymptotic and finite-sample distributions. In the asymptotic case,
the distribution is approximated by the 221 estimated égo’s from equation
(7). In the finite-sample case, which necessarily requires much stronger
assumptions, it is approximated by the fitted values from 221 estimations
of one of these equations for a given sample size T'.

In order to obtain a P value for any test statistic or a critical value
for any desired test size, some procedure for interpolating between the 221
tabulated values is needed. Many such procedures could be devised, but
the one I used has some theoretical appeal and seems to work well. First,
consider the regression

&7 (p) = 70 + 14(p) + 124" (P) + 734° (P) + €5, (12)
where ®71(p) is the inverse of the cumulative standard normal distribution

function, evaluated at p. Notice that, if the distribution from which the
estimated quantiles were obtained were in fact normal with any mean and
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variance, regression (12) would be correctly specified with v2 = 43 = 0.
Since that is not the case here, this regression can only be valid as an
approximation.

The observations over which equation (12) is estimated are indexed
by p because that is the most natural way to index them. The idea is to
estimate it using only a small number of points in the neighborhood of
the test statistic that is of interest. For example, suppose the distribution
of interest were the asymptotic distribution of 7.¢(1) and the actual value
of the test statistic were —3.29. The estimated quantile closest to this is
¢(.07) = —3.2773. Then if 9 points are to be used, (12) would be estimated
using the data for p = .050, .055, .060, .065, .070, .075, .080, .085, and .090.

It may seem a bit odd that the regressors in (12) are stochastic and
the regressand is not. However, because the estimated quantiles are very
accurate, the errors in variables bias that this induces is trivially small.
This point is discussed in MacKinnon (1994), in which regression (12) was
used to obtain approximate asymptotic distribution functions for some of
the tests dealt with in this paper.

If we are interested in obtaining approximate critical values, equation
(12) has to be turned around. Consider the regression

dp =60+ 697 (p) + 62(27 ()" + &:(@7(p))’ + €5 (13)

This is not actually the inverse of equation (12). However, if the distribution
from which the estimated quantiles were obtained were in fact normal with
any mean and variance, equation (13) would be correctly specified with
82 = 63 = 0. In that case, equation (12) would have vy, = 3 = 0, and (13)
would be the inverse of (12). It is worth noting that, in both equations (12)
and (13), using ®~(p) worked very much better than using p directly.

Regressions (12) and (13) could be estimated by OLS, but this would
ignore both heteroskedasticity and serial correlation. In MacKinnon (1994),
the former was taken into account, but the latter was ignored. Actually, it
is quite easy to take account of both. It is well known (see, for example,
Appendix 2 of Cox and Hinkley (1967)) that, asymptotically, the covariance
between two quantiles §; = ¢(p;) and §; = §(p;), estimated by maximum
likelihood from the same sample of size N, is

.. pi(1 —p;)

Cov(gi, §;) = (14)
VYT N (a(pi)) fa(pi)

where p; > pi, f(gi) denotes the density of the underlying random vari-

able evaluated at g(p;), and “=” denotes asymptotic equality. Because the

densities of the test statistics we are interested in are not known, equation
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(14) is not directly applicable, but it implies that the correlation between

g; and g; is
1/2
~ ava (pi(l _Pj))
4i,q4;) = ————=] . 15
plan ) = (H =2 (15)
In addition, we have direct estimates of the standard errors of the 82.’s
from the estimation of (7). Using the fact that

Cov(di, 4;) = p(di, d;) (Var(d:)Var(g;))"/%,

these may be combined with correlations estimated using (15) to yield an
estimated covariance matrix, and regressions (12) and (13) may then be
estimated by feasible GLS.

As discussed above, equations (12) and (13) are to be fitted only to a
small number of points near the specified test statistic or test size. Exper-
imentation suggests that 9 points is a good number to use. Also, in many
cases, it is possible to set 43 or §3 equal to zero on the basis of a t test.
These conclusions were obtained by estimating equations (12) and (13) for
221 estimated quantiles generated from simulations of the x%(3) and x2(10)
distributions. These estimated quantiles were approximately as accurate as
the ones from the response surfaces estimated in Section 4.

The approximate P values and critical values which emerge from equa-
tions (12) and (13) seem to be just about as accurate as the estimated
quantiles on which they are based. This conclusion is based on evaluating
9801 evenly spaced points between 0.01 and 0.99 for the two sets of sim-
ulated data and comparing the resulting errors with those in the original
estimated quantiles. Thus I am very confident that equations (12) and (13)
provide a reliable way to obtain approximate P values and critical values.
The program urcdist uses these equations for this purpose.

Equation (12) can be used to compute approximate densities as well as
approximate P values. In order to calculate the P value for some observed
test statistic, say 7., we simply estimate equation (12) using only values of
4(p) near 7, and then compute

P* = ®(F0 + %17« + F27i + F37L). (16)

Notice that P* is the value of the cumulative distribution function evaluated
at 74. Therefore, the approximate density at 7, is simply the first derivative
of (16):

F(r) 2 (Fo + 7 + F27i +F37) (51 + 2927 4+ 39375). (1)

By using equations (12) and (17) along with the estimated response surface
coeflicients of Section 4, it is possible to plot the asymptotic or finite-sample
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densities of any of the 96 test statistics studied in this paper. For example,
Figure 9 plots the asymptotic density of the 7.(1) test and its density for
T = 20, and Figure 10 plots the corresponding densities for the z,(1) test.
Note that, in order to obtain the 4;’s needed for these plots, 15 points were
used when estimating equation (12), and 3 was never set to zero. This
resulted in somewhat smoother-looking densities than using only 9 points,
as the urcdist program does.

7. An Empirical Example

To illustrate the use of the urcdist program, I calculated a number
of unit root tests and used the program to compute the corresponding
P values. The series being tested for a unit root is the Canadian 91-
day Treasury Bill rate (CANSIM Number B14001). The original data are
monthly, but I also aggregated them to quarterly and annual frequencies.
The sample period was 1957 to 1993. When lags of Ay; were added to
whiten the residuals, pre-sample observations were used, so that the number
of lags did not affect the sample size. For each test statistic, two variants
are reported. The first of these uses the smallest number of lagged Ay,’s
that appear to be consistent with the data, based on t tests at the 5% level,
while the second uses one more lag of Ay;. When computing finite-sample
P values for test regressions which included lags of Ay;, I used n minus the
number of lags rather than n as the sample size.

Table 1. Unit Root Test Results: Annual Data

Statistic Used Value Asymptotic P Finite-sample P
e (no lags) —-1.775 0.3934 0.3866
e (1 lag) —2.000 0.2871 0.2856
z¢ (no lags) —6.339 0.3214 0.2940
zc (1 lag) —7.842 0.2264 0.1970
Tet (no lags) —1.770 0.7195 0.6988
et (1 lag) —-2.177 0.5019 0.4874
zct (no lags) —9.143 0.4970 0.4453
zct (1 lag) —-17.135 0.1239 0.0732
Tett (no lags) —-2.214 0.7226 0.6954
Tett (1 lag) —2.550 0.5401 0.5204
zctt (no lags) —11.410 0.6242 0.5557
zett (1 lag) —19.510 0.2146 0.1226
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Table 2. Unit Root Test Results: Monthly Data

Statistic Used Value Asymptotic P Finite-sample P
e (1 lag) —2.408 0.1395 0.1401
e (2 lags) —-2.213 0.2017 0.2020
zc (1 lag) —11.702 0.0896 0.0876
zc (2 lags) —9.976 0.1360 0.1338
et (1 lag) —2.617 0.2726 0.2729
et (2 lags) —2.310 0.4279 0.4271
zct (1 lag) —17.484 0.1158 0.1116
zct (2 lags) —14.513 0.2027 0.1977
ett (1 lag) —3.198 0.2099 0.2111

Tett (2 lags) —2.896 0.3479 0.3479
zctt (1 lag) —22.532 0.1321 0.1253
zctt (2 lags) —19.230 0.2240 0.2161

Table 1 reports results for the annual data, and Table 2 reports results
for the monthly data. Results for the quarterly data were very similar
to those for the monthly data, and they are therefore not reported. The
annual and monthly results are also quite similar, as might be expected
from the analyses of Shiller and Perron (1985) and Pierse and Snell (1995).
Because it is not entirely clear how many trends should be included in the
regression, three sets of results are reported. These results are all broadly
consistent with each other. The P values do vary a certain amount, but
the null hypothesis is never rejected at the 5% level. Interestingly, the P
values are almost always lower for the z tests than they are for the 7 tests
based on the same regressions.

The differences between asymptotic and finite-sample P values are al-
ways quite small for the 7 tests (recall Figure 7), but they are sometimes
quite large for the z tests (recall Figure 8). The exceptionally small dif-
ferences between asymptotic and finite-sample P values for the 7. tests on
annual data are actually a bit misleading. For these tests, the asymptotic
and finite-sample distributions happen to cross at values of the test stat-
istic quite close to those observed here. Of course, except for the annual
results with no lagged Ay,’s, the finite-sample P values are not really valid,
because the actual distributions would depend on the number of lags and
the data generating process.
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8. Conclusion

In this paper, I have computed response surface coefficients which pro-
vide excellent approximations to the asymptotic and finite-sample distri-
butions of 8 varieties of Dickey-Fuller unit root and cointegration tests for
up to 12 possibly cointegrated variables. Although the approach of the pa-
per is fundamentally similar to that of MacKinnon (1991, 1994), the paper
does contain some innovations. The principal innovation is that the results
consist chiefly of tables of estimated coefficients, which are available via the
Internet, and a computer program that uses these to calculate critical val-
ues and P values. Another innovation is the use of feasible GLS to estimate
approximating regressions so as to obtain approximate critical values, ap-
proximate P values, and even approximate densities, using a finite number
of estimated quantiles from the response surfaces.
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Figure 1. Asymptotic distributions of ™. tests
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Figure 2. Asymptotic distributions of 7. tests
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Figure 6. Asymptotic distributions of z.; and z.4; tests
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