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1. Introduction

The effects of seasonal adjustment filters on linear regression models have

been analysed by Wallis (1974). He shows that as long as all the variables in a

regression are adjusted with the same filter, the underlying relation among them is not

altered, although the error term is no longer white noise but a high-order moving

average process; nonetheless conducting inference may be problematic. If, on the

other hand, the variables are adjusted using different filters, or if some of the

explanatory variables are left unadjusted, then the estimated relationship among the

variables will differ from the true relationship.

In the context of nonstationary series, Ghysels (1990) conducts a Monte Carlo

investigation to assess the effects of the Henderson moving average filter and the

linear approximation of the X-11 filter, in both their quarterly and monthly versions,

on the power of the augmented Dickey and Fuller (ADF) and Phillips and Perron (PP)

unit root tests. His main result is that these filters substantially reduce the power of the

tests; additionally, he also reports that while the null hypothesis for the presence of a

unit root in the series of post-war seasonally adjusted quarterly U.S. GNP is strongly

accepted, the evidence is "far less conclusive" when seasonally unadjusted data is

used. Ghysels and Perron (1993) explore, in more detail, the effects of seasonal

adjustment filters from both analytical and simulation perspectives. They find that

both the ADF and PP unit root tests exhibit a considerable reduction in power

compared to the benchmark cases where the data is seasonally unadjusted.

Within the cointegration framework, Ericsson, Hendry and Tran (1994) and

Hendry (1995, ch. 15) show that for a given 1(d) variable yt with d5_2, if the weights of

a seasonal adjustment linear filter sum to unity, then the unadjusted and adjusted
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series cointegrate with cointegrating vector [1, -1]. They further show that if the filter

satisfies the assumptions that it is symmetric and eliminates deterministic seasonals,

then the number of cointegrating vectors and the cointegrating vectors themselves are

invariant to the type of data; in the short run, however, the use of seasonally adjusted

observations may not only distort the dynamics of the system but also whether or not a

set of variables can be regarded as weakly exogenous.

Taking the above aspects into consideration, the purpose of this paper is to

assess, via Monte Carlo simulations, the effects of some seasonal adjustment linear

filters on static cointegrating regressions. The idea is then to examine whether the

filters reduce the power of cointegration tests. The outline of the paper is as follows.

In section 2 we first describe the way the Monte Carlo simulations were designed and

then we report the main results. In section 3 we re-examine the results of the money

demand modelling exercise performed by Carrasquilla and Galindo (1994); we find

that when one attempts to model the variables' seasonal pattern using simple methods,

instead of removing it by filtering the data, the null hypothesis of non-cointegration is

no longer accepted. In section 4 we present some concluding remarks.

2. The Effects of Seasonal Adjustment Filters on Cointegrating Equations

2.1 Design of the Monte Carlo Simulations

As we indicated previously, we examine the effects of seasonal adjustment

linear filters on static cointegrating regressions via Monte Carlo simulations. In

particular, let us consider a data-generation process (DGP) defined by the following

set of equations:

xt = xt_i + ut • [1]
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Yt = xt vt [2]

where ut and vt are initially assumed to be white noise.

As can be observed, equations [1] and [2] indicate that xt and y, follow a

random walk, and that both series cointegrate with cointegrating vector [1, -1]. Put

another way, the null hypothesis of a unit root in the error term v, is rejected. The

question is then, to what extent this null hypothesis is rejected when both xt and y, are

subjected to a seasonal adjustment linear filter, or when only y, is filtered? Ghysels

and Perron (1993) argue that "...studying the effect of seasonal adjustment filtering

procedures on series that have no seasonal components also has its advantages.

Indeed, in this context, the issue concerning whether the seasonal part has been

removed adequately does not occur. Hence, it permits a more specific investigation of

the properties of the filters and their effects on the correlation structure of the data" (p.

63).

For the purpose of the Monte Carlo experiment, we generated 1,000

replications of the series {yt} and Oct} of length n = 64 as defined by equations [1] and

[2], with the initial condition that x1=0; the sample size was selected in order to match

that of the empirical application. The innovation term ut is assumed to be — i.i.d

N(0,1), whereas v, is assumed to be — i.i.d N(0,10). In a further set of experiments, v,

is given by the following seasonal autoregressive seasonal moving average SARSMA

(0,1,1,0) process:

v, = 0.6vt_i Et + 0.25Et-4 [3]

where Et i.i.d N(0,6), this is the form of the error term in the empirical application.

Within this framework, we analyse four linear filters:



• A moving average of fourth order which can be written as B(L)=(0.25 + 0.25L

+ 0.25L2+ 0.25L3), where L denotes the lag operator.

• A filter that satisfies the three assumptions in Ericsson, Hendry and Tran

(1994) which we referred to as the "simple filter", and is given by the

following polynomial in the lag operator: B(L)=025+ 0.125!L , for j#0.
.1=-3

• The linear approximation of the quarterly version of the X-11 filter, as given

by Laroque (1977, Table 1); see also Ghysels and Perron (1993, Table A.2).

• The quarterly version of the Henderson moving average filter, as given by

Ghysels and Perron (1993, Equation 2.7). This filter is actually a sub-filter of

the X-11 filter, and provides an estimate of the trend component of a series.

Before describing the results, it is worth mentioning the following aspects.

Firstly, we refer to the case where the linear filter is applied on both sides of the

cointegrating equation as 2-sided, whereas the 1-sided case corresponds to that where

the filter is only applied to the dependent variable. Secondly, in order to obtain the

sample size of 64 for the filtered series, it was necessary to generate additional data

points before and after the actual sample; this is also important for reducing the

impact of the initial condition. Consequently, both the unadjusted and adjusted

versions of the series begin with the 101st observation'.

2.2 Description of the Results 

To begin with, we look at the effects of the seasonal adjustment filters on the

cointegrating equation, by examining the t-ratio on the cointegrating parameter being

equal to 1. Given that the filters introduce serial correlation in the error term of the

'All the simulations were performed using the econometrics software package RATS version 4.20; the

routines are available on request.



cointegrating equation, we also use the fully modified estimation method (FM-OLS)

of Phillips and Hansen (1990) and Hansen and Phillips (1990).2

Figure 1 plots the distributions of the t-ratio for OLS and FM-OLS on the

filtered series, denoted OLSAdj and FM-OLS, respectively, as well as the distribution

of the t-ratio on the unfiltered series, denoted OLS, which is close to that of a standard

normal distribution. Table 1 reports summary statistics on the OLSAdj and FM-OLS

t-ratios. In the 2-sided case the distributions of the OLS t-ratio are centred around

zero, whereas in the 1-sided case the distributions are negatively biased for MA[4] and

simple filters and, to a lesser extent, for the Henderson filter. The X-11 filter does not

appear to seriously distort the distribution. The FM-OLS improves the distribution of

the t-ratios for the MA[4] and simple filters, both partially correcting the bias and

reducing the variance. Furthermore it does not appear to have a substantial effect in

the case of the Henderson filter, although it actually produces a less normally

distributed distribution for the X-11 filter, presumably because the number of lagged

terms used in calculating the FM-OLS estimators, that is, 7, is excessive.

To examine the effects of the various filters on the power of cointegrating

tests, we calculate the number of times the ADF and PP unit root tests correctly reject,

at a 5% significance level, the null hypothesis of a unit root in the residuals of the

cointegrating equation3. Both the ADF and PP tests are calculated for up to p=10 lags.

For the ADF test, the optimal number of lags included in the test regression is chosen

2The number of covariances used in FM-OLS was set equal to 7. As it is known, this procedure relies
on the fact that although OLS produces "superconsistent" estimates of the cointegrating parameters, in
finite samples they may be severely biased, either because the static regression omits the short run
dynamics, or because some of the series may be jointly determined. Thus, Phillips and Hansen's
estimator aims to correct the bias originated from these two sources (see also Banerjee, et. al., 1993
ch.7; Davidson and MacKinnon, 1993 ch. 20).
3See Fuller (1976) and Dickey and Fuller (1979, 1981) for the ADF test and Phillips (1987) and
Phillips and Perron (1988) for the PP test
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in two alternative ways; (i) estimating the test regression for a given maximum lag

length, say p, and testing whether the last coefficient of the augmented part is

statistically different from zero; if this coefficient is not significant, then the order of

the autoregression is reduced by one until the last coefficient is significant (this

procedure is suggested by Campbell and Perron (1991), and will be referred to as the

significance of the last coefficient (SLC); (ii) using the model selection procedure

based on the minimisation of the Akaike information criterion (AIC).

Table 2 reports the power of the ADF and PP tests for cointegration for 1-

sided and 2-sided filters, for all lags, p = 1 ,..., 10, as well as the proportion of times

each of the ADF tests is selected according to the SLC and AIC criteria described

above.4 For the ADF test, in five out of eight cases both the SLC and AIC yield the

same number of optimal lags to include in the test regression; when they do not

coincide, the latter procedure is more parsimonious.5 When the MA[4] and simple

filters are applied to both the dependent and explanatory variables there is a low

probability of finding a cointegrating relationship, at 8.2% and 11.2% for the MA[4]

and simple filter, respectively, at their optimal lag length. When these filters are

applied to just the dependent variable there is an increase in power. For the Henderson

and X11 filters there is a loss in power for p>3, although only for SLC for the X-11

filter (1-sided and 2-sided) is a value of p>3 actually selected. The power of the PP

test is high and robust to changes in p for both the X-11 and Henderson filters; this is

expected as the PP test is able to model the MA error structure more precisely.6 For

4When the variables are not filtered, results not reported here indicate that the power of the DF and the
PP tests is 100%.
5 For p < 4 an LM(4) test for serially correlated errors rejects the null hypothesis of no serial
correlation, a fact which yield size distortions in the ADF test.
6 This is a highly idealistic scenario where the residuals of the cointegrating regression are white noise.
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the MA[4] and simple filters the power of the test is highly dependent on p, although,

in general, power does not fall by as much as the results ADF for p>3.7

Turning to the more realistic scenario that the residuals of the cointegrating

regression are not white noise but, for example, a SARSMA (0,1,1,0) process. The

distributions of the t-ratio that the cointegrating parameter is equal to 1 are plotted in

Figure 2; this time we include the density function of a standard normal random

variable to facilitate comparison. Table 1 reports summary statistics on these

distributions. Again there is only a bias in the mean of the distribution when the filter

is applied to the dependent variable. All distributions are markedly fatter than the

standard normal distribution. For the Henderson and X-11 filters all distributions are

reasonably similar, although perhaps that of FM-OLS is closer to normality. For the

MA[4] and simple filters, OLS on the adjusted series yields serious distortions,

although the use of FM-OLS partially corrects these distortions.

With reference to the power of the tests for cointegration, results not reported

here indicate that both the ADF and the PP tests exhibit reasonable power when none

of the variables have been filtered, for small p. In particular, for a DF test the

probability of correctly rejecting the null hypothesis of noncointegration is 86.2%, and

the probability of rejecting a LM[4] test for residual serial correlation is slightly

greater than the nominal size of 5%; in the case of the PP test, the power is always

above 85% and the statistic does not appear to be sensitive to the number of

autocovariances considered when constructing it.

7 In practice the use of the X-11 filter is very limited because its long tails lead to the lost of 22
observations at every end of the sample period.The lost of observations can be overcome by using the
actual X-11 filter instead of its linear approximation. In the context of univariate unit root tests, Ghysels
and Perron (1993) find that "...filtering with the actual X-11 filter reduces the power of the ADF test
more than the linear X-Il filter does" (p.86). It might be therefore interesting to assess the power of the
tests for cointegration when the series are filtered with the actual X-11 filter and not with its linear
approximation.
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The results presented in Table 3 indicate that when the filters are applied to

both sides of the cointegrating equation, or only on the left hand side, the power

performance of the ADF and PP tests for the existence of a unit root is very low; for

example, the MA[4] and simple filters at best correctly find cointegration on 18.5%

and 14.3% of occasions when both the dependent variable and the explanatory

variable are filtered.8 The power of the ADF test is markedly lower than that observed

in Table 2 for both the X-11 and Henderson filters. The power of the PP test is

extremely low when the MA[4] and simple filters are used and is also much worse

than those observed in Table 2 for the X-11 and Henderson filters.

The basic conclusion of the Monte Carlo simulations is that the use of linear

filters for seasonal adjustment in cointegrating equations has adverse consequences in

terms of the power of the ADF and PP tests for cointegration. In this sense, our results

suggest that the findings of Ghysels (1990) and Ghysels and Perron (1993), in the

context of univariate unit root tests, are also applicable for the residuals of static

cointegrating equations. Thus, considerable care must be exercised when using linear

filters for seasonal adjustment, as one may wrongly conclude that a static regression

between nonstationary series is spurious.

3. Empirical Application: A Money Demand Modelling Exercise 

In this section we look at the effects of linear filters for seasonal adjustment in

cointegrating equations, by re-examining the results of the money demand modelling

exercise performed by Carrasquilla and Galindo (1994). It is important to highlight

that it is our interest to assess if the results of their cointegration analysis change when

8 Again for p<4 there exists substantial serial correlation problems and hence the size of the tests will be
severely distorted.
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one attempts to model the variables' seasonal pattern using simple methods, instead of

removing it by filtering the data.

Carrasquilla and Galindo estimate a long-run money demand equation of the

form:

= f (y, R) [4]

where md is money in nominal terms, p is an appropriate price level, y is a measure of

the volume of real transactions9, and R is a vector of interest rates on the alternatives

of money. The f function is expected to be increasing in y as well as decreasing in the

elements of R; however, if some of the components of the monetary aggregate bear

interest, their interest rate should also be present in R and the f function should be

increasing in these elements.

For their analysis, Carrasquilla and Galindo utilise quarterly information for

the sample period 1978:1-1993:41°. The monetary aggregate corresponds to the

traditional definition of M 1, that is currency plus demand deposits, which is then

deflated by the consumer price index to produce real money balances; the scale

variable corresponds to the GDP series constructed by the Departamento Nacional de

Planeacion11; and the proxy for the opportunity cost of holding money is constructed

by combining two different interest rate series: from 1978:1 to 1980:1 the yield of

190-day CAT (certificados de abono tributario) certificates, and from 1980:2 to

9The variables commonly used as proxies are real GNP (see e.g. Goldfeld and Sichel, 1990; and Hendry
and Ericsson, 1991), real total final expenditure (see e.g. Hendry and Ericsson, 1991 and Hendry, 1995
ch. 16), and real consumer expenditure (see e.g. Mankiw and Summers, 1986).
IGWe thank Arturo Galindo for having provided the data set used in the aforementioned paper. It is
worth indicating that our results do not exactly coincide with theirs because the series of M1 and GDP
were updated. Nonetheless, our results are qualitatively the same.
"See Cubillos and Valderrama (1993) for a presentation of the methodology as well as of the results for
the period 1980-1992.
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1993:4 the yield of 90-day CDT (certificado de deposit° a termino) certificates offered

by banks and financial corporations. All series are considered in logarithms and

denoted LRM1, LGDP and LR, respectively 12.

In Figure 3, we plot LRM1, LGDP and LR for the period 1978:1-1993:4. As

can be noticed from the figures, both LRM1 and LGDP exhibit a clear seasonal

pattern consisting of peaks during the fourth quarter, and in the case of LGDP it is

also possible to distinguish that after 1985:4, a peak in the second quarter is also

present; the interest rate series, on the other hand, does not present any kind of

seasonality. Instead of modelling the seasonal behaviour of LRM1 and LGDP,

Carrasquilla and Galindo choose to adjust all series using a moving average of fourth

order which, although unnecessary in the case of the interest rate series, can be

justified on the grounds that as long as all the variables in a regression are adjusted

with the same filter, the underlying relation among them is not altered, although the

error term is no longer white noise but a high-order moving average process (see

Wallis, 1974)13. Accordingly, we apply the same filter to the series under

consideration, and the resulting adjusted series are denoted LRM1A, LGDPA and

LRA. (see Figure 3)14.

12For previous money demand modelling exercises for Colombia see e.g. Clavijo (1987, 1988), Steiner
(1988), Lora (1990), Carrasquilla and Renterfa (1990), Herrera and Julio (1993), Misas, Oliveros and
Uribe (1994) and Misas and Suesctin (1993).
131t is possible to show that Carrasquilla and Galindo's suggested filter transform a white noise error
term into a MA(3) process, whose theoretical autocorrelation function is given by 1)1=0.75, p2=0.5,
p3=0.25 and pk=0 for all k>3.
I4The moving average is calculated since 1977:2 in order to avoid the loss of the first three
observations.
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3.1 Testing for Unit Roots

The order of integration of the series under consideration is investigated by

means of the ADF tests for unit roots, which we apply as indicated by Perron (1988)15.

The number of lags of the dependent variable to include in the test regressions is

selected following Campbell and Perron (1991), starting with an upper bound of 5

lags, and then we perform the LM[4] test for serial correlation on the residuals of the

test regressions. Lastly, when dealing with the unadjusted versions of LRM1 and

LGDP we also include centred seasonal dummies to capture some of the seasonal

pattern16; Dickey, Bell and Miller (1986) show that this procedure does not have any

effect on the limiting distributions of the unit root tests statistics.

In the top half of Table 4 we summarise the results of the ADF unit root tests

for LRM1, LGDP and LR, whereas in the bottom half we report those for the filtered

series. Regardless of the type of data, the results suggest that LGDP seems to contain a

unit root and a non-zero drift term, whereas LRM1 and LR may also contain a unit

root with a zero drift term; in the case of LR, however, this conclusion seems to

contradict what the correlogram of the series (not reported here) shows17.

3.2 Cointearation Analysis for Pairs of Unadjusted and Adjusted Series 

One important property of seasonal adjustment filters is that they should only

remove the seasonal behaviour of a series, without affecting its long-run properties.

15Given that our interest is to discuss the modelling of cointegrated variables at the zero, or long-run,
frequency, we do not perform tests for seasonal unit roots nor tests for cointegration at seasonal
frequencies. On these issues see e.g. Dickey, Hasza and Fuller (1984), Hylleberg, Engle, Granger and
Yoo (1990) and Engle, Granger, Hylleberg and Lee (1993).
16These centred seasonal dummy are defined as CSDi., = 0.75 if t is the ith quarter of the year and -0.25
otherwise.
17It shall be remembered that these results must be interpreted with caution due to the low power of the
tests (Schwert, 1989); in addition, it is important to bear in mind that the order of integratedness is not
an inherent property of a time series, that is the order of integration of a time series may differ for
different sample periods (see Hendry, 1995).
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Ericsson, Hendry and Tran (1994) and Hendry (1995, ch. 15) show that for a given

1(d) variable yt with d5_2, if the weights of the seasonal filter sum to unity, then the

pair of unadjusted and adjusted series cointegrate with cointegrating vector [1, -1].

Accordingly, it is of particular interest to test whether this result holds for the adjusted

and unadjusted versions of LRM1, LGDP and LR.

In order to do this, we test for cointegration between the pairs of series LRM1-

LRM1A, LGDP-LGDPA and LR-LRA, using Johansen's maximum likelihood

procedure (see Johansen, 1988 and Johansen and Juselius, 1990). The advantage of

this procedure is that it allows us to estimate all possible cointegrating vectors

between a set of variables, and perform likelihood ratio tests of hypotheses about

cointegrating vectors.

On this basis, we consider the following two-dimensional VAR models: i)

LMR1-LMR1A (VAR model 1); ii) LGDP-LGDPA (VAR model 2); iii) LR-LRA

(VAR model 3). All VAR models include a lit vector of constant terms, and the first

two also include a 3x1 D, matrix containing centred seasonal dummy variables. Both

the centred seasonal dummy variables and the constant terms are entered unrestricted.

It is worth indicating that given the nature of the filter for seasonal adjustment, we use

a lag length of two for the estimations, as longer lags yield perfect multicollinearity.

In Table 5 we report the main diagnostic tests for the three models as well as

the cointegration analysis results. With regard to VAR model 1, the regression for

LRM1A fails the LM[4] test for serial correlation at the 5% significance level; the

other tests for misspecification are easily passed. Under other circumstances, it would

have been desirable to include additional lags to remove the autocorrelation; however,

as it is not possible to do this because of perfect multicollinearity, we proceed with the
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cointegration analysis. Both the trace and maximal-eigenvalue test statistics indicate

the presence of one cointegrating vector. Moreover, the null hypothesis that 1_,RM1

and LRM1A cointegrate with a unit coefficient is easily accepted (x21=0.014).

Concerning VAR model 2, both the regressions for LGDP and LGDPA fail the

LM[4] test for serial correlation at the 5% significance level; in addition, LGDP fails

White's test for heteroscedasticity at the 1% level. Similar to VAR model 1, the

outcome of the cointegration analysis not only indicates the presence of one

cointegrating vector, but also that LGDP and LGDPA cointegrate with a unit

coefficient ( x21 =0.002).

Lastly, the estimation of VAR model 3 is very disappointing. To begin with,

the two regressions fail all misspecification tests. Additionally, if one tests for

cointegration, both the trace and maximal-eigenvalue test statistics indicate that there

are two cointegrating vectors. Put another way, both LR and LRA seem to be .1(0)

variables for the period under review.

3.3 A Lone-Run Money Demand Equation using the Seasonally Adjusted Series 

The results of estimating the long-run money demand equation using the

seasonally adjusted series are presented below:

LRM1A = 8.799 + 0.493 LGDPA - 0.228 LRA + fit [5]

It is important to recall that the seasonally adjusted and unadjusted versions of

LRM1 and LGDP may contain a unit root, and that the interest rate may be an 1(0)

variable for the period under review. Thus, it may seem peculiar that for estimating

the long-run money demand equation we are combining variables of different order of

integration. The reason is that even if asymptotically the inclusion of 1(0) variables
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does not make any difference, in finite samples, as in our case, they may significantly

affect the outcome.

Returning to the cointegrating equation, the signs of the estimated coefficients

correspond to those of a money demand equation, with the coefficient associated to

LGDPA suggesting scale economies in the holding of money.

The residuals of [5] were then tested for a unit root using the ADF and PP

tests. When we use the first method, it is necessary to introduce 5 lags of the

dependent variable in order to whiten the residuals, as indicated by the LM[4] test for

serial correlation; the following results are obtained:

Eiti 
5

= -0.1 181:1 1 [6]

t-Stat (-2.781)

Thus, it is not possible to reject the null hypothesis of non-cointegration at

traditional significance levels (critical value of -3.552 at the 10% significance level).

On the basis of this outcome, Carrasquilla and Galindo conclude that the demand

equation for real balances is spurious, and proceed to formulate it in first differences18.

With regard to the Phillips and Perron test, we use different truncation lag

parameters, that determine the number of autocovariances to be considered when

constructing the statistic; however, regardless of this the null hypothesis of non-

cointegration cannot be rejected.

Lastly, regression [5] is estimated using Phillips and Hansen's fully modified

estimator, for selected truncation lag parameters. The results, which are reported

I8The null hypothesis of noncointegration is also accepted when the series are adjusted using the
"simple filter" defined in the Monte Carlo simulations; these results, however, will not be reported. The
series were not adjusted with the linear version of the X-11 filter because a significant number of
observations is lost.
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•

below, indicate that the estimated coefficient on LGDPA does not change markedly in

comparison to the OLS estimate in equation [5], although the same cannot be said

about the estimated coefficient on LRA.

Trunc.
Lag

Const. LGDPA LRA ADF(5) PP(4) PP(6) PP(8)

3 8.503 0.527 -0.258 -2.902 -2.296 -2.337 -2.387

4 8.536 0.528 -0.271 -2.845 -2.329 -2.368 -2.416

6 8.473 0.532 -0.266 -2.870 -2.289 -2.329 -2.378

8 8.415 0.534 -0.258 -2.914 -2.248 -2.290 -2.339

10 8.308 0.535 -0.232 -3.043 -2.161 -2.208 -2.260

12 8.156 0.539 -0.200 -3.185 -2.049 -2.102 -2.157

The residuals of the fully modified regressions are then tested for a unit root

using the ADF(5) test, and the PP test for selected truncation lag parameters;

regardless of the test, the null hypothesis of non-cointegration is not rejected at

traditional significance levels.

It shall be remembered from the Monte Carlo simulations reported previously,

that both the ADF and PP tests for cointegration suffer of low power when the

variables have been previously filtered.

3.4 A Long-Run Money Demand Equation using. the Seasonally Unadjusted Series 

Let us now consider the results when one attempts to model the seasonal

pattern of LRM1 and LGDP by including a set of centred seasonal dummy variables in

the cointegrating equation. Firstly, the estimated cointegrating equation is:

LRM1 = 9.080 + 0.478 LGDP - 0.256 LR + CSD + [7]

where CSD indicates the set of centred seasonal dummies. As can be seen, the

estimated coefficients change little with respect to those obtained using the adjusted

variables.
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The residuals of [7] were then tested for a unit root using the Dickey and

Fuller and Phillips and Perron tests. With regard to the former, we begin by including

5 lags of the dependent variable, although none of them proved significant. Thus, we

end up with the following regression:

AU = [8]

t-S tat (-3.662)

which easily passes the LM[4] test for residual serial correlation (F4.58=1.093). Unlike

the previous case, the null hypothesis of non-cointegration can be rejected at a 10%

significance leve119. In the case of the PP test, the statistics are not greatly affected by

the selection of the truncation parameter, and the hypothesis of non-cointegration can

be rejected at the 10% significance level.

4. Concluding Remarks

In this paper we assess, via Monte Carlo simulations, the effects of some

seasonal adjustment filters on static cointegrating regressions. We find that the use of

filters has adverse consequences in terms of the power of the ADF and PP tests for

cointegration, so that they are not likely to correctly reject the null hypothesis of the

existence of a unit root in the residuals of a cointegrating equation. In this sense, our

results suggest that the findings of Ghysels (1990) and Ghysels and Perron (1993), in

the context of univariate unit root tests, are also applicable for the residuals of static

cointegrating equations. Consequently, considerable care must be exercised when

using filters for seasonal adjustment, as one may wrongly conclude that a static

regression between nonstationary series is spurious.

I9After examining the autocorrelation and partial autocorrelation functions of the residuals of [7], we
end up with the SARSMA (0,1,1,0) specification utilised in the Monte Carlo simulations.
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As an empirical application, we re-examine the results of the money demand

modelling exercise performed by Carrasquilla and Galindo (1994); we find that when

one attempts to model the variables' seasonal pattern using simple methods, instead of

removing it by filtering the data, the null hypothesis of non-cointegration is no longer

accepted.
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Table 1
Distribution of t-ratios : Summary Statistics

Filter

v is white noise v, is SARSMA (0,1,1,0)

2-sided
OLS FM-OLS

1-sided
OLS FM-OLS

2-sided
OLS FM-OLS

1-sided
OLS FM-OLS

MAr41 Filter

Mean 0.032 0.017 -1.296 -0.694 0.017 0.002 -1.001 -0.403
Variance 4.419 2.793 3.660 2.297 10.381 3.966 8.667 3.327
Skewness -0.078 -0.030 -0.193 -0.198 -0.035 -0.039 -0.188 -0.098
Excess Kurtosis 0.102 0.273 0.113 0.221 0.297 0.396 0.491 0.412

Simple Filter

Mean 0.042 0.013 -1.808 -0.109 0.031 0.008 -1.231 -0.072
Variance 7.635 3.371 5.870 2.902 14.454 4.574 11.584 4.136
Skewness -0.062 -0.062 -0.292 -0.254 -0.070 -0.082 -0.342 -0.200
Excess Kurtosis 0.178 0.498 0.203 0.417 0.686 0.763 0.719 0.795

X-11 Filter

Mean 0.017 0.021 -0.054 -0.012 0.019 0.000 -0.058 -0.019
Variance 1.240 2.260 1.220 2.244 5.876 3.491 5.762 3.460
Skewness -0.022 -0.004 -0.032 -0.016 -0.029 -0.045 -0.040 -0.050
Excess Kurtosis -0.092 0.142 -0.123 0.126 0.089 0.409 0.090 0.418

Henderson Filter

Mean 0.018 0.007 -0.199 -0.052 0.022 0.000 -0.168 -0.034
Variance 2.117 2.454 2.040 2.411 6.754 3.593 6.440 3.522
Skewness -0.054 -0.055 -0.080 -0.077 -0.031 -0.052 -0.068 -0.059
Excess Kurtosis -0.028 0.140 -0.058 0.118 0.140 0.366 0.138 0.385
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Table 2: Power of Tests for Cointegration (v, is white noise)

Filter
and
Lag

2-sided 1-sided
ADF PP

Power
ADF PP

PowerAIC SLC Power AIC SLC Power
MAN]
o 0.7 1.1 34.5 19.8 24.6 48.2
1 1.0 1.1 56.3 50.4 12.3 10.3 65.3 64.3
-) 1.9 0.4 71.5 58.9 9.4 6.6 68.6 70.0
3 9.1 5.4 86.6 64.3 9.1 10.6 70.5 70.6
4 23.6 26.1 8.2 47.7 14.9 17.5 15.6 58.5
5 11.1 8.0 13.0 36.8 10.8 8.3 18.0 49.3
6 6.9 5.6 18.4 29.1 5.9 4.6 15.4 41.7
7 12.2 14.9 27.2 25.0 5.6 4.9 16.1 39.4
8 18.0 21.9 2.8 22.7 4.4 4.1 5.9 36.2
9 13.0 10.1 4.3 20.9 4.1 4.3 5.9 34.3
10 10.9 5.4 5.2 20.1 3.7 4.9 3.8 32.0

Simple
0 0.0 0.0 26.3 35.0 31.7 63.3
1 0.0 0.0 3.2 24.0 6.5 1.5 29.1 64.5
2 0.0 0.0 3.3 24.5 2.7 1.0 11.7 65.7
3 5.6 7.2 86.0 39.2 21.9 33.7 38.1 70.8
4 3.9 4.0 43.1 38.8 7.6 3.8 16.0 69.4
5 0.8 0.5 14.6 37.8 8.7 7.0 15.8 69.2
6 6.9 12.6 0.6 36.3 4.9 4.8 13.4 69.3
7 39.6 47.5 11.2 30.9 2.9 3.5 8.7 67.0
8 8.5 3.1 7.2 27.7 3.5 3.9 5.6 64.3
9 16.1 13.5 11.6 26.3 2.3 4.9 3.3 62.0
10 18.6 11.6 3.4 25.4 4.0 4.9 3.3 60.1

X-11
0 22.2 10.4 100.0 24.3 13.7 100.0
1 2.8 0.4 99.8 100.0 3.4 0.4 100.0 100.0
2 2.0 1.1 86.3 100.0 2.2 1.4 87.3 100.0
3 19.4 22.5 94.5 100.0 21.1 23.3 94.2 100.0
4 7.7 4.8 58.6 100.0 7.0 5.1 58.4 100.0
5 2.8 1.0 32.0 100.0 3.1 0.9 32.9 100.0
6 9.6 4.0 13.9 100.0 2.8 3.5 14.7 100.0
7 18.4 39.8 38.6 100.0 17.4 37.4 37.4 100.0
8 10.6 8.6 11.3 100.0 8.5 7.7 11.5 100.0
9 5.6 2.5 4.9 100.0 5.7 2.3 5.5 100.0
10 5.9 4.9 2.1 100.0 4.5 4.3 2.8 100.0

Henderson
0 0.0 0.0 95.6 0.8 1.1 98.0
1 2.9 3.8 99.9 99.5 26.0 35.5 99.8 99.9
/) 8.8 9.2 53.1 99.1 21.2 14.3 79.2 99.7
3 25.5 21.2 80.0 97.6 12.7 7.7 66.6 99.3
4 7.7 3.9 49.4 95.8 9.7 9.7 59.9 98.5
5 5.1 4.8 21.4 90.9 5.6 4.7 24.6 95.7
6 10.9 18.0 37.3 87.4 8.4 9.7 27.5 93.6
7 7.8 9.7 6.2 84.3 4.9 4.9 12.7 91.9
8 14.1 19.6 16.2 81.1 4.3 4.9 9.4 90.1
9 9.3 4.5 5.6 78.9 4.0 5.6 8.9 88.5
10 7.9 5.3 4.8 _ 77.7 9.4 3.3 4.7 87.5
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Table 3: Power of Tests for Cointearation (v, is SARSMA(0,1,1,0)

Filter
and
Lag,
-141

2-sided
,
, 1-sided

ADF PP ADF PP
AIC SLC Power Power AIC SLC Power Power

MA
0 0.0 0.0 0.2 7.6 11.7 2.3
1 19.9 11.3 44.7 0.7 40.3 41.6 28.3 4.1
2 4.9 1.9 36.6 1.1 17.7 7.9 30.2 5.4
3 1.7 0.6 24.0 1.9 6.5 9.8 16.9 4.6
4 6.0 8.5 9.4 0.9 4.7 3.0 10.7 3.9
5 21.4 26.5 18.5 0.7 7.3 10.1 14.1 2.6
6 6.1 2.5 13.7 0.6 3.9 4.9 11.0 ?.?
7 3.9 2.1 8.0 0.5 3.5 4.1 8.9 2.0
8 6.2 10.3 1.5 0.4 1.8 2.9 4.7 1.8
9 19.7 31.5 6.6 0.4 3.4 6.9 4.9 1.9
10 10.2 5.5 4.9 0.4 3.3 4.1 3.4 1.6

Simple
0 0.0 0.0 0.4 25.3 30.0 3.3
1 0.0 0.0 9.0 0.4 16.3 12.5 5.5 4.4
2 0.0 0.0 34.7 0.6 11.6 9.0 9.6 4.3
3 1.0 1.8 78.4 0.8 12.7 13.3 18.6 4.3
4 15.3 14.1 7.4 0.8 9.9 8.1 15.3 4.3
5 3.1 1.1 2.1 0.8 5.6 6.2 12.8 4.6
6 1.6 1.1 1.1 0.8 4.6 3.1 10.9 4.3
7 37.2 55.2 14.3 0.7 4.3 4.9 6.9 4.9
8 13.2 4.5 4.8 0.6 2.1 9.4 4.4 3.8
9 16.3 15.9 10.0 0.6 3.3 6.4 3.6 3.6
10 12.3 6.3 3.5 0.6 4.3 4.8 2.7 3.4

X-1 I
0 35.5 23.0 61.7 43.4 . 31.4 63.5
1 7.6 1.4 45.3 66.6 9.5 9.0 45.2 68.8
2 3.6 0.8 27.6 67.5 3.4 1.0 27.6 69.0
3 6.3 4.7 25.8 68.0 5.6 4.7 23.9 69.9
4 9.4 2.1 6.4 66.0 2.4 9.4 6.9 67.7
5 2.6 4.7 9.6 66.2 2.8 5.3 9.9 68.2
6 9.6 3.7 13.2 67.2 2.7 4.6 12.6 68.7
7 8.4 22.5 25.4 66.4 7.6 20.6 23.4 68.4
8 13.4 23.3 2.8 61.9 9.1 16.8 3.4 65.1
9 11.0 9.8 4.3 60.0 8.3 7.1 4.1 62.3
10 6.6 4.0 4.0 58.8 5.2 4.1 3.9 60.4

Henderson
0 0.0 0.0 10.2 2.1 5.3 19.5
1 0.0 0.0 87.8 31.9 15.1 18.3 75.5 37.1
2 1.1 1.7 1.9 25.7 20.5 16.4 13..8 31.9
3 19.6 17.2 37.0 14.3 8.4 . 6.2 11.2 24.0
4 5.0 3.2 16.0 11.9 20.3 21.8 24.6 20.9
5 4.8 3.8 7.7 12.2 5.4 4.1 11.8 . 20.9
6 17.9 21.2 23.2 9.7 8.6 8.9 ' 12.0 19.1
7 12.5 14.2 2.8 8.1 7.3 5.9 9.2 16.3
8 21.0 25.6 10.7 6.6 5.3 4.3 4.9 15.1
9 12.0 6.7 4.1 6.5 3.9 5.4 5.9 13.9
10 11.8 6.4 2.9 ' 6.0 3.1 3.4 3.6 , 118



Table 4
Dickey and Fuller Unit Root Tests

Variable Lags of Model LM[41
Dep. Var.

t Statistic (1)3 Statistic (1),) Statistic t Statistic (1)1 Statistic
Ho: y2.0 Ho: y,=12=0 Ho: yo=y,=y2.0 Ho: 13i=0 Ho: 130=131.0

LRM1
LRM I

LGDP

LR
LR

1
1

3
1
1

A F4,52 0.632
F4,53 0.656

-1.776

A F4,48 1.108 -1.440
A F4,55 0.781 -3.070
B 174,56 0.691

2.189

1.078
5.648

2.180

**11.988
3.766

-0.013 1.020

-2.750 3.782

LRM1A 5 A F4,46 0.564 -2.765 5.260 3.961
LRM1A 5 B F4,47 0.207 0.186 0.591
LGDPA 5 A F4.46 0.972 -2.099 3.191 *5.311
LRA 4 A F4,48 0.697 -2.106 4.666 3.153
LRA 4 B F4,49 0.686 -1.556 1.269

MODEL A: dy, = yo+ y2ye.1 + lags of the dependent variable
MODEL B: Ayt= Po+ Ply ,I+ lags of the dependent variable

* Indicates that the null hypothesis is rejected at the 5% significance level, but not at the 1%.
** Indicates that the null hypothesis is rejected at the 1% significance level.
The critical values for the t statistics are reported in MacKinnon (1991).
The critical values for the (DI, (I), and (1)3 statistics are reported in Dickey and Fuller (1981).

21
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Table 5
Cointegration Analysis for pairs of Adjusted and Unadjusted series

VAR Model 1
LRM I LRM1A

VAR Model 2
LGDP LGDPA

VAR Model 3
LR LRA

LM [4]
ARCH [4] I/

Normality 21

Heteroscedasticity 31

0.495 *2.740 *3.375 *3.490 "6.018 **8.851
1.544 1.868 1.381 0.370 **4.958 **4.640

0.363 1.900 0.034 1.867 **10.287 *8.245

0.535 0.425 3.379 1.368 *2.598 **3.757

Maximal Eigenvalue Test 41

Null Hypothesis r= 0 r<= 1 r= 0 r<= I r= 0 r<= 1
Alternative Hypothesis r = 1 r = 9 r = 1 r = 9 r = 1 r = 2
Statistic "63.850 0.043 **71.120 0.042 **89.190 *6.043

Trace Test 41

Null Hypothesis r = 0 r<= 1 r = 0 r<= 1 r =0 r<= 1
Alternative Hypothesis r>= 1 r =2 r>= 1 r = 2 r>= 1 r =
Statistic **63.900 0.043 **71.160 0.042 **95.240 *6.043

Eigenvectors 1.000 -1.002., 1.000 -1.000 1.000 -0.979

(Standarised) 2.550 1.000 -0.572 1.000 0.995 1.000

* Indicates that the null hypothesis is rejected at the 5% significance level, but not at the 1%
significance level.
** Indicates that the null hypothesis is rejected at the 1% significance level.
r denotes the number of cointegrating vectors.

ARCH[4] stands for Engle's LM[4] test for AutoRegressive Conditional Heteroscedasticity
(F version).
21 Shenton and Bowman test (F version).
31 White's test based on the regression of squared residuals on original regressors and all their
squares (F version).
41 The critical values for both the maximal eigenvalue and trace tests are reported in
Osterwald-Lenum (1992).



Figure 1: Distribution of 1-ratios
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Figure 1 (Cont.): Distribution of t-ratios
Vt is White Noise
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Figure Distribution of t-ratios
Vt is SARSMA(0,1,1,0)
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Figure 2 (Cont.): 1)istribution of (-ratios
Vt is SARSMA(0,1,1,0)
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