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ABSTRACT

The complexity of a class of vehicle routing and scheduling problems is

investigated. We review known NP-hardness results and compile the results

on the worst-case performance of approximation algorithms. Some directions
for future research are suggested. The presentation is based on two discus-
sion sessions during the Workshop to Investigate Future Directions in Routing
and Scheduling of Vehicles and Crews, held at the University of Maryland

at College Park from June 4 to June 6, 1979.
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1. INTRODUCTION

In this paper the computational complexity of a class of vehicle routing and
scheduling problems is investigated. The problem class is defined in
Section 2. We review known NP-hardness results for the problems in this
class in Section 3, and we compile the results on the worst-case performance
of approximation algorithms designed for their solution in Section 4. Some
directions for future research are suggested in Section 5.

The results presented in this paper were the subject of two discussion
sessions during the Workshop to Investigate Future Directions in Routing
and Scheduling of Vehicles and Crews, held at the University of Maryland
at College Park from June 4 to June 6, 1979.

2. A CLASS OF PROBLEMS

The general single vehicle routing problem (VRP) [26] is defined as follows:
given a strongly connected mixed graph G consisting of a set V of
v vertices, a set E of e (undirected) edges and a set A of a (directed)
arcs, with specified subsets V' c V, E' cE and A' c: A, and given
nonnegative weights on the edges and the arcs, find a tour containing V',
E' and A' which is of minimum total weight. Various well-known routing
problems emerge for specific restrictions on E, A, V', E' and A'; they
are defined in Table 1.

The m-vehicle routing problem (mVRP) is a natural extension of the VRP.
The purpose is to find m tours, each containing a common distinguished
vertex (the depot) and collectively containing the sets V', E' and A',
such that the maximum of the total weights of the tours is minimized. The
resulting special cases are referred to as the mTSP, the mDTSP, etc.



Table 1. Single vehicle routing problems

name

traveling salesman problem

directed traveling salesman problem

Chinese postman problem

directed Chinese postman problem

mixed Chinese postman problem

rural postman problem

directed rural postman problem

stacker-crane probem

code

TSP

DTSP

CPP

DCPP

MCPP

RPP

DRPP

SCP

V' E' A'

V 0 0

V 0 0

E

0 0 A

E A

00 A
arbitrary

The generic single depot vehicle scheduling problem (VSP) is the following:
given a depot d and n trips j from bj to cj, which have to be
completed within specified time intervals [ti,uj] = 1 ,. ,n), and
given the traveling times between all pairs (d,bi), (bi,ci), (cybk) and
(c.,d), find a feasible schedule which requires a minimum number of vehicles.
Special cases to be considered correspond to restrictions such as tJ . = u.or t

J
. = 0, u

J
. u for j = 1,. .,n.

The 2-depot vehicle scheduling problem (USN is a generalization in
which there are 2, depots di, where mi vehicles are located (i= 1 ,.. ,2,);
each vehicle has to return to its depot.

3. NP-HARDNESS RESULTS

The basic results on the computational complexity of vehicle routing and
scheduling problems are listed in Table 2. For the easy problems which are
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solvable in polynomial time, the running time of the most efficient known

algorithm for their solution is given. The NP-hard problems are not solvable

in polynomial time, unless JP=A/Y. We refer to [13;19;23] for introductions

to the theory of NP-completeness and to [13,A1.3,A2.3] for additional details.

The NP-hardness results for routing problems still apply if G is

planar; see, e.g., [14;27]. We also note that even the geometric TSP,

which is defined by points and distances in the Euclidean plane, is NP-hard

[11;28].

All NP-hardness results mentioned are "strong" in the sense that they

hold even with respect to a unary encoding of the problem data [12]. How-

ever, for any fixed m > 2, the mCPP and the mDCPP are only known to be

binary NP-hard.

In summary, almost all vehicle routing and scheduling problems are

NP-hard and hence unlikely to be solvable in polynomial time. As a means

to further differentiate within the class of NP-hard problems, we will

consider the worst-case performance of fast approximation algorithms in the

next section. A less formal indication of the complexity of routing

problems is the number of disconnected components in the graph induced by

V', E' and A'. For example, when there are c of such components, the

RPP can be solved recursively in 0(v
2c+1

/c!
) 

time [9].



Table 2. Complexity of vehicle routing and scheduling problems

problem

routing

VRP

TSP

DTSP

CPP

mCPP

DCPP

mDCPP

MCPP

RPP

DRPP

SCP

complexity reference

scheduling

VSP (all t• = u.
J J

VSP (all t =0, all u• .... uJ J
tVSP (all t= u)

NP-hard

NP-hard [18]

NP-hard [18]

0(v3) [7]

NP-hard [10]

0(v3 log e) [8]

NP-hard [10]

NP-hard [27]

NP-hard [21]

NP-hard [21]

NP-hard [10]

0(n
3
) [6]

NP-hard [22]

open

4. WORST-CASE PERFORMANCE OF APPROXIMATION ALGORITHMS

All results on the worst-case performance of specific approximation algorithms

for vehicle routing problems that we are aware of are listed in Table 3.

The performance is usually measured by the maximum ratio p of the approxi-

mate solution value to the optimum value,over all instances of the problem

in question. The table gives global upper bounds on p, as well as lower

bounds on p that can (asymptotically) be achieved for a class of "bad"



Table 3. Worst-case performance of vehicle routing approximation algorithms

problem algorithm upper bound lower bound complexity reference

TSP nearest neighbor 1-flog v] +- 1 4
...f log(v+1) +-§- 0(v

2 
) [32]

sequential Clarke-Wright 2 57logv+-27- 0(v
2 
) [15]

insertion flog cri + 1 4 0(v2) [32]

nearest insertion 2 2 0(v
2
) [32]

cheapest insertion 2 2 0(v2 log v) [32]

nearest addition 2 2 0(v2) [32]

nearest merger 2 2 0(v2 log v) [32]

k-optimal for all k < -)fc 2 [32]

double spanning tree

spanning tree + matching

2. 2

3
2

0(v2)

0(v3 )

[32]

[3;5]

DTSP repeated assignment Flog if-1 0(v3) [25]

MCPP Edmonds-Johnson 2 2 0(v
3 
+e
2 a+a3 ) [9]

reversed Edmonds-Johnson 2 2 0(v3+e2a+a3) [9]

planar

mixed strategy 5
3
3

3
2-
3

0( , /3 +e
2 a+a

3 ) [9]

MCPP mixed strategy
2 T 0(v

3
+e2a+a3) [9]

RPP spanning tree + matching 3
2- 0(v

3 +e) [9]

SCP mixed strategy 9
IC

3 30(v +a ) [10]

mTSP nearest neighbor m2-logv+m m
-6-logv 0(v

2
) [10]

nearest insertion 2m 2m 0(v2) [10]

tour splitt.:ng 5 1
2 m

5 1
2 Fr i 0(v3 ) [10]

mCPP tour splitting 2- 1
ni 0(v3) [10]

mSCP tour splitting 14 1
5 - ii 0(v3 +a3 ) [10]



instances. All terms that tend to zero when v increases have been

deleted; log denotes the logarithm to the base 2.

The theory of NP-completeness has been applied to show that, for some

NP-hard optimization problems, certain approximation algorithms which

guarantee a fixed maximum performance ratio p do not exist, unless JP.AY,

Results of this type for vehicle routing problems are listed in Table 4.

These problems require some comments.

The capacitated mTSP (mCPP) is a modification of the mTSP (mCPP), in

which each vertex (edge) has a given demand and the total demand in each

tour should not exceed a given limit. The objective in this case is to

minimize the sum of the total tour weights rather than their maximum.

The general TSP is usually defined as the problem of finding a tour of

minimum total weight which visits each vertex exactly once. The TSP in our

definition allows multiple visits, but can be seen as a special case of the

general TSP in which the weights satisfy the triangle inequality.

Table 4. Nonexisting vehicle routing approximation algorithms (unless jP=431

problem algorithm p reference
any unary NP-hard problem

general TSP

capacitated mTSP on a tree

capacitated mCPP on a tree

algorithm polynomial in problem

size and 1 for all c > 0c

polynomial-time algorithm

local search with polynomial time

per iteration

polynomial-time algorithm

polynomial-time algorithm

1+6

< co

< cc

3< -2-

3
< Y

[12]

[33]

[29]

[16]

[16]



Conversely, the TSP with arbitrary weights can be transformed into the TSP

for which the triangle inequality holds by adding a suitably large constant

to all weights. The distinction between both problem types, however, is

justified by the results in Tables 3 and 4.

Additional results for the general TSP are the following. Local search

over polynomial-size neighborhoods will never guarantee optimality [34], and

instances have been constructed for which local search would be particularly

ineffective [30].

Altogether, there appear to be considerable differences in complexity

within the class of NP-hard problems. Many of the polynomial transformations

between these problems that preserve optimality, clearly do not preserve the

performance of approximation algorithms. The transformation of the general

TSP to the TSP provides a striking example of this phenomenon. Transforma-

tions that preserve the problem structure to a greater extent are the subject

of ongoing research [1;24;31].

5. CONCLUDING REMARKS

The survey presented in Sections 3 and 4 bears witness to an impressive

research effort in analyzing the inherent complexity of vehicle routing and

scheduling problems. It is also clear that more work needs to be done.

The complexity status of the USP is still open. The worst-case analysis

of some of the standard approximation algorithms is nonexistent or incomplete.

And for the DTSP,. no polynomial-time algorithm is known to guarantee a

constant maximum performance ratio.

It should be pointed out that the worst-case approach is pessimistic

in the sense that approximation algorithms rarely attain their maximum

performance ratio in practice. For example, the TSP algorithm from [3],



in which a spanning tree is combined with a matching on its odd-degree

vertices, yields a solution value that tends to be much closer to the optimum

than the guaranteed fifty percent deviation. In a clever implementation of

this algorithm [4], a spanning tree is found using v subgradient iterations

as in [17]; by then, the number of odd-degree vertices is often so small

that a matching is found quickly by complete enumeration. This produces

both a lower bound and an upper bound on the optimum, which usually differ

by no more than a few percent.

Probabilistic analyses of the average-case or almost-everywhere perfor-

mance of approximation algorithms have to provide a theoretical explanation

of these phenomena. For the geometric TSP, such an approach has led to some

remarkable results [20].

Finally, we note that there are several developments on the interface

of mathematical programming and complexity theory that might ultimately

influence the •area of routing and scheduling as well. Suffice it to mention

the efforts to relate the existence of polynomial-time algorithms to the

existence of good characterizations of the polytope of feasible solutions,

and the recent development of a polynomial-time algorithm for linear

programming [2]. It seems that complexity theory interpreted in a broad

sense will continue to have a direct impact on the study of vehicle routing

and scheduling problems.
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