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During the past twenty years there has been a growing recognition of the 

consequences of the randomness of crop yields and prices for farm management and 

agricultural policy decisions. Concomitantly, the literature has recognized the 

possibility of nonnormality of yields and prices. This study demonstrates one 

approach to modeling nonnormality in crop yields over time. Specifically, this 

study estimates an inverse hyperbolic sine transformation of crop yields in the 

southeastern United States. 

keywords: nonnormality, crop yields, inverse hyperbolic sine 

Several questions in the areas of farm management and agricultural policy 

have arisen over the past twenty years that require knowledge of the distribution 

of random variables. At the farm level the distribution of crop yields and 

prices may affect the choice of crop portfolio, financial decisions, or 

participation in government programs. Some of these decisions have been 

incorporated into ARMS (King). At the policy level, the distribution of crop 

yields may affect the outlay on government programs, farm survival, and even 

agricultural trade policy. One such application is the farm level simulator 

FLIPSIM (Richardson and Nixon). 

Certain characteristics of the distribution of crop yields may be 

particularly important in these models. In the past, agricultural economists 

*Charles Moss is an Assistant Professor of Food and Resource Economics at 
the University of Florida, Octavio Ramirez is an Assistant professor at ENCATI. 
William Boggess is a Professor of Food and Resource Economics at the University 
of Florida. 
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67 
have primarily focused on in the mean and variance of yield distributions. The 

mean of the distribution has been used both as a deterministic measure of 

profitability and as an element in more complex analysis of risk. The variance 

is often used as a measure of risk following the basic formulation of Freund. 

However, several studies have examined the possibility that crop yields are 

nonnormal. Day found that yields on crops in the Mississippi delta region were 

skewed and kurtotic. Similarly, Gallagher found that soybean yields were 

negatively skewed. However, Luttrell and Gilbert rejected the hypothesis that 

crop yields were "bunchy" due to weather. 

The potential of nonnormal yield distributions may be of particular 

importance in farm management and agricultural policy problems. If the yield 

distribution is skewed financial decisions, crop insurance models, and many farm 

policies such as target prices may misstate the value of liquidity, the actuarial 

cost and value of insurance, or the potential cost of farm programs, 

respectively. Complicating the issue of nonnormality is the possibility of 

correlation or interdependence. Agricultural yields tend to move together 

because of weather and pests. A below normal winter rainfall decreases both 

wheat and barley yields. Further, low crop yields over a substantial area can 

lead to higher crop prices. Interdependence in crop yields and prices could have 

a significant affect on farm management and agricultural policy decisions. 

A methodology for modeling correlated random variables under normality has 

been presented by Clements et al. However, modeling correlated random variables 

given skewness or kurtosis is far more complicated. King and Richardson and 

Condra have presented methods for modeling correlation given nonnormality. 

However, these approaches. are not based on a theoretically specified multivariate 

distribution. Taylor has proposed methodology to model correlated nonnormal 

variates, but his approach is sensitive to ordering. 
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The purpose of this paper is to present a methodology for estimating and 

simulating multivariate distributions in a manner that allows for nonnormality. 

The proposed methodology is based on estimating the parameters of an inverse 

hyperbolic sine transformation into normality. This transformation allows 

normality as a special case. The methodology is then used to estimate crop yield 

distributions in the southeastern United States. 

Transforming Random Variables Using the Inverse Hyperbolic Sine 

The inverse hyperbolic sine transformation was suggested by Johnson and 

applied by Burbidge et al. The multivariate form applied in this manuscript was 

adapted by Ramirez. The basic concept is to fit the parameters that transform 

a random variable into another distribution with desirable properties. A similar 

transformation is the Box-Cox transformation. In the current scenario we are 

interested in transforming a random variable in a way that allows for 

nonnormality, but has an explicit joint distribution function. The inverse 

hyperbolic sine distribution models the nonnormality of the marginal 

distribution. This transformation maps the nonnormal variables into a joint 

normal distribution which allows for contemporaneous interdependence .. 

A basic concept from mathematical statistics is that functions of random 

variables possess a distribution defined by the distributions of the original 

random variables. Examples of this property include several distributions used 

for classical statistical tests such as the Student's t. In this paper we are 

particularly interested in one of the procedures used to define these 

distributions. Specifically, Mood, Graybill, and Bowes show that a monotonic 

transformation y-g(x) can be used to define a distribution for y based on the 

distribution of x, 
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(1) f (y) =I dg-1 (y) If (g-1 (y) > 
y dy X . 

where fy(y) is the marginal distribution of y, g-1 (y) is the inverse mapping 

based on y=g(x), and fx(x) is the distribution of x. Thus, given a monotonic 

transformation g(x) we can define fy(y) based on fx(x). 

This study proposes using the inverse hyperbolic sine to transform crop 

yields. The univariate inverse hyperbolic sine distribution presented in 

Burbidge et al. is 

(2) 

where Yt is the observed variable and 8 is a parameter that controls kurtosis. 

I Ramirez made two basic modifications to the univariate mapping. First, Ramirez 

suggested that Yt be replaced with et. Hence, the errors could be nonnormal 
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apart from any deterministic component. Second, Ramirez added a centrality 

parameterµ. The centrality parameter in conjunction with 8 can be used to 

control skewness. Thus, the univariate form of the transformation estimated in 

this study becomes 

(3) 

1 

ln(8vt+( (8vt) 2 +1) 2 ) 
zt- 8 
ee=Zr:-µ . 

where vt is the deviation from the deterministic model, Yt is the prediction, Zt 

is the transformed deviation, et is the normally distributed deviation, andµ is 

the centrality constant. 

The nature of this transformation and its effect on the probability density 

functions are shown in Figures 1 and 2 respectively. In Figure 1 the straight 

line depicts the "normal" transformation. Specifically, as 8 approaches zero, 

the inverse hyperbolic sine transformation becomes a straight line. If 8 is 
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nonzero, negative in the current case, then the transformation becomes s-shaped. 

The sigmoid shape of the curve is symmetric with respect to the origin. The 

effect of this transformation is to change the kurtosis of the distribution. 

Finally, µ shifts the curve away from the origin inducing nonsymmetry. This 

nonsymmetry manifests itself as skewness. 

In Figure 2 the base graph represents the deviation from trend for corn in 

the southeast assuming a normal density function (i.e. 0 - µ - 0). The symmetric 

distribution around the normal distribution function represents the change in the 

distribution when only the kurtosis is allowed to change (i.e. 0 < 0, µ - 0). 

Note the difference between the kurtotic distribution and a simple change in 

variance. Specifically, the probability of a zero draw increases as does the 

probability of a draw at -20. Hence, the distribution has not simply been 

flattened, rather the relationship between the second and fourth moments has been 

changed. The effect of skewness (i.e. 0 < 0, µ < 0) in this case is far more 

dramatic as illustrated by the negatively skewed density function in Figure 2. 

Thus, the transformation using the inverse hyperbolic sine allows both skewness 

and kurtosis to be modeled. 

The transformation can be extended to multivariate space following the 

transformation results presented in Hogg and Craig 

where g-1 (y) is a vector inverse mapping function and g1- 1 (y) is the inverse 

mapping function for the ith element from that mapping function. Following 

Ramirez, the j acobian matrix of the transformation is assumed to be dia·gonal, 
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therefore, 

(5) 

agj1 <Y> = <1+ c0 Y > 2> --½ i=i 
i:)yj , 1 1 

agj_l (y) -o fox i ~ j 
i:)yj 
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the determinant of the j acobian is the product of the diagonal 

elements. This implies that the marginal transformations are independent. The 

multivariate density function can then be expressed as 

(6) 

fv =-1- IC,--½ e,m/- 2
1 (zt-11) 0-1 (zt-11) I\ ,ff (l+ (v1 t8.1) 2) --½ 

t ./fi --r\ /1=1 
l 

ln (v1t81 + ( (v1t81 ) 2+1) 2 ) /81 
l 

ln (v2t82+ ( (v2t82) 2 +1) 2 ) /82 
Zt-

1 

ln (v.,t8.m+ ( (v.rnt8.11) 2 +1) 2 ) /8.11 

where O is the variance matrix of the transformed residuals, Zt is a vector of 

transformed residuals,µ is the vector of noncentrality parameter and 8 is the 

vector of kurtosis parameters. 

Estimation of the Inverse Hyperbolic Sine System 

Using the probability density function in equation (6), a maximum 

likelihood estimation procedure can be employed to estimated the parameters 

depicting yield distributions over time. We present a model where yields follow 

a deterministic linear trend with nonnormal deviations. This procedure jointly 

estimates the parameters of the linear tre.nd and the nonnormal transformation. 

This departs from other studies that estimate the time trend using ordinary least 

squares, then estimate the higher moments using the residuals from that 

regression. In addition, the suggested procedure is sequential by necessity, 

because the iterative procedures used in the maximum likeliho.od estimation 
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require starting values which cannot be zero in the case of the kurtosis 

parameter. 

The first step in the proposed procedure is to test the individual series 

for nonnormality. Hence, we use ordinary least squares to derive estimated 

deviations. These deviations are then tested for,normality using the skewness, 

kurtosis, and joint skewness and kurtosis tests outlined by Harvey. If either 

skewness or kurtosis is found, the next step is to fit an individual inverse 

hyperbolic sine representation. These univariate representations are used as 

starting values for the joint estimation process described later. If the 

deviations cannot be distinguished from normality, the distribution is assumed 

to be normal (i.e. 8-µ-0). 

To estimate the nonnormality parameters the ordinary least squares 

estimates of trend and standard error are used as initial estimates. From the 

ordinary least squares results in the first step we obtain 

(7) D= (x1x) - 1 (x1y) 

e=y-xJS 

where bare the estimated trend parameters, xis a matrix consisting of a column 

of ones and a linear trend column, y is the observed level of yields, and e are 

the estimated residuals. Maximum likelihood can then be used to fit 8.and µ 

based on these residuals 

(8) Max e, µ, o2 

T 1 T (zt-µ) 2 1 T 
L1 =--lno2-- ~ --"----- ~ ln(l+(et8) 2 ) 

2 2 t=l o 2 2 t=l 

1 

Ze=ln(ee8+( (et8) 2 +1) 2 )/8 

One problem with this approach is that the estimated deviations are based 

on the estimated trend parameters which may be biased by construction. Ordinary 

least squares is an efficient estimator given that the errors of the regression 

are normally distributed. However, by the very nature of the problem the 
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73 
deviations are a~sumed nonnormal. Hence, the ordinary least square estimator of 

the regression parameters may be inappropriate. To overcome this problem, the 

results of equation (8) are used as starting values in the likelihood function 



(9) Max z..i=-..!ln(o2)-1:. f (zc-µ) 2 -1:. f ln(1+(vc8) 2} 
a:o,a:1,8,µ,02 2 2 t=1 o2 2 t=1 

Vc=Yc-a:o-a:1t 

1 

Zc=ln(8vc+( (8vc) 2+1) 2 )/8 
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These results can be compared with the ordinary least squares likelihood function 

to determine the statistical significance of the transformation. Specifically, 

the difference between L2 and the log likelihood function of the ordinary least 

squared regressor is distributed x2 with two degrees of freedom. 

The final step is to use the individual maximum likelihood results as 

starting points to estimate the system. The likelihood function used in this 

step is simply the log of equation (6), 

(10) 

1 

z 1c=ln(v1c81+ ( (v1c81) 2+1) 2 ) /81 • 

From an applications standpoint, this equation maybe difficult to max~mize. 1 

As efficient procedure is to begin with a steepest descent algorithm and then to 

switch to Newton-Raphson when the Hessian becomes well behaved. In addition, 

initi~l off diagonal estimates of the covariance matrix can be obtained by 

transforming the residuals into normality. Also, this estimation can be 

1By construction of the inverse hyperbolic sine transformation, skewness in 
the distribution is jointly determined by 8 andµ. Because kurtosis uniquely 
modeled by 8, the occurrence of skewness without significant kurtosis can 
complicate estimation. This is a primary reason behind our suggestion of 
steepest descent algorithms over more efficient Newton-Raphson algorithms. 
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simplified if one or more of the variables are normally distributed. 

example, if the first variable is normal then 81 approaches zero, and 

1 

Z1c=ln(V1c81+ ( (v1c81) 2+1) 2) /81 

becomes Z1t - vit and ln(l+ (vit8i) 2 ) - ln 1 - 0. 

Estimated Results 

75 
For 

The inverse hyperbolic sine transformation was estimated for wheat, corn, 

oats, and barley in the southeastern United States using average regional yields 

from 1950-1989. A deterministic linear trend is applied and the deviations from 

this trend are allowed to be nonnormally distributed. 

Initial tests for normality presented in Table 1 indicate that normality 

cannot be rejected for wheat yields. However, corn, oats and barley appear to 

be skewed, but none of these distributions exhibit kurtosis. The joint 

hypothesis for both skewness and kurtosis can be also rejected for corn and oats. 

Based on these results, univariate inverse hyperbolic sine distribution were fit 

for corn, oats and barley. 

Next, the univariate inverse hyperbolic sine transformation for corn, oats 

and barley in the southeastern United States from equation (9) was estimated 

using maximum likelihood. These results are presented in Table 2. As 

anticipated, the results from the inverse hyperbolic sine estimation have 

relatively large skewness parameters and small kurtosis parameters. Using these 

values as starting points, the full information system in equation (10) was 

estimated. These results are presented in Table 3. 

The estimates for the transformation variables from the full information 

maximum likelihood are close to the limited information maximum likelihood for 

corn and barley. However, the additional information caused significant changes 



in the transformation for oats. 
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In addition, the results from the full 

information maximum likelihood possess both intercepts and deterministic trend 

parameter estimates for all variables. The intercept of the deterministic trend 

(a0 ) increased substantially for wheat, oats and barley. However, the annual 

increase (a1) is relatively close to the single equation estimates. 

The "variance" matrix presented in Table 3 requires additional elaboration. 

Technically, the variance matrix presented in Table 3 is the covariance matrix 

for the transformed random variables. Hence, it cannot be interpreted without 

the transformation. This is of particular importance in the results for oats. 

According to the Table 3, the current variance of oat production is .0171 which 

is very low. However, the transformation parameters for this equation are now 

relatively large. Thus, it would be incorrect to interpret this parameter as the 

variability in oat yields. The appropriate variance can be computed utilizing 

the moment generating functions from Ramirez. 

Simulating Nonnormal Variables 

The major focus of this paper is to model nonnormal correlated random 

variables. The basis for the correlated portion of this objective is the 

variance matrix of the transformed random variables. The nonnormality is modeled 

using the inverse hyperbolic sine transformation. 

The first step in risk simulation is to generate a set of normal correlated 

random draws using the transformed variance matrix estimates from Table 3. 

Following Clements et al. a matrix (Tx4) of N(O,l) variates are drawn using a 

psuedo random number generator. This vector is then multiplied by the Choleski 

decomposition of the transformed variance matrix. This results in a matrix of 

correlated normal deviates which are then transformed using the hyperbolic sine. 

Specifically, 
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y=sinh(z8)/8 

(11) 
{ 

z if 8=0 l 
sinh(z8) e.a-_ -er 

8 e e if a~o 
8 

Using this procedure, the estimated parameters in Table 3 were used to 

generate 750 samples of wheat, corn, oats and barley in the southeast region. 

Figure 3 presents the histogram for wheat yields in this simulated sample. 

Consistent with the formulation, wheat yields appear to be normally distributed 

around a mean of 36.56 bushels. Figures 4-6 give the histograms for corn, oats 

I and barley respectively. The average simulated yield for corn was 82. 95 bushels 
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per acre, the average simulated yield for oats was 60.14 bushels per acre, and 

the average simulated yield for barley was 54.61 bushels per acre. In all three 

cases the distributions are negatively skewed. 

distributions conform with the estimated parameters. 

Conclusions and Discussion 

Hence, the simulated 

Nonnormal correlated random events can plan an important role in several 

areas of agricultural economics research. Farm management and agricultural 

policy research may be particularly interested in correlated nonnormal random 

draws since there is evidence that crop yields and prices are often correlated 

and may be kurtotic and skewed. These properties may have profound affects on 

firm decisions and, hence, on the costs and benefits of agricultural policy. 

This study presented one approach to modeling nonnormality which allows for 

correlation. Specifically, this study estimated an inverse hyperbolic sine 

I transformation into normality for wheat, corn, oats and barley yields in the 

I 
I 
I 

southeastern United States. The estimated parameters where then used to simulate 

crop yields. 
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The methodology presented allows for the estimation of nonnormal correlated 

random variates based on a transformation to normality. This transformation has 

several desirable advantage over previous approaches. First, the inverse 

hyperbolic sine transformation to normality has an explicit interaction term, the 

transformed variance matrix. Hence, the interdependence between random variables 

is an explicit part of the density function. Second, normality using 

nonnormality is a special case of the transformation. Further, it is possible 

to test for normality using the estimated parameters. Third, the complete 

distribution function is known. Thus, the interaction terms and transformation 

parameters can be estimated at the same time. Hence, the ordering of the 

variables makes no difference unlike conditional approaches. 

formulation allows the joint estimation of the trend parameters. 

Fourth, this 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

79 

References 

Burbidge, John B., Lonnie Magee, and A. Leslie Robb. "Alternative 

Transformations to Handle Extreme Values of the Dependent Variable." 

Journal of the American Statistical Association 83(1988): 123-27. 

Clements,~ A. M. Jr., H. P. Mapp Jr., and V. R. Eidman. 

Correlating Events in Farm Firm Simulation Models." 
/ 

University Agr. Exp. Sta. Bull. No. T-131, Aug. 1971. 

Day, Richard H. "Probability Distributions of Field Crops." 

Economics 47(1965): 713-41. 

"A Procedure for 

Oklahoma State 

Journal of Farm 

Freund, R.J. "The Introduction of Risk into a Programming Model." Econometrica 

24(1956): 253-64. 

Gallagher, Paul. "U.S. Soybean Yields: Estimation and Forecasting with 

Nonsymetric Distributions." American Journal of Agricultural Economics 

71(1987): 796-803. 

Harvey, Andrew C. Forecasting, Structural Time Series Models and the Kalman 

Filter (New York: Cambridge University Press, 1989). 

Hogg, Robert V. and Allen T. Craig. Introduction to Mathematical Statistics 

Fourth Edition. (New York: Macmillan Publishing Co., Inc., 1978). 

Johnson, N. L. "Systems of Frequency Curves Generated by Methods Translation." 

Biometrika.36(1949): 247-67. 

King, Robert P. "Operational Techniques for Applied Decision Analysis Under 

Uncertainty. " (Unpublished Ph.D. Dissertation, Michigan State 

University). 

Luttrell, Clifton B. and R. Alton.Gilbert. "Crop Yields: Random, Cyclical or 

Bunchy?" American Journal of Agricultural Economics 58(1976): 521-31. 



80 
Mood, Alexander A., Franklin A. Graybill, and Duane C. Boes. Introduction- to 

the Theory of Statistics Third Edition. (New York: McGraw-Hill, Inc., 

1974). 

Ramirez, Octavio A. "Statistical Properties of the Inverse Hyperbolic Sine 

Random Variable and its Multivariate Equivalent." Journal of Economic and 

Business Statistics (Forthcoming). 

Richardson, James W. and Clair J. Nixon. "Description of FLIPSIM V: A General 

Firm Level Policy Model." Texas Agricultural Experiment Station, B-1528, 

July 1986. 

Richardson, James W. and G. D. Condra. "A General Procedure for Correlating 

Events in Simulation Models." Mimeograph. Texas Agri. Exp. Sta., 

Department of Agricultural Economics. College Station, TX. 1978. 

I 
I 
I 
I 
I 
I 
I, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

81 

Table 1: Preliminary Tests for Nonnormality of Deviations from Trend 
Yields 

Significance of Testa 

Yield Skewness Kurtosis Both Skewness and 
Kurtosis 

,.. 
Wheat .2830 .8643 .6651 

Corn .oooob .7027 .1149 

Oats .0000b .9996 .1018 

Barley .oooob .9998 .0022 
Test values are the observed Sl. n1.11.cance levels 01 the h g yp othes1.s that the 

deviations conform to normality. The test for normality are taken from Harvey. 

hsignificance level rounds to zero. 

Table 2: Estimates of the Univariate Inverse Hyperbolic Sine 
Transformation Parameters 

Parameter Estimates 

Equation e µ ao Ql a2 

Wheat - - 14.2376 .7857 17.7384 

Corn -.1527 -7.2803 21.6699 1.8010 17.9287 

Oats -.2433 -2.0414 28.5714 .8347 9.1978 
~ 

Barley -.1744 -2.0374 25.5142 .7580 17.1251 



Table 3: Estimates of Distributional Parameters Using Full Information 

Parameter Estimates 

Equation 8 µ ao a1 WaWheat "'corn "'oats "'Barley 

Wheat - - 18.0063 .4581 17.8989 

Corn - .1368 -8.0571 21,8733 1. 7774 -5 .1161 20.7193 

Oats -3.0117 -1. 3844 36.9516 .85338 .0336 -.0152 .0171 

Barley - .1372 -10.3006 36.7687 .80753 6.3690 -.5145 .2658 6.3397 

aThe estimated parameters ware the lower triangle of the O matrix which represents the 
variance matrix of the transformed residuals. In the case of "'wheat• this parameter is 
the variance of wheat yields. 
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Figure 1: Inverse Hyperbolic Sine Transformation 
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Figure 3: Simulated Wheat Distribution 
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Figure 4: Simulated Corn Yield 

8.48 18.30' 28.11 37.92 47.73 57.55 67.36 n.11 86.99 96.80 
13.39 · 23.20 33.02 42.83 52.64 62.45 72.27 82.08 91.89 101. 71 

Yield 

----~--------------



-------------------

0.2 

'?ft 
>a 0.15 
0 
C 
Q) 
:::, 
CT 
a> 0.1 
I-

LL 

0.05 

Figure 5: Simulated Oat Yields 

31.23 35.29 39.35 43.41 47.47 51.53 55.59 59.64 63.70 67.76 
33.26 37.32 41.38 45.44 49.50 53.56 57.62 61.67 65.73 69.79 

Yield 
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Figure 6: Simulated Barley Yields 

33.24 36.81 . 40.39 43.96 47.53 51.10 54.68 58.25 61.82 65.40 · 
35.03 38.60 42.17 45.75 49.32 52.89 56.46 60.04 63.61 67.18 

Yield 
co 
co 

-------------------


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022

