
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

QUANTIFYING LONG RUN AGRICULTURAL RISKS AND EVALUATING 
FARMER RESPONSES TO RISK 

Proceedings of a Seminar sponsored by 
Southern Regional Project S-232 

"Quantifying Long Run Agricultural Risks and Evaluating 
Farmer Responses to Risk" 

San Antonio, Texas 
March 17-20, 1991 

Agricultural Economics and Rural Sociology 
University of Arkansas 
Fayetteville, Arkansas 

March 1991 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

TWo Applications of Chaos in Economic Theory 

by 

John W. McClelland 

John w. McClelland is an Agricultural Economist, U.S. Department 
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Applications of basic mathematical mechanisms that determine 

the dynamical behavior of systems ranging from planets to weather 

to biology can also be applied to ec·onomics. However, if the 

theory of chaotic dynamics is to be useful for economic analysis, 

economists must establish models in which the dynamic behavior of 

economic agents or aggregates is represented by nonlinear 

relationships. For such models to be relevant important to show 

that chaotic trajectories would result from a set of initial 

conditions of sufficient generality, and that the distribution of 

sequences describing these trajectories exhibit certain 

regularity properties so that probabilities concerning the future 

behavior of an orbit generated by a particular initial condition 

can be determined. In this paper I will review previous research 

establishing the existence of chaotic economic models and the 

conditions under which chaotic trajectories will be generated. I 

will rely on results presented by Weiss in this volume, 

particularly with respect to the behavior and stability of the 

quadratic map. The paper focuses on two examples, a model of 

pure exchange, and a model of capital accumulation. The models 

are presented in simple forms that may not be consistent with the 

real world, but which illustrate fundamental dynamical 

properties. 

Pure Exchange 

Sarri (1988, 1989) discusses the properties of the model for 

a pure exchange economy described in works by Sonnenschein, 

Mantel, and Debreu. Consider an exchange economy that exists in 

time. At the beginning of each day the agents in the economy 
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express their desires for the commodities in terms of Walrasian 

supplies and demands. For an arbitrary price vector p, there 

will be excess supplies and demands in some or all markets. 

Assume that prices adjust according to the law of supply and 

demand in the following way. There are q ~ 2 commodities, and a 

~-~ agents in the economy. Each agent has an initial endowment 

of commodities denoted by the vector W= ( w1 .£, W'2 .£, ••• W' c .£) 

which is a vector in R.~, where R.~ is the positive orthant 

of the commodity space Re Each agents• preferences are given 

by a smooth concave utility function U that maps the commodity 

space onto the real line, and where all of the components of the 

gradient of U, are positive~ For any price vector p, the budget 

constraint is given by 

1.1 (p·z) ~ (p·wi) - (p·wi-p·.r} ~ o, V .reR c 

Each agent's demand for goods is given by the point zi, 

dependent on p where an indifference curve of Ui(.r) is tangent 

to the budget plane. Thus, each agent has wi and wants .ri. 

The difference between what the agent has and what he wants, 

.ri-wi, defines the agent's excess demand vector 

gi(p}=(zi-wi) , indicating what the agent is willing to trade. 

If an element of· gi(p} is positive, demand is greater than 

endowment and the agent wants to buy. If an element of gi(p) 

is negative the agent has excess supply and wants to sell. 

Because the vector, gi(p} , is in the budget plane, 

1. 2 p·gi (p) = 0 

each agent's ability to buy and sell commodities depends on the 



4 

excess demand functions of other agents in the economy. If other 

agents are willing to buy and sell commodities then a market 

exists, and we can define an aggregate excess demand function for 

the market as, 
C 

1. 3 g<p> = E gi <P> 
i•l 

The market is in equilibrium,-when the total amount of 

commodities agents want to sell is equal to the total amount of 

commodities agents want buy. 

1.4 

This condition is given by 

p·g(p) = 0 

If 1.4 does not hold markets will not clear for a given price 

vector p, and a new pis needed. But how is that new p 

determined, and does the adjustment of prices lead to an 

equilibrium? 

The price adjustment process is the basic dynamic in the 

intertemporal exchange economy. Following Sarri (1989}, the 

dynamics of price adjustment are analyzed by considering the 

tatonnement process. Tatonnement suggests that positive elements 

of the aggregate excess demand function require a higher price to 

reach an equilibrium, and negative elements should be priced 

lower. The price adjustment mechanism is defined as 

pt+l = Pc+h(g(Pt)) = Fg(Pt) 

where his a positive scalar. Using the Sonnenschein-Mantel

Debreu theorem it can be shown that any function satisfying the 

conditions is an excess demand function for some economy. 

1) pg(p)=O Vp>O, 2) if Pi, the price of the i th 

commodity, has a sufficiently small value the aggregate demand 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

for that commodity will be positive. Thus, there exist excess 

demand functions that exhibit any particular type of dynamical 

behavior one would wish to consider (Sarri, 1989). 

Investigate the dynamic properties of the tatonnement 

process requires two standard reductions in the model (Sarri 

198~)- The first is to normalize the vector p and reduce the 

domain of the problem to the unit interval so that 

1.6 _LP1 = 1 
i 

Applying Walras' Law we know that if we determine the first c-1 
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prices the last price is determined by 1.6 implying that the 

first c-1 prices can take any values on (O, 1) so long as the sum 

of these prices is strictly less than one (we assume there are no 

free goods). For an economy with only two commodities these 

reductions make Fg in 1.5 a smooth function defined on [O, l]. 

For the case of a two good economy only one price is needed, and 

p becomes a point, denoted p. 

The goal of a market dynamic is to find a price that obtains 

an equilibrium, that is, find a p that makes g(pe) = O . Such a 

point is found when Pe+i = Pe • Graphically, all equilibrium are 

the set of points where p = Fg on the 45 degree line in figure 

1. When pis not an equilibrium point the dynamic process in 1.5 

will generate a new price and the process continues until an 

equilibrium-is reached. In some instances 1.5 will converge to a 

stable equilibrium, while in other cases there may be unstable 

equilibria. However, there are also points on [O, l] that do not 

converge to a stable or unstable equilibria·. 
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To show that there is a set of points on [0, 1] that never 

obtain an equilibrium, characterize the set of points _that are 

equilibria or converge to an'equilibrium in terms of the points 

that never converge Sarri (1988, 1989). Define the nonconvergent 

set, s = {of all pl if pis an initial price then the dynamic 

defined in 1.5 never converges to a zero of g}. Two theorems by 

Sarri (1989) show that for a g of this kind the sets is large. 

I will rely on examples from the quadratic difference to 

illustrate the result, but the result itself is generic. 

Theorem 1. -For a general function g defined in 1.5 but 

characterized by the quadratic form, the set Sis uncountable. 

Remark 1. Demarcate the quadratic difference in figure 1 at 

0.5. All points on the p axis to the left of 0.5 are contained 

in the set denoted a, and all points to the left of 0.5 are in 

the set denoted b. Choose an initial iterate p 1 and follow the 

orbit obta~ning a sequence of points {p1 ,p2 ,p3 ,p4 , •• .}. Each 

value Pi in the sequence has an address in the corresponding 

set, a orb where it lives. An alternative way of representing 

the sequence is to replace each pi with letters that correspond 

to it's address, that is {a,a,b,a,b, .. . } where 

P1£a,p2ta,p3tb,p4 £a,p5tb, and so on represents the sequence 

generated by a particular p 1 • Define U= {a,b} as the 

universal set, or the set of all possible sequences made up of 

the letters a and b. The assertion is that the dynamics of the 

quadratic, and by implication, the dynamics of tatonnement for a 

general g satisifying the Arrow-Debrue-Mantel conditions, are so 
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erratic that they_ seem to be generated by a random process. 

Theorem 2. Let g be a general function as characterized by 

the quadratic form, and let ZeU{a,b}. There exists an initial 

iterate p 1 so that the k th iterate of p 1 is in the interval 

denoted by the k th symbol in Z. 

R~ark 2. Theorem 2 implies that it is possible to specify 

the entire future of any initial iterate in advance. That is, it 

is possible to show how the orbit of any initial seed point will 

bounce back and forth between the intervals a and b. 

Furthermore, there exist an unique future for each initial point. 

If the resulting sequence generated by an orbit does not obtain 

an equilibrium than the corresponding sequence in U will not 

become constant in a fixed interval. A nonconstant sequence in u 

is sufficient to show that the dynamics of the function will not 

converge. There are an uncountable number of sequences in U that 

are not eventually constant, so there must be an uncountable 

number of initial iterates with dynamics that do not converge. 

Thus theorem 1 is a consequence of theorem 2. 

Proof. The proof of theorem 2 relies on the concept of the 

inverse image of a set. In figure 1 there are.points in interval 

a that will go to interval b after one iteration. The interval a 

covers the entire interval (O, 1), and a subset of a covers b. 

The converse of this is also true. There are also points that 

remain in a after one iteration and then go to band then back to 

a and so on. 

of b denoted 

The subset of a that covers bis the inverse image 

T- 1 a (b). • Now define a sequence 
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Figure 1. Inverse Images of the Quadratic 
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T = {a,b,a,a,b, .. . } , and let Tn be the listing that specifies 

the first n terms of T such that T2 = {a, b}, Tc = {a, b, a} • Define 

the set C(Tn) = { p I 1 < i < n-1, p 1 is in the i th specified. 

interval of Tn and Pn is in the closure of the n th 

specified interval}. For any sequence T there is a corresponding 

sequence of inverse images that, by the continuity of F, are 

nonempty closed subsets. Furthermore, these subsets are nested 

in smaller and smaller portions of the intervals with the 

structure, a C(T2 ) ••• C(T3 ) ••• C(Tn)... • By definition the set 

C(Tn) consists of all of the initial points where the dynamics 

obey the first n steps of the specified sequence. Such points 

exists and are countable because the intersection of compact 

nested sets is nonempty. However there are an uncountable number 

of sequences that will not allow the trajectory of an initial 

iterate to remain in any one interval, that is not converge. 

Because there are an uncountable number of points that allow this 

behavior the set S contains an uncountable number of points. 

QED. 

Sarri's Work on the tatonnement process and his theorems are 

proofs for general cases with .specific applications to economics. 

These theorems show how tenuous our assumptions of convergence 

for many dynamical processes may be. In fact, dynamical systems 

are more likely to be unstable and nonconvergent than to exhibit 

smooth convergence to an equilibrium. 



Capital Accumulation and Business Cycles 

Dynamical techniques have been applied to the study of 

aggregate economic phenomena for quite some time. Two of the 

most important areas where economic dynamics has been developed 

have been models of capital accumulation, and business cycles. 
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In both cases there has often been an implicit assumption that 

dynamical economic systems would ultimately obtain a long-run 

steady state solution that could be a fixed point, or a limit 

cycle of some kind. While the discussion of tatonnement and the 

possibility of chaotic behavior in that process tended toward the 

abstract, our current discussion will focus on a model with a 

specific functional form and economic justification. 

Bhaduri and Harris investigated the dynamics of the simple 

Ricardian model for capital accumulation, and found this model to 

have a rich variety of dynamical behavior for a broad range of 

economically relevant parameter values. The model is based on a 

"corn" economy where a single homogeneous output is distributed 

between wages to labor, profits to capitalists, and factor rents. 

The model is developed from the notion that land used to produce 

corn will decrease in quality as the amount of land in production 

increases. Thus, labor productivity will decrease at the margin. 

Assume that the marginal productivity of labor can be expressed 

as a linear function 
dY · 

2 .1 __ e = a-bXe a>O, b>O 
dXe 

The corresponding equation for total product is obtained by 

integrating this equation to yield 
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X X 

2.2 Ye= JMPx = f a-bXe = axe-ix/ 
0 0 

The constant of integration in 2.2 vanishes if we assume that 

there is no production of corn if there is no labor. Average 

product of labor is given by 

2.3 
yt b 

AP = - = a--X 
X X 2 t 

t 

Depending on how much land is in production at any particular 
.,. 
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time, the rental value of land is given by the difference between 

the average 

2.4 

Profits to 

and marginal product of labor, 

Yt dYt b . b b 2 
Rt =: [-- dX ] Xe = a--Xe-a-bX2 = (-2 Xe) Xe = -2 Xe 

Xe . t 2 

capitalists are the residual after payments have been 

made to labor's wages and capital rent. 

2.5 

Changes in capital accumulation in this economy are considered 

through the dynamics of the wage fund, because the size of the 

wage fund determines how many workers can be hired to produce 

corn, and how marginal the land used for cultivation will be. 

Assume a given wage rate, w, then the total wage fund is 

2. 6 wt = wXe 

Accumulation in the wage fund are entirely derived from the 

I reinvestments of profits that accrue to capitalists. What will 

the wage fund be in time t+1 given economic activity in period t? 

I 
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I 

Wages in any future period will equal to profits in the previous 

period plus wages in the previous period. If profits are 

positive the wage fund will increase, more labor will be hired, 

and more land cultivated. If profits are negative, the wage fund 

will decrease, less labor will be hired, and less land will be 
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cultivated. Thus.the dynamics of the wage fund can be expressed 

simply by 

2.7 

Using these relationships, we can derive the motion of the 

economy in terms of employment in the following way. 
b - b P = ax - x 2--x 2 -wx - ax -bx 2 -wx t t 2 t 2 t t - t t t 

Pe = wt+l -wt = WXe+1-WXe 

Pe - . 
- -Xe+1-Xe· w 

X _ ax bx 2 
t+l - - e-- e w w 

Equation 2. 8 has an equilibrium at Xe+i = O , and at Xe+i = Xe 

which yields 

2.9 X =~X* e b e 

From equation 2.1 we see that at the equilibrium level x• the 

marginal product of labor is equal to the real given wage rate, 

and that profits go to zero. These are exactly the conditions 

for a long run competitive equilibrium, all of the rent in 2.5 

has gone to capitalists in the form of profits, and 2.7 is zero, 

the wage bill for each period is unchanged. 
\ 

Now we have succeeded in deriving the basic dynamics and 

equilibrium conditions of the simple Ricardian economy, but we 

need one further step to reduce the system to a well defined 
\ 

dynamic for which there is some economic interpretation. Bhaduri 

and Harris have derived such a system, one that is equivalent in 

every way to the quadratic maps Weiss discussed in detail. The 
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analysis relies on the fact that a positive marginal product of 

labor in 2.1 requires that a> bX for all economically meaningful 

levels of employment. Using this fact we define a new variable, 

x, such that, o s Xe = b Xe s 1 , which allows us to rewrite 2. 8 
a 

as 

2.10 a 
Xc+i = Axc(l-xc), A = 

w 

This equation is the result of manipulating a Simple Ricardian 

system with standard neoclassical assumptions and reducing its 

dynamics to a function defined on [O, 1] that maps itself into 

A-1 
A 

[O, 1]. An equilibrium condition for 2.10 is clearly 

which corresponds to the Ricardian steady state. 

To investigate additional economic interpretations of the 

model it is useful to point out that for the economy to be viable 

the coefficient, a, in equation 2.1 must be greater that the wage 

rate. If it were not the level of employment would go to zero 

where it would stay. Thus, it will always be the case that the 

parameter, A= ~>1, if the economy is viable. Because A is 
w 

the tuning parameter in the quadratic equation, it is useful to 

rewrite it in different forms to consider how economic 

relationships between technology and wages affect the dynamics of 

accumulation. One way to rewrite A is in the form 

~ = a-w+w = l+e, e = a-w 
w w w 

Bhaduri and Harris define e as the exploitation parameter because 

it is the measure of exploitation measured in corn given the 

assumption of linear marginal productivity of labor. While there 

is no further explanation of exploitation, a closer look ate 
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provides some insight. The technical coefficient, a, in equation 

2.1, and 2.2 is the dominant coefficient in the technology. The 

size of a relative tow tells us how much capitalists are 

exploiting labor. If the value of a is large relative tow then 

the technology is highly productive relative to the level of 

- . ·wages. As the value of thee approaches and exceeds 3 

accumulations would become erratic, and the trajectory would 

eventually become a cantor set. Thus, if capitalists exploit 

labor with the thought of rapid and ever growing accumulations 

the result will be erratic and often negative accumulation that 

appears to run counter to optimal behavior. The message from 

this simple economy seems to be that if capitalists do not 

provide for a reasonable distribution of corn to their labor, 

their lives will become chaos. 

Another interpretation of A comes from expressing it in 

terms of the AP and 
' 

level. Recall that 

can be expressed as 

MP of labor at 

AP" = (a+w) 

the Ricardian equilibrium 

and MP* = w • Thus, 
2 

2.12 (a+w)~-1=~ 
2 w ,,. 

A= a 
w 

where 11· is the output elasticity of labor at the steady state 

11 = 11·. If A must be greater than one as a viability 

condition, then 11 must be less than one. When values of 11·, 

the economy will always converge to a steady state equilibrium, 

but when values go beyond this range, approach, and recede from 

then we observe increasingly complicated behavior culminating in 

chaos. Bhaduri and Harris point out that a value of 11· _is a 
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very strong condition that would require the presence of fixed 

factors in the technology. Such a condition would be " ••• highly 

comparable with the classical analysis of income distribution and 

groyth in which limitations of nonproducible natural resources 

like land are assigned a significant role" (Bhaduri and Harris, 

p. 899). 

The exposition of the classical Ricardian economy by Bhaduri 

and Harris is important for our study of chaos because it shows 

that there is a correspondence between simple economic models and 

mathematical formulations that can exhibit chaotic dynamical 

behavior. While the model is of the simplist form, it suggests 

that more complicated models could have ranges of parameters that 

are economically meaningful and also generate very complicated 

dynamics. This model also shows, in the strongest terms, that 

the classical assumption of convergence, or simple oscillation, 

should be viewed with skepticism. 

Conclusions 

Two examples of chaotic dynamics in economic systems have 

been presented in this paper. These examples have been 

simplified so that they are compatable with the most easily 

understood mathematical exposition of chaos, the quadratic 

difference equation. I can not stress enough, however, the 

generality of these results, and the importance they should be 

accorded in future analysis of dynamical systems. As Mike Weiss 

has pointed out in his paper, also presented in this volume, the 
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implications of chaos theory extend beyond these simple models, 

and include models of consumer behavior, decision analysis and 

forecasting. I also suspect applications exist in capital 

replacement theory and asset management problems. Much 

additional research on applications of chaos theory, and 

development of empirical methodologies must be done. Until these 

techniques are developed, applied researchers will find 

applications difficult. However, knowledge of the basic 

mechanisms of chaotic dynamics will broaden our range of 

understanding and deepen our appreciation of possible behaviors 

in dynamical systems. 
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