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Elliptical Symmetry and Mean Variance Portfolio Choice 

by 

Carl H. Nelson 1 

Abstract 

Results of Chamberlain and Meyer are combined to extend Meyer's location-scale 
condition to portfolio choice models where the distribution of returns is 
elliptically symmetric. This extension implies that mean-variance choice is 
consisteht with expected utility maximizing choice for such models. All expected 
utility maximizing portfolios lie on the mean-variance efficiency frontier which can 
be generated with quadratic risk programming. A test for elliptical symmetry is also 
described. This test enables one to determine whether a given set of portfolio data 
satisfies the conditions which make mean-variance choice consistent with expected 
utility maximization. 

Elliptical Symmetry and Mean Variance Portfolio Choice 

Quadratic risk programming and mean variance models of decision making under 
uncertainty have been fruitful tools in economic research on behavior under 
uncertainty. In recent years the use of these methods has diminished because of 
criticisms of the restrictive assumptions (normality of returns or quadratic utility 
function) under which such methods are consistent behavioral models of rational 
choice under uncertainty. Meyer showed that such consistency is present in a wider 
class of models with univariate risk than was previously believed to be available. 
Unfortunately many interesting problems contain multivariate risks, and Meyer's 
re;ults do not directly apply to such cases. In this paper we show that Meyer's 
results can be generalized to a large class of models with multivariate risk. The 
distinguishing characteristic of this class of models is that the distribution of 
the multivariate risks be elliptically symmetric. In the following sections we 
describe elliptical symmetry, show how Meyer's results can be generalized, and we 
present a test for elliptical symmetry that is easy to implement. 

Elliptical Symmetry 

The family of multivariate elliptically symmetric distributions is a large 
family of distributions whose members include the multivariate normal, multivariate 
t, Pearson Type II, Pearson Type VII, and certain mixtures of normal distributions. 
The distinguishing characteristic of members of the family is that their contours of 
equal density have the same elliptical shape. The family contains distributions that 
are long-tailed and short-tailed relative to the normal, and the support of 
distributions in the family can be infinite or finite. 

Assuming that the random vector X has a density function elliptical symmetry 
of X can be defined by: them x 1 random vector X follows an elliptically symmetric 
distribution with parametersµ (m x 1) and V (m x m), written X - E (µ,V), if its 
density function is of the form: 

1Assistant Professor, University of Illinois at Urbana-Champaign 
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f(X) - C (detV)"112 g [ (X-µ) 'V1 (X-µ)] ( 1. 1) 

for some one dimensional density g. The matrix Vis positive definite. 
The characteristic function,~ (t), of elliptically symmetric random variables 

has the form: 

~ (t) - e~, ~ ( t'Vt) (1. 2) 

And, provided they exist, E(X) - µ and Cov(x) - a V, where a - -2 ~'(0). It follows 
from this that all distributions that are Em (µ,V) have the same mean vector,µ , 
and correlation matrix, P - (Pij). 

All marginal and conditional distributions of elliptically symmetric 
distributions are elliptical symmetric (Muirhead, pp.34-36). Univariate elliptically 
symmetric distributions are symmetric. Any linear combination, Y - b'Z, of any 
subset, Z, of of the components of an elliptical random vector is elliptically 
symmetric (Kelker). And, if X - Em(µ,V) and all of the elements of X are 
independent, then Xis normal. 

An important subset of the family of elliptically symmetric distributions is 
the family of spherically symmetric distributions. This subset of distributions is 
characterized by mean vectors of zero,µ- 0, and scalar covariance matrices, V = o2I 
. Note that the result about independence implying normality does not imply that 
spherically symmetric distributions are normal because independence is not the same 
as absence of correlation. This family of distributions is called spherically 
symmetric because for all members of this family contours of equal density are 
spheres centered at the origin. 

Clearly, if X - Em(µ,V) and Lis an m x m lower triangular Cholesky factor of 
V (ie. V - LL'), then Y - L"1 (X - µ ) is Em( 0, I ) or spherically symmetric. If Y 
has an m-variate spherically symmetric distribution with P(Y-0) - 0 and r - I IYI I 
(Y'Y)"112 , T - Y/1 IYI I, then T is uniformly distributed on the m dimensional unit 
hypersphere, and rand Tare independent (Muirhead, p.38). This result is central to 
the test for elliptical symmetry that we propose and investigate. 

Elliptical Symmetry and the Location Scale Condition 

Meyer and Sinn have shown that, in models with a univariate source of risk, 
expected utility maximization is entirely consistent with mean-standard deviation 
choice if decisions only change the location and scale of the risk. And Meyer has 
derived a rich set of comparative static results for such models. All of Meyer and 
Sinn's results can be applied to the portfolio choice problem with elliptically 
symmetric returns. Direct application of Meyer and Sinn's results can take place 
because changes in the composition of a portfolio only change the location and scale 
of total returns. 

This claim contradicts Sinn who argues that the only distribution class, with 
finite variance, that satisfies the requirement that the distribution of final 
wealth be invariant to changes in the portfolio structure is the class of normal 
distributions. In fact all members of the elliptical family share with the normal 
distribution the reproduction property that Sinn refers to in justifying his 
argument. In other words any linear combination of individual components of an 
elliptical random vector will have a distribution in the same linear class. A 
particularly important aspect of this generalization is the fact that there are 
elliptical distributions with bounded support, so that the arguments against the 
normal distribution because it allows unbounded negative returns do not apply to all 
members of the elliptical family. 
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To see that changes in the composition of a portfolio whose individual 
components come from an elliptically symmetric distribution only change the location 
and scale of total returns consider the portfolio choice problem where then-vector 
Xis the vector of returns on individual elements of the portfolio, and X has an 
elliptically symmetric distribution with mean vectorµ and covariance matrix~- The 
vector of weights on the elements of the portfolio is b. Thus total return on the 
portfolio is b'X. Since Xis elliptically symmetric we know that Y - b'X is also 
elliptically symmetric, which means that the centered variable Y - b'µ is symmetric 
about the origin. The mean of Y, which will be denoted bye, is b'µ, and the 
variance of Y, denoted by o2 , is b':Eb. 

Let Z - (Y - e)/o; Z is a symmetric random variable with mean O and variance 
1, and y-~- e + oZ. Changes in the vector b will not change the random variable Z. 
Thus the portfolio choice problem can be written as: 

maximize E[U(e + oZ) j subject toe - b'µ and o2 - b':Eb 
b 

(2.1) 

With the portfolio choice problem formulated in this manner it can be seen that 
changes in the composition of the portfolio will only change the location, e, or the 
scale, o, of the risk. This is a direct result of the fact that Y is a univariate 
elliptically symmetric random variable. Applying Chamberlain's theorem on the 
consistency between expected utility maximization and mean-variance representation 
of preferences, if Xis not elliptically symmetric then changes in the weights on 
the elements of the portfolio, b, will change moments of the distribution of Y, 
other than the mean and the variance. Thus , the representation (3.2) is invalid if 
returns are not elliptically symmetric because the random variable Z is not 
invariant to changes in b. 

The recognition that Meyer and Sinn's results apply to the portfolio choice 
problem with elliptically symmetric returns makes available a rich set of 
comparative static results. Following Tobin, the portfolio choice problem can be 
analyzed by examining preferences in mean-standard deviation space. 

The first properties of preferences that can be derived are that expected 
utl1.ity increases in mean returns, {, if U'({ + oZ) i2:: 0 for all (e + oZ), and that 
ex~ected utility decreases in the standard deviation of returns, o, if U''(e + aZ) ~ 
0 for all ({ + oZ). Together these two properties can be used to sign the slope of 
indifference curves in (o,e) space for risk averse agents. The slope of an 
indifference curve S(a,e) in (o,e) space is: 

S(o,e) - -(8E U[(e + oZ)]/8o)/(8E[U(e + oZ)]/8{. (2.2) 

So S(o,e) i2:: 0 for all (e + oZ) if U'(e + oZ) :2::: 0 and U''(e + oZ) ~ 0. 
Thus, in mean-standard deviation space preferences can be represented by 

positively sloped indifference curves for risk averse investors, and optimal 
portfolios can be determined by finding tangencies between these indifference curves 
and the collection of mean-variance efficient portfolios. The optimal choices found 
by means of these arguments will be entirely consistent with optimal choices 
according to expected utility analysis. 

From second degree stochastic dominance arguments it is known that if risky 
return A is preferred to risky return B by all risk averse individuals then E[A] = 
E[B], and Var[A] < Var[B]. But the converse is not true in general. However, if the 
returns are from portfolios composed from elliptically symmetric returns the 
converse is true. If E[A] - E[B] and Var[A] < Var[B] then A is preferred to B by all 
risk averse investors. Thus, the E-V efficient frontier is the complete set of 
alternatives from which risk averse investors will make their choices. 

Further, the less obvious properties of preferences in mean-standard deviation 
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space derived by Meyer can be applied to the portfolio choice problem. First, 
8S(o,€)/8€ s ( -.~) 0 fore and o > 0 if and only if the utility function exhibits 
decreasing (constant, increasing) absolute risk aversion for all e + oZ. Second, 
8S(to,t€)/8t ~ (-,s) 0 if and only if the utility function displays increasing 
(constant, decreasing) relative risk aversion. And third, S1(o,€) ~ S2 (o,€) for all 
(o,€) if and only if U1 (€ + oZ) is more risk averse than U2 (€ + oZ) for all(€+ 
oZ). 

These properties provide information about the nature of optimal portfolios 
without exact information on utility functions or risk aversion coefficients. For 
example, given decreasing absolute risk aversion a ceteris paribus increase in mean 
returns will lead to an optimal portfolio with a higher mean and a higher variance. 
Or, the higher the degree of risk aversion the lower the mean and variance in the 
optimal portfolio. In essence, both of these statements mean that decision makers 
with lower degrees of risk aversion will choose portfolios futher from the minumum 
variance portfolio than decision makers with higher degrees of risk aversion. 

To summarize, if portfolio returns are elliptically symmetric then expected 
utility maximizing investors will restrict their choice to portfolios on the mean
variance efficiency frontier. And individuals with lower degrees of risk aversion 
will choose portolios on the frontier that are further from the minimum variance 
portfolio than choices made by individuals with higher degrees of risk aversion. 

Of course, as Freund showed the assumptions of constant absolute risk aversion 
and normal returns produce the more specific result of identifying the optimal 
portfolio. So the additional analytic power provided by the results presented here 
occur in cases when returns are elliptical but not normal. These results should have 
wide applicability because there are many elliptical distributions that are not 
normal. 

For example, the use of the normal distribution in portfolio analysis is 
frequently criticized because it allows infinitely large negative or positive 
returns on investments. Elliptical distributions provide a way to maintain the 
analytic convenience of the normal distribution while eliminating this criticism 
because there are many elliptical distributions with bounded support. An example of 
such a distribution is presented below. 

The Nearest Neighbor Test for Ellipticity 

Let F - the collection of all elliptically symmetric distributions which are 
absolutely continuous. The hypothesis to be tested is: 

f E F 
f fl F. 

against (3.1) 

Let fX1 , ~ •... , Xi,) be a sample of observations on an m-dimensional random vector. 
Let µ,L be estimates of the mean vector and covariancQAmatrix ofAthe data. If Lis 
positive definite it hasAa Cholesky factorization L - ll', where Lis lower 
triangular. AUsing Landµ to transform the sample into standardized deviations from 
means, Y1 - L"1 ( Xi - µ ) , i-1, 2, ... , n. If the observed data Xi comes from an 
elliptically symmetric distribution, then Y1 is a sample from a spherically 
symmetric distribution. 

From the properties of spherically symmetric distributions it is known that 
normalized values of Y1, 21 - Yi/ 11 Yd I , are uniformly distributed on the unit 
hypersphere and are independent of the random variables r 1 - I IYd I. The inverse of 
this transformation provides an easily implemented method for generating samples 
from a sphericaliy.symmetric distribution. First generate n variables, Zi, uniformly 
distributed on the unit hypersphere; then, generate a random sample from some 
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univariate distribution with nonnegative support to obtain the radius ri, 
i-1,2, ... ,n; then the spherically symmetric sample is obtained by setting Yi -
ri*Zi, i-1, 2, ... , n. 

Let Ri - rank ( I IYd I )/n. The nearest neighbor test for elliptical symmetry 
exploits the property that the pairs (Ri, 21) are approximately uniformly distributed 
on the product of (1/n, 2/n, ... , 1) with the unit hypersphere. Uniformity means 
that the radial distance between nearest neighbors (nodes) that form the shortest 
path around this space should be similar for all pairs of nodes. This is in contrast 
to a case of a nonuniform density where nodes will tend to be clustered in groups 
that correspond to regions of high density. In this case, distances between nodes in 
a cluster will be small, but distances that must be traversed in moving from one 
cluster t~~the next cluster will be relatively larger. There will also tend to be 
isolated nodes in low density regions which will have large nearest. neighbor 
distances. 

where 

Based on previous investigations, we propose the test statistic 

V - -4 D + . 5 S2 

n 
D - 1/n ~ D1 

i-1 

n 
s2 - 1/n ~ (Di - 0)2 

i-1 

(3.2) 

and D1 , D2 , ••• , Dn are the nearest neighbor distances obtained from unique 
nondiagonal elements of a matrix S composed of elements S __ - 11 (Jli,Zi) - (~,Zi) I 12 , 

The null hypothesis is rejected for large values of V. It should be emphasized that 
we only consider m-6 and n-21. Oth~r dimensions and sample sizes will probably 
requires different weightings of D and S2 • 

Critical values for the test statistic are determined by simulating the null 
distribution of the test statistic. This simulation requires that a particular 
member of the null family, such as the multivariate t-distribution, be chosen to 
generate the null distribution. In order to investigate whether the null 
distribution is sensitive to the member of the null family that is chosen, the null 
distribution is calculated under 6 distributions that are in the null family. 

Application to Portfolio Data 

The observed portfolio return data that was tested consists of returns on two 
equity instruments: 1) the Standard and Poors 500 common stock index, and 2) a 
portfolio of small company stocks; returns on three debt instruments: 3) a municipal 
bonds index, 4) a certificate of deposit rate, 5) passbook account rate; and 6) 
returns to grain farming on 500-640 acre farms in Northern Illinois. This is 
considered to be a standard array of instruments that grain farmers can use to 
diversify their financial risk. There were 21 annual observations on each of these 6 
returns. The data are given in Table 1. The sample mean vector and covariance matrix 
of the return data are reported in Table 2. 

The data was centered and scaled with the estimated mean vector and the lower 
triangular Cholesky factor of the estimated covariance matrix, as described above. 
Then these sphered residuals were normalized to lie on the unit hypersphere by 
dividing each observation by its norm and its rank computed and normalized. The test 
statistic is the linear combination.of mean and variance of the squared distances 
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between nearest neighbors as described above. 
The value of the test statistic from the data set is -.040616. The p-value of 

this statistic is 0.0000 under all of the null distributions. None of the Monte 
Carlo samples of size 1000 from the null distributions produced a test statistic 
value as large as this. Based on the upper confidence limit formula for small 
proportions we can say p < .003 with 95% confidence. The members of the null family 
that were used as null distributions and the differences in their null distributions 
are explained in the next section. 

The p-value of approximately 0.000 is strong evidence that the data does not 
come from an elliptically symmetric distribution. This implies that the optimal 
portfolio cannot be characterized entirely in terms of its mean and variance. The 
mean variance-efficient set does not correspond to the expected utility efficient 
set of portfolios that can be constructed from this return data. Identification of 
the the expected utility efficient set requires more information about the true 
distribution of the return data. The result of the nearest neighbor test is a strong 
reason to rule out the possibility that the true distribution is elliptically 
symmetric. Unfortunately, the task of identifying a reasonable candidate for the 
true distribution of the data is difficult because the set of tractable, 
parameterized, non-elliptical, multivariate distributions is small. This suggests 
that methods which do not require knowledge of the exact distribution of the data 
such as stochastic dominance based on empirical cdf's should be used to try to 
identify optimal portfolios. 

Monte Carlo Results 

All Monte Carlo results are for a sample size of 21 and a 6 dimensional random 
vector because these were the dimensions of the data in the portfolio analysis 
problem which prompted the development of this test for elliptical symmetry. The 
sample size should not be a limitation because annual data on portfolio returns is 
likely to contain around this many observations. And the performance of the test is 
likely to be better for larger data sets because there will be more observations to 
distinguish uniform from non-uniform distributions over the unit hypersphere. In· 
this sense the results of these Monte Carlo experiments can be considered to provide 
a lower bound on the empirical p-values, and a lower bound on power. The test 
statistic is likely to perform better with larger samples. The test statistic is 
likley to perform more poorly if random vectors of higher dimensions are analyzed 
with the same small number of observations. 

In the Monte Carlo results the p-value of the test statistic is approximated 
by the proportion of Monte Carlo samples from the null distribution whose test 
statistic values are greater than that of the data set being analyzed. In the 
experiments on the power of the test, power is approximated by the proportion of 
samples generated from a non-ellipitcal distribution that are rejected at a given 
significance level. The test is designed to be insensitive to the type of elliptical 
distribution which is used to generate the null distribution. Therefore 6 different 
elliptical distributions have been used to examine the robustness of the null 
hypothesis to differences in the members of the null family used to generate the 
null distribution. 

Each null distribution was generated from a Monte Carlo sample of size 1000. 
The null distributions were generated in the manner discussed above. First, 
variables uniformly distributed on the unit hypersphere were obtained by generating 
independent standard normal random variables and normalizing the resulting random 
vectors to unit length. Then, spherically symmetric random variables were obtained 
by multiplying the random vectors obtained in the first step by random variables 
obtained from distributions with non-negative supports. Six different distributions 
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were used for the distribution of r 2 , the square of the radius. If r 2 is distributed 
as a chi-squared random variable, then the resulting spherical distribution is 
normal. If r2 is distributed as a Beta(m/2,p+l) the resulting distribution is a 
multivariate Pearson Type II. If r2 is distributed as U/(U-1) where U follows a 
Beta(m/2,p-m/2) a multivariate Pearson type VII or multivariate t distribution is 
obtained. Finally call the distribution that results when r2 follows a 
lognormal(µ,o 2), "multivariate lognormal", and the distribution that results when r 2 

follows an exponential(8) distribution, "multivariate exponential". 
The results of the examination of the p-value of the test statistic are 

reported in Table 3 . The first row of this table reports the .05 critical value of 
the test statistic under each of the null distributions. Rows two through seven 
contain the proportion of rejections for each critical value under each null 
distribution. By construction the diagonal elements of rows two to seven are .05. 
The off-diagonal elements can be used to examine the consistency of significance 
levels. In Table 3 the off-diagonal elements range from .022 to .075. 

The multivariate t distribution with 5 degrees of freedom produces the 
critical value largest in absolute value, and the smallest percentage of true null 
hypotheses rejected. The multivariate t distribution with 8 degrees of freedom 
produces a slightly smaller critical value and larger percentage of true nulls 
rejected. The Pearson type II distribution produces the smallest critical values and 
the largest number of true nulls rejected. In general these results indicate an 
acceptable level of agreement between the null distributions, with the Pearson type 
II distribution exhibiting slightly more Type I error than the significance level. 

To aid the interpretation of the results in Table 3, histograms of the null 
distributions are presented in figures 1 through 6. These histograms are constructed 
from the Monte Carlo simulation with 1000 observations. The similarity of the 
histograms of the null distribution is striking. Each of the null distributions has 
non-zero frequency on the interval -13 to -8, and each distribution appears to be 
fairly symmetric. The mode of each distribution lies in the interval -11 to -10, and 
the distributions appear to have similar dispersion. The similarity in the shape of 
the null distributions provides limited evidence that the null distribution is 
nearly independent of the member of the null family that is used to generate the 
null distribution. The robustness of the shape implies that inferences drawn from 
the hypothesis test should be nearly the same irrespective of which member of the 
null family is chosen to generate the null distribution. 

Questions about power are investigated by constructing two sequences of 
alternative distributions. One sequence, called the "inflated normal", was 
constructed by distorting the normal distribution. These alternative distributions 
were constructed by multiplying coordinates of the normal distribution by 10 or 20 
when the value of the coordinates were positive. This causes the distributions to be 
stretched in the positive orthant in the direction of the "inflated" coordinates. We 
also used inflation factors of 4 or 6 with 4 inflated coordinates. The other 
sequence was constructed from the multivariate Burr family of distributions with 
parameters ranging from 1 to .125 (Johnson). 

The results of this study of the power of the test are presented in tables 4 
and 5. The entries in both tables are the percentage of null hypotheses that are 
rejected at a significance level of .05. The results for the distorted normal 
distributions are contained in table 4. One sees that the power is generally quite 
good with one exception. 

When two or more coordinates are inflated the power ranges from .309 to 1.00 
with the majority of values concentrated from .93 to 1.00. The exception is the 
alternative distributions where only one coordinate is inflated. This is probably a 
reflection of the fact that the contours of equal probability are similar to 
ellipses for these distributions. 
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Table 5 contains results for the Burr family alternative. The power of the 
test against these alternatives ranges from .298 to .999. The alternative against 
which the test has the lowest power is the Burr with parameter equal to 1. The low 
power in this case is due to the fact equal probability contours are close to 
ellipses for this distribution. When the parameter increases to 2 the contours are 
indistinguishable from ellipses. 

The general result of these power studies is that the nearest neighbor test 
has good power against alternatives with equal probability contours that differ from 
ellipses. It is likely that expected utility maximizing portfolio choices from 
distributions with contours close to ellipses are close to the mean-variance 
efficiency frontier, implying that the loss from failure to identify nonelliptical 
distributions close to ellipticity is small. Verification of this conjecture is 
left to future research. 

Conclusions 

Results derived by Meyer have been extended to multivariate random variables 
and portfolio choice problems. If a set of random variables are elliptically 
symmetric and they are combined in some affine manner then expected utility is 
solely a function of the mean and variance of returns. Risk averse decision makers 
will make choices from the mean-standard deviation efficiency frontier. Meyer's 
comparative statics concerning changes in mean, variance, and degree of risk 
aversion can be applied directly. A statistical test has been presented which is 
able to discriminate between elliptical and nonelliptical distributions. Application 
of this test and failure to reject ellipticity should provide a firm basis for the 
use of quadratic risk programming models to analyze optimal choice in the presence 
of uncertainty. Rejection of ellipticity is an indication that variance is an 
inadequate characterization of the risks that are relevant to a rational economic 
decision maker. 
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16.50 
4.43 

-30.90 
-19.95 
57.82 
57.38 
25.38 
23.46 
23.46 
43.46 
13. 88 
58. 71 
39.67 

Table 1: Portfolio Data 

X4 
-0.14 
5. 71 

-2.52 
-0.16 
-4.04 
-0.19 

-14.56 
24.50 
1L31 
10.36 
4.74 

-12.32 
8.59 

27.18 
8.19 

-1. 92 
0. 72 

-13.43 
3. 72 

28.01 
20.28 

XS 
0.0 
3.91 
4.35 
5.47 
5.02 
5.86 
7.77 
7.56 
4.99 
4.67 
8.41 

10.27 
6.43 
5.27 
5.58 
8.25 

11.22 
13.07 
15.91 
12.57 

9.07 

X6 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.50 
4.50 
4.50 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.25 
5.25 
5.25 
5.25 
5.25 

Xl: Returns on Farm Assets; X2: Standard and Poors 500; X3: Small Company Stocks 
X4: Municipal Bonds; XS: Certificates of Deposit; X6: Passbook Savings. 

All series are annual from 1963 to 1983. 

Sources: Xl: Illinois Farm Business-Farm Management Association; 
X2-X4: Stocks. Bonds, Bills, and Inflation Ibbotson and Sinquefield (1984); 
XS-X6: Federal Reserve Bulletin. 
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Table 2 - Sample Mean and Covariance of Portfolio Data 

Xl X2 X3 X4 XS X6 

15.87 10.22 21. 57 6.42 7.41 4.65 

Covariance 

Xl 179.87 -91.16 -56.13 -78.57 -6.67 1.01 

X2 277. 33 380.25 79.56 -10.43 0.49 

X3 764.67 63.62 -16.08 0.57 

X4 267.44 6.14 2.84 

XS 13.44 1.41 

X6 0.28 

Xl: Return on Farm Assets; X2: Standard and Poors 500; X3: Small Company Stocks; 
X4: Municipal Bonds; XS: Certificates of Deposit; X6: Passbook Savings 

Sources: Illinois Farm Business-Farm Managment Records; Ibbotson, Stocks. Bonds. 
Bills. and Inflation. 1984 Yearbook; Standard and Poors Security Index; Federal 
Reserve Bulletin. 
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Nl 

Table 3 

Consistency of Null Distributions 

1000 Monte Carlo Samples 

Null Distribution 

N2 N3 N4 NS N6 

.05 Critical Value -9.2633 -9.3277 -9.2415 -9.2727 -9.2072 -9.0622 

Nl .050 .045 .053 .048 .054 

Percent of N2 .065 .050 .060 .057 .062 

Null Hypotheses N3 .046 .041 .050 .045 .052 

Rejected N4 .051 .045 .054 .050 .055 

NS .041 .036 .043 .038 .050 

N6 .022 .024 .029 .028 .030 

Nl: normal; N2: t with 5 degrees of freedom; N3: t with 8 d. off. 
N4: spherical lognormal; NS: spherical exponential; 
N6: .Pearson Type III. 

158 

.070 

.075 

.067 

.070 

.060 

.050 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 

Iable 4 

I Power of Nearest Neighbor Test Against Alternatives 

I 
of Distorted Normal Distributions 

I 
Null Distribution 

I Nl N2 N3 N4 NS N6 

I 
A Xl 10 .065 .073 .064 .066 .057 .043 

I 1 
t Xl 20 .088 .095 .086 .088 .083 .059 
e 
r Xl-X2 10 .447 .471 .437 .449 .428 .359 

I n 
a Xl-X2 20 .621 .652 .613 .626 .593 .511 
t 

I i Xl-X3 10 .959 .964 .957 .959 .955 .930 
V 

e Xl-X3 20 .997 .998 .997 .998 .997 .994 

I D Xl-X4 10 .999 1.000 .998 1.000 .998 .996 
i 
s Xl-X4 20 1.000 1.000 1.000 1.000 1.000 1.000 

I t 
r Xl-XS 10 .999 .999 .999 .999 .999 .998 
i 

I 
b Xl-XS 20 .999 1.000 .999 1.000 .999 .999 
u 
t Xl-X6 10 .381 .409 .372 .387 .357 .309 
i 

I 0 Xl-X6 20 .486 .506 .479 .487 .462 .417 
n 

Xl-X4 4 .453 .474 .441 .460 .426 .373 

I Xl-X4 6 .893 .901 .884 .895 .878 .847 

I Nl: normal; N2: t with 5 degrees of freedom; N3: t with 8 d. off. 
N4: spherical lognormal; NS: spherical exponential; 

I 
N6: Pearson Type II. 
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Table 5 

Power of Nearest Neighbor Test Against Alternatives 

of the Burr Distribution 

Null Distribution 

Nl N2 N3 N4 NS 

Q - 1.0 .346 .365 .344 .349 .333 

Q - 0.75 .553 .567 .549 .555 .541 

Q - 0.625 .678 .696 .673 .680 .665 

Q - 0.5 .821 .838 .817 .823 .810 

Q - 0.375 .934 .941 .932 .936 .930 

Q - 0.25 .988 .991 .988 .989 .988 

Q - 0.125 .999 .999 .999 .999 .999 

Nl: normal; N2: t with 5 degrees of freedom; N3: t with 8 degrees 
freedom; N4: "spherical lognormal"; NS: "spherical exponential"; 
N6: Pearson Type II. 
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Normal Null Distribution 
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Students' T with 5 d.f. Null Distribution 
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"Lognormal" Null Distribution 
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"Exponential" Null Distribution 
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I Pearson Type II Null Distribution 
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