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Abstract

This paper examines the extent of state dependence in unemployment and
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1 Introduction

Repeat unemployment is common: a significant proportion of the unemployed who

get re—employed leave their jobs again relatively quickly.1 As Heckman (2001) ob-

serves in his Nobel lecture, “a frequently noted empirical regularity in the analysis of

unemployment data is that those who were unemployed in the past or have worked

in the past are more likely to be unemployed (or working) in the future” (p. 706).

Is this, he asks, “due to a causal effect of being unemployed (or working) or is it

a manifestation of a stable trait?” There is also strong persistence in wages, and

these dynamics are also linked. Those in low-wage jobs are more likely to become

unemployed, and the unemployed are more likely to be low waged on re-entry to

employment. This paper investigates these inter-related dynamics of unemployment

and low-wage employment.

Several previous studies have investigated the extent of state dependence in em-

ployment or unemployment.2 Heckman (1981a) found significant state dependence in

the employment probabilities of older US married women (but rather less for younger

women). More recently Hyslop (1999) also finds strong state dependence in employ-

ment for US married women for the 1980s. Corcoran and Hill (1985) however find

that past unemployment does not increase the probability of current unemployment

for prime age men once unobserved heterogeneity and data collection procedures have

been allowed for.3 For Britain, Narendranathan and Elias (1993) and Arulampalam

et al. (2000) find strong state dependence in unemployment.4 Similar has also been

1Clark and Summers (1979) for the US and Layard et al. (1991) for the UK inter alia. About
half of those leaving the unemployed claimant count in Britain return within a year (Sweeney, 1996).

2While evidence on each is clearly indicative about the other, they are not equivalent. Flinn and
Heckman (1983) find unemployment and out of the labour force to be behaviourally distinct states
in the context of transitions.

3Analyses of durations include Heckman and Borjas (1980) and Lynch (1989), who find no ev-
idence that previous occurrences or durations of unemployment affect the duration of current un-
employment spells of US youths, and Omori (1997), who in contrast finds that an increase in the
duration of previous non-employment lengthens the duration of current non-employment.

4For dependence between durations however, Lynch (1985) finds the length of previous unemploy-
ment spells (if any) not to have a significant effect on current duration of unemployment for British
youths. Gregg (2001), examining dependence over a longer time frame, finds that early cumulated
experience of unemployment has a significant effect on unemployment experience later in life.
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found for Germany (Flaig et al., 1993, Muhleisen and Zimmermann, 1994) and Hol-

land (Frijters et al., 2000) among other countries.

Much of the evidence indicates that experiencing unemployment makes future

unemployment more likely. However we know little about the mechanism that lies

behind this state dependence. The evidence presented in this paper suggests that

an important part of the reason is the quality of the jobs taken by those who move

into employment, which tend to be low paid and unstable. Thus a fuller picture of

the dynamics of unemployment is provided by examining it in conjunction with the

type of job taken when an exit from unemployment occurs. There is also evidence of

persistence in low pay,5 and of a link between them giving a cycle of unemployment

and low-wage employment (Stewart, 1999).6

State dependence in unemployment is generally viewed as resulting from the non—

accumulation of new (and the deterioration of existing) human capital during an

unemployment spell and from adverse signalling. Low-wage jobs may also not aug-

ment human capital and hence have similar adverse effects to unemployment. The

distinction between low- and higher-wage jobs is one dimension of the “good” and

“bad” jobs distinction (Burtless et al., 1990, Acemoglu, 2001). Layard et al. (1990)

argue that “employers offering good jobs may well use a person’s current position as

a screening device. While unemployment is a bad signal, being in a low—quality job

may well be a worse one” (p. 249).7 McCormick (1990) terms such jobs “stigmatized”

and argues that, faced by uncertainty about worker quality, firms use type of job held,

alongside unemployment duration (Blanchard and Diamond, 1994), as a cheap indica-

tor of future productivity. This paper examines the extent to which “bad” jobs have

adverse effects on future employment prospects, alongside those of unemployment,

5See Stewart and Swaffield (1999). There is also an extensive literature on wage persistence
and wage dynamics in general, not focusing specifically on the bottom end of the distribution. See
Moffitt and Gottschalk (1993), Baker (1997) and Dickens (2000) for recent contributions.

6There is considerable US evidence of significant long-lasting earnings losses associated with job
displacement (e.g. Jacobson et al., 1993, Kletzer, 1998). Gregg and Wadsworth (2000) and Gregory
and Jukes (2001) find a negative impact of unemployment on subsequent earnings for Britain.

7Such effects may also result from efficiency wage, insider outsider, or segmented labour market
models.
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and the extent to which they act as the conduit to repeat unemployment.8

This paper uses a discrete time framework to analyze the inter-related dynamics

of unemployment and low-wage employment. While a continuous time multi-spell

duration model might be a preferable framework to analyze unemployment alone,

since the central focus here is the relationship with (low) wages, and since the dataset

used (in common with others) provides wage information only at the interview point

for each annual wave of the panel, a discrete time framework is adopted.

The central econometric issue in the dynamic models used is that of unobserved

heterogeneity and initial conditions. The paper addresses this in a number of ways

and presents and compares the estimates from a number of alternative estimators to

assess the robustness of the results. A range of dynamic random effects probit model

estimators is used. Both normal heterogeneity and a semi-parametric discrete mix-

ture are used. Models with autocorrelated errors, with bivariate random effects and

with random effects on slope as well as intercept, estimated by Maximum Simulated

Likelihood, are also considered. The dynamic random effects probit model estimators

are also compared with various GMM estimators in the context of a linear probability

model, which handle unobserved heterogeneity in a less restrictive way.

The estimates show strong agreement between the estimators used. Significant

state dependence in unemployment is found. Low-wage employment is found to have

almost as large an adverse effect as unemployment on the probability of future unem-

ployment, and the effects are insignificantly different from one another. In addition,

low-wage jobs are found to act as the main conduit for repeat unemployment, those

who get a better job reduce the impact of past unemployment to insignificance.

8The link between low-wage employment and unemployment may also be related to unemploy-
ment benefits and relative incentives, since low-wage workers receive a higher replacement rate when
unemployed (providing they qualify for benefits). While this is unlikely to influence the probabil-
ity of entering unemployment, since those who quit do not receive unemployment benefit in the
short-run, it may mean that the incentive to leave unemployment is lower for low-wage workers.
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2 Data description

The data used in the paper are from the first six waves (1991—1996) of the British

Household Panel Survey (BHPS).9 The BHPS contains a nationally representative

sample of households whose members are re-interviewed each year.10 The sample

used in this paper is restricted to those who were in the labour force (employed or

unemployed) at the time of interview. The starting sample contains 23,491 observa-

tions on 4,739 individuals and forms an unbalanced panel. 3,060 of these individuals

are observed in the labour force in all 6 waves.

The unemployment indicator used is constructed on the basis of the ILO/OECD

definition of unemployment. Under this definition a person is unemployed if he or she

does not have a job, but had looked for work in the past four weeks and is available

for work. The probabilities of unemployment (both unconditional and conditional

on status at t—1 ) over waves 2—6 (1992—1996) of the sample for various groups are

presented in Table 1. The raw unconditional probability of being unemployed at a

point in time in this sample is 4.4%.11 Columns 2 and 3 of the table give conditional

probabilities by status at t—1, i.e. at the previous interview roughly 12 months previ-

ously.12 The first row of the table shows that there is considerable state dependence

in unemployment in the raw data: the probability of being unemployed at t is much

higher for those unemployed at t—1. Someone unemployed at t—1 is more than 20

times as likely to be unemployed at t as someone employed at t—1.

Part, or even all, of the persistence exhibited in the first row of Table 1 could be due

to heterogeneity. The probability of unemployment is higher for the young, for those

with less education, for those with poor health, etc. Even if there were no structural

9All time points are therefore prior to the introduction of the UK national minimum wage.
10See Taylor (1996) for details. The sample used here contains only Original Sample Members,

is restricted to those aged between 18 and the state retirement age (65 for men and 60 for women)
and excludes full-time students.
11Conditional on being in the labour force (i.e. either employed or unemployed) at t, but uncon-

ditional on status at t—1.
1272% of the pooled sample are interviewed within 30 days of the anniversary of the previous

interview, 91% within 2 months.
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persistence for individuals, this heterogeneity would cause the group of individuals

unemployed at t—1 to have a higher aggregate probability of unemployment at t than

those who were employed.

The remaining rows of Table 1 present unemployment probabilities (unconditional

and conditional) for various subgroups of the sample distinguished by gender, educa-

tion, experience, marital status, health, area of residence, and demand conditions in

the local labour market (factors likely to influence the probability of unemployment

and suitable variables for the models later in the paper.) The difference between the

probabilities conditional on status at t—1 is evident within all subgroups.

The data also exhibits considerable persistence in wages and the aggregate dy-

namic processes are inter-related: the current probability of each depends on the past

occurrence of the other. The role of low-wage employment is a focus of this paper.

If those employed at t—1 (column 2 of Table 1) are partitioned into those with a

low wage (below £3.50 per hour in 1997 terms13) and those with a higher wage, the

conditional probability of being unemployed at t is 0.056 for the low-wage group and

0.020 for the higher-wage group. Employees with a low-wage at t—1 are 2.7 times as

likely to be unemployed at t as those who were higher paid at t—1. Compared with

the pairs of rows in column 2, a low wage at t—1 has a considerably more adverse

effect on the probability of unemployment at t than the characteristics considered in

Table 1. Those unemployed at t—1 are also nearly three times as likely to be low

wage if employed at t as those employed at t—1. There is therefore considerable cross-

persistence in the aggregate data. Table 2 summarizes the definitions of these two

variables and also those for the main explanatory variables used in the analysis and

presents summary statistics (means and standard deviations) for these variables.

13Wages throughout the paper are adjusted to April 1997 using the Average Earnings Index.
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3 Models and estimators

This paper uses a range of dynamic models and estimators to model the probability of

unemployment, both singly and jointly with the probability of low-wage employment.

The models include the previous state to allow for state dependence. An important

focus is the treatment of unobserved heterogeneity and initial conditions. If the

unobserved heterogeneity exhibits persistence over time, then ignoring it will lead to

an overstatement of the true state dependence in unemployment.

3.1 A dynamic random effects probit model

The following dynamic reduced form model for unemployment is specified:

yit = 1(x
0
itβ + γyit−1 + εi + uit > 0) (i = 1, . . . , N ; t = 2, . . . , T ) (1)

where yit is the indicator variable for being unemployed, xit is a vector of explanatory

variables and uit ∼ N(0, σ2u). The subscript i indexes individuals and t time periods.

N is large, but T is small and fixed, so asymptotics are on N alone. Although the

uit are assumed iid, the composite error term will be correlated over time due to the

individual—specific time—invariant εi terms. The standard uncorrelated random effects

model also assumes εi uncorrelated with xit. Alternatively, following Mundlak (1978)

and Chamberlain (1984), correlation between εi and the observed characteristics is

allowed by assuming a relationship of the form: εi = x0ia+αi, where αi ∼ iidN(0, σ2α)

and independent of xit and uit for all i, t. Thus the model may be written as:

yit = 1(x
0
itβ + γyit−1 + x0ia+ αi + uit > 0) (i = 1, . . . , N ; t = 2, . . . , T ) (2)

The individual-specific random effects specification adopted implies that the cor-

relation between vit = αi + uit in any two (different) periods will be the same:

λ = Corr(vit, vis) = σ2α/(σ
2
α + σ2u) for t, s = 2, . . . , T ; t 6= s. Estimation requires

an assumption about the relationship between the initial observations, yi1, and αi. If

the initial conditions are taken to be exogenous, appropriate if the start of the process

coincides with the start of the observation period for each individual, the likelihood
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decomposes and a standard random effects probit program can be used. If the initial

conditions are correlated with the αi, as would be expected in the current context,

this method of estimation overstates state dependence (e.g. Chay and Hyslop, 2000).

3.2 Heckman’s estimator

The approach to the initial conditions problem proposed by Heckman (1981b) involves

specifying a linearized reduced form equation for the initial period:

yi1 = 1(z
0
i1π + ζ i > 0) (3)

where zi1 includes xi1 and exogenous instruments and ζi is correlated with αi, but

uncorrelated with uit for t ≥ 2. Using an orthogonal projection, it can be written as:

ζi = θαi + ui1, with αi and ui1 independent of one another. It is also assumed that

ui1 satisfies the same distributional assumptions as uit for t ≥ 2.14 The linearized

reduced form for the initial period is therefore specified as

yi1 = 1(z
0
i1π + θαi + ui1 > 0) (4)

Since y is binary, a normalization is required. A convenient one is σ2u = 1. The

outcome probabilities and likelihood for a random sample are then

Pit(α
∗) =

½
Φ [(x0itβ + γyit−1 + x0ia+ σαα

∗)(2yit − 1)] for t ≥ 2
Φ [(z0i1π + θσαα

∗)(2yi1 − 1)] for t = 1
(5)

L =
NY
i=1

Z
α∗

(
TY
t=2

Pit(α
∗)

)
dF (α∗) (6)

where F is the distribution function of α∗ = α/σα and σα =
p
λ/(1− λ). If α

is taken to be normally distributed, the integral over α∗ can be evaluated using

Gaussian—Hermite quadrature (Butler and Moffitt, 1982).

3.3 Wooldridge’s CML estimator

The Heckman estimator approximates the joint probability of the full observed y se-

quence. Wooldridge (2005) has proposed an alternative Conditional Maximum Likeli-

hood (CML) estimator that considers the distribution conditional on the initial period
14Any difference in error variance will be captured in θ.
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value (and exogenous variables). Rather than modelling the density of (yi1, . . . , yiT )

given xi, Wooldridge suggests modelling the density of (yi2, . . . , yiT ) conditional on

(yi1, xi). This produces a very simple estimation method which has the advantage

that it can be implemented with standard random effects probit software.15

The estimator can be viewed as simply using a different approximation which has

computational advantages. Specifying a model for yi1 given xi and αi is replaced by

specifying one for αi given yi1 and xi. The model for αi is specified in its simplest form

as αi = a0 + a1yi1 + ξi. (The Mundlak specification above has already incorporated

xi.) Substituting into equation (2) gives

yit = 1(x
0
itβ + γyit−1 + a0 + a1yi1 + x0ia+ ξi + uit > 0) (7)

The estimates presented here also follow Wooldridge’s suggestion of allowing a more

flexible conditional mean by including interactions between yi1 and xi.

3.4 A discrete distribution for the unobserved heterogeneity

Both the Heckman and Wooldridge estimators are potentially sensitive to the nor-

mality assumption on the individual effects. An alternative specification, useful

for assessing this sensitivity, is to model the unobserved heterogeneity using a dis-

crete mass point distribution. In this specification the distribution of αi is taken to

have mass points α(j) (j = 1, . . . , J) with corresponding probabilities wj satisfying

0 ≤ wj ≤ 1 ∀j and
PJ

j=1wj = 1. The outcome probabilities and likelihood are

Pit(α) =

½
Φ [(x0itβ + γyit−1 + x0ia+ α)(2yit − 1)] for t ≥ 2
Φ [(z0i1π + θα)(2yi1 − 1)] for t = 1

(8)

L =
NY
i=1

(
JX

j=1

wj

"
TY
t=1

Pit(α
(j))

#)
(9)

3.5 Autocorrelated errors

Autocorrelation in the uit, perhaps reflecting correlation between transitory shocks,

complicates estimation considerably. Extension of the Heckman estimator to this case
15For example, xtprobit in Stata. This is in contrast to the Heckman estimator described above and

the various estimators described in sections 3.4—3.7 below, which require specially written programs.
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requires the evaluation of T-dimensional integrals of Normal densities. Simulation

estimators provide a feasible way to address this problem. A Maximum Simulated

Likelihood (MSL) estimator based on the GHK algorithm (see for example Keane,

1994) is used in this paper. MSL provides a consistent estimator of the parameters as

the number of simulation draws tends to infinity. In practice Monte Carlo evidence

suggests that a relatively small number of draws is sufficient (e.g. Hyslop (1999),

App. 2). Train (2003) shows that the number of draws required can be further reduced

(by a factor of 10 or more) by using Halton sequences. These provide better coverage

than standard random draws and negative correlation results in variance reduction.

There is now considerable evidence for their greater efficiency (Train, 2003).

The model is as above but with uit following an AR(1) process, with parameter ρ.

Ω, the covariance matrix of vi = (vi1, . . . , viT )0 is now a function of λ, θ and ρ. The

error vector can be written vi = Cηi with ηi ∼ N(0, I) and C the lower-triangular

Cholesky decomposition of Ω. The equations can therefore be written

yit = 1(μit +
tX

j=1

ctjηij > 0) (10)

where μit = x0itβ + γyit−1 + x0ia for t ≥ 2 and μi1 = z0i1π. The GHK algorithm

uses the fact that the probability of an observed sequence of ys can then be written

as the product of recursively defined conditional probabilities. Simulation of the

probabilities requires draws from a truncated Normal. If ξit is a draw from a standard

uniform distribution, then these are constructed as Φ−1[(1 − ξit)Φ(Lit) + ξitΦ(Uit)],

where (Lit, Uit) = (−ait,∞) if yit = 1 or (−∞,−ait) if yit = 0. The steps in the

GHK simulator for this model are therefore: (1) Calculate ai1 = μi1/c11. (2) Draw

ξi1 from a standard uniform and calculate ηri1 = Φ−1[(1 − ξri1)Φ(Li1) + ξri1Φ(Ui1)]

and ari2 = (μi2 + c21η
r
i1)/c22. (3) Draw ξri2 from a standard uniform and calculate

ηri2 = Φ−1[(1−ξri2)Φ(Lr
i2)+ξri2Φ(U

r
i2)] and a

r
i3 = (μi3+c31η

r
i1+c32η

r
i2)/c33. Repeat this

step successively for the remaining time periods. The simulated likelihood is given by

L∗ =
NY
i=1

(
1

R

RX
r=1

"
Φ((2yi1 − 1)ai1)

TY
t=2

Φ((2yit − 1)arit)
#)

(11)
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3.6 Bivariate random effects models

The model of Section 3.1 can be extended to allow correlated random effects on two

endogenous variables (e.g. unemployment and low-wage employment). The model

used here is a modified version of that used by Alessie et al. (2005). Let y1it = 1 if

individual i is unemployed at t and = 0 if employed. Let y2it = 1 if i is in low-wage

employment at t and = 0 otherwise. The model for t = 2, . . . , T is specified as

y1it = 1(x01itβ1 + γ11y1it−1 + γ12y2it−1 + α1i + u1it > 0) (12)

y2it = 1(x02itβ2 + γ21y1it−1 + γ22y2it−1 + α2i + u2it > 0) if y1it = 0 (13)

The time-means, xi, have been subsumed into the x-vectors to simplify notation. The

errors (u1, u2) are assumed independent over time and jointly normally distributed

with unit variances and correlation ρu. The random effects (α1, α2) are assumed

jointly normally distributed with variances σ21 and σ22 and correlation ρα.

If γ12 = 0, equation (12) can be considered on its own and (β1, γ11, σ1) esti-

mated consistently by the Heckman estimator. If γ12 6= 0, but ρu = ρα = 0, then

y2it−1 is weakly exogenous in (12), which can again be considered on its own and

(β1, γ11, γ12, σ1) estimated consistently by the Heckman estimator with y2it−1 included

as a (weakly exogenous) regressor. In the cross-correlated case the bivariate model of

this section is required.

The likelihood function is given by

L =
NY
i=1

Z
α2

Z
α1

Pi(α1, α2)fi(α1, α2)dα1dα2 (14)

where f is the joint density (bivariate normal) of (α1, α2) and Pi is the joint probability

of the observed binary sequence for individual i (as a function of the random effects):

Pi(α1, α2) =
TY
t=1

{y1itΦ(μ1it) + (1− y1it)Φ2(−μ1it, q2itμ2it;−q2itρu)} (15)

where q2it = (2y2it − 1), Φ2 is the cumulative bivariate normal distribution function,

μjit = x0jitβj+γj1y1it−1+γj2y2it−1+αji for j = 1, 2 and t ≥ 2 and an equivalent reduced
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form approximation for period 1 as in Section 3.2. The model is estimated by MSL.

Modified versions of this bivariate random effects model are also used to (i) address the

distinction between quits and layoffs, and (ii) distinguish between continuing spells

of unemployment and repeat or new unemployment spells. Both these applications

require only minor definitional modifications to the model described above.

3.7 Heterogeneity in state dependence

A different bivariate random effects model that allows heterogeneity in a slope coef-

ficient is also used. The model in Section 3.1 assumes a constant state dependence

parameter, γ. A potentially useful generalization allows heterogeneity in this effect,

possibly correlated with the heterogeneity in the intercept. This model is specified as

yit = 1(x
0
itβ + (γ + α2i)yit−1 + α1i + uit > 0) (16)

The model is estimated by MSL, with simulator as for the previous model and prob-

abilities of observed sequences given by

Pi(α1, α2) =
TY
t=1

{yitΦ(μit) + (1− yit)Φ(−μit)} (17)

where μit = x0itβ + (γ + α2i)yit−1 + x0ia + α1i for t ≥ 2 and with an equivalent

approximation to the reduced form for the first period.

3.8 GMM estimation of a DLP model

The dynamic random effects probit models in the previous subsections require an

auxiliary distributional assumption on the individual-specific effects. This subsection

considers a GMM estimator, in the context of a dynamic linear probability (DLP)

model, not requiring such an assumption. It can be viewed as semi-parametric, being

non-parametric for the individual-specific effects. The model is specified as:

yit = x0itδ1 + δ2yit−1 + fi + gt + ωit (t = 2, . . . , T and i = 1, . . . , N) (18)

Differencing removes the individual-specific effects:

∆yit = ∆x0itδ1 + δ2∆yit−1 +∆gt +∆ωit (t = 3, . . . , T and i = 1, . . . , N) (19)
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Even if the ωit are serially independent, ∆yit−1 and ∆ωit will be correlated and OLS

applied to this differenced equation biased and inconsistent. A range of Instrumental

Variable estimators have been proposed to provide consistent estimation. The now

commonly used Arellano and Bond (1991) GMM estimator, involving a different

number of instruments in each time period, is based on the moment conditions

E(yit−s∆ωit) = 0, for t = 3, . . . , T and s ≥ 2. (20)

This gives (T − 1)(T − 2)/2 orthogonality conditions (= 10 in the current context).

This estimator provides efficiency gains over the simpler IV estimators proposed by

Anderson and Hsiao (1981), which use for example yit−2 or ∆yit−2 to instrument

∆yit−1. The results for these estimators are examined for comparison below. The

consistency of all these estimators requires the ωit to be serially uncorrelated. The

Arellano and Bond (1991) test on the second order residual correlation coefficient is

used below, along with a Sargan test of the over-identifying restrictions.

For situations where T is small and δ2 large Blundell and Bond (1998) propose a

“system” GMM estimator based on stacking equations in first differences and equa-

tions in levels, with The Arellano-Bond instruments used for the first-differenced

equations and ∆yi2, . . . ,∆yiT−1 used as instruments for the levels equations. System

GMM estimates are also examined below for robustness.

4 Empirical results

4.1 Random effects probit estimates

Estimates of the dynamic random effects probit model for the probability of being

unemployed using the Heckman estimator are given in Column 2 of Table 3. The

x-vector contains the variables listed in Table 2 plus year dummies. The model also

contains means over time for each time-varying variable (as specified in Section 3.1).

The corresponding pooled probit model (without random effects) estimated on the

same sample is given in the first column for comparison. Parental variables and
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pre-first-wave variables related to labour market entry are used as instruments.16 In

the estimated linearized reduced form for the initial condition this set of instruments

(i.e. the variables in z excluding the period 1 values of the x variables) are jointly

highly significant.17 Indicators for unemployment and low wage at t—1 are included,

with those with a higher wage being the base group. In the context of the bivariate

framework of Section 3.6 these estimates assume independence.

The dynamic random effects probit model and the pooled probit model involve

different normalizations.18 For comparisons the former needs to be multiplied by an

estimate of σu/σv =
√
1− λ. The scaled coefficient estimate on unemployment at t—1

in Column 2 is 1.01. Compared with the pooled probit estimate, the estimate of γ is

reduced by almost half in the random effects model, but remains strongly significant.

Those who are unemployed at t—1 and again at t consist of two rather different

groups. First there are those for whom the two points in time are part of a continuing

spell without employment. Second there are those who have an intervening spell of

employment (or possibly more than one), but then are unemployed again at t. This

second category is what might be labelled repeat unemployment. The implications of

continuing spells and repeat unemployment are very different.19

This distinction can be considered in the framework of the bivariate model of Sec-

tion 3.6. The three categories are employment, continuing unemployment, and repeat

unemployment. The model is given by equations (12) and (13), but with dependent

variables defined as y1i = 1 if individual i is unemployed in a continuing spell, and

16Specifically dummy variables for father’s broad SEG at the time the respondent was 14 (together
with dummies for father not working and father deceased), similar variables in relation to the
respondent’s mother at the same date, an indicator for whether or not the first labour market spell
after leaving full-time education was an employment spell, dummy variables for the broad SEG of
the first job held (after leaving full-time education), an indicator of whether this first job was a
temporary job, and an indicator of whether the individual left this first job due to redundancy.
17A χ2(13) Wald test statistic of 91.8, giving a p-value <0.0001.
18See Arulampalam (1999). The random effects probit estimates are normalized on σ2u = 1, while

the pooled probit estimates are normalized on σ2v = 1. Thus random effects probit estimation
provides an estimate of γ/σu, while pooled probit estimation provides an estimate of γ/σv.
19Ellwood (1982) analysed the problem caused by continuing spells when the observation period

does not correspond to the decision-making period for the economic agents. Ellwood’s criticism is
addressed at models with a dependent variable defined as whether the individual was unemployed
at any point in a period (e.g. during the past year). As Ellwood points out, “one way to minimize
these problems is to use point in time sampling” (page 363) as in the data used here.
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y2i = 1 if individual i is unemployed in a new spell. In the case of independence,

the equation for y2 can be estimated on its own on the sample excluding continuing

spells, the selection involved is exogenous, and the Heckman estimator of Section 3.2

can be used. The results are given in the fourth column of Table 3. The pooled probit

estimates are given in column 3 for comparison. For comparability with the corre-

sponding models in the first two columns they are under the restriction γ21 = γ22.

Excluding continuing spells cuts the scaled estimate of the coefficient on lagged unem-

ployment by over two-thirds and that on lagged low wage by over one-third, although

both remain significantly greater than zero.20

A bivariate model without independence imposed was also estimated (by MSL)

to address the possible endogenous selection of excluding continuing spells from the

estimates in column 4 of the table.21 The coefficients on lagged unemployment and

lagged low wage are similar to those in column 4 of Table 3 and the model does not

reject independence.

There are a number of ways in which the partial, or marginal, effect of yit−1 on

P (yit = 1) can be estimated for models and estimators of this type. The method

used here is based on estimates of counter-factual outcome probabilities taking yt−1

as fixed at 0 and fixed at 1, and evaluated at xit = x:22

p̂j =
1

N

NX
i=1

Φ
n
(x0β̂ + γ̂j + x0iâ)(1− λ̂)1/2

o
, p̂0 =

1

N

NX
i=1

Φ
n
(x0β̂ + x0iâ)(1− λ̂)1/2

o
Two comparisons are particularly useful for discussion: the average partial effects

(APE) = p̂j − p̂0, and the predicted probability ratios (PPR) = p̂j/p̂0.

Table 3 gives the three estimated probabilities, together with the APEs and the

PPRs, for each model. When continuing spells are included, the pooled probit model

20The scaled estimates are 0.322 for lagged unemployment and 0.161 for lagged low wage. The fall
in the former contrasts with Arulampalam et al. (2000), who retain those in a different unemployment
spell but without any intervening employment and find a smaller fall. Corcoran and Hill (1980) find
this data “overlap”, as they term it, an important contributory factor to US aggregate persistence.
21The results are given in the working paper version of this paper (Stewart, 2005). The specifica-

tion of the full model has to be modified slightly, since y1t−1 = y2t−1 = 0 implies yit = 0 (continuing
unemployment requires unemployment at t-1). Inclusion of both would result in a “perfect classifier”.
Either γ11 or γ12 must therefore be set to zero.
22Feedback from y0t−1 = 0/1 to α is explicitly excluded in this counter-factual calculation.
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gives an APE of unemployment at t—1 of 0.42, only a slight reduction on the raw

difference in conditional probabilities. The Heckman estimator of the random effects

model reduces this APE by about two-thirds: to 0.15, and the PPR similarly. When

continuing spells are excluded, the Heckman estimator of the random effects model

reduces the APE by even more in proportional terms: from 0.13 to 0.035. Exclud-

ing continuing spells (and allowing for the initial conditions) reduces the degree of

persistence exhibited considerably, but it remains significant. An individual with a

given set of characteristics (observed and unobserved) is about twice as likely to be

unemployed at t if they had been unemployed at t—1 as if they had been employed

and higher wage at t—1. They are 1.4 times as likely if they had been low wage at t-1

as if they had been higher wage. Hence they are also 1.4 times as likely if they had

been unemployed as if they had been low wage.

The coefficients on the indicator variables for being unemployed at t—1 and being

in a low wage job at t—1 in column 4 are not significantly different from one another at

conventional significance levels.23 One cannot reject the hypothesis that the adverse

effects of being unemployed at t—1 and of being in a low wage job at t—1 on the

probability of being unemployed at t (excluding those continuously unemployed) are

equal to one another.24

Looking at the impact of the exogenous variables, education has a significant

negative effect when continuing spells are included, but not when they are excluded.

There is a U-shaped experience profile, a lower probability for women and a higher

probability for those with health problems. The UV ratio in the individual’s TTWA

is the only variable whose time-mean has a significant effect. Permanently living in a

TTWAwith a higher UV ratio brings a higher probability of unemployment. However

there is an offsetting effect in the short—run.

The cross-period correlation for the composite error term (λ) is estimated as 0.38

23The Wald test of their equality gives a χ2(1) statistic of 1.56 (p-value = 0.21).
24The effects on the probability of being on a low wage at t (given employment) of being unem-

ployed at t—1 and of being on a low wage at t—1 are also insignificantly different from one another.
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when continuing spells are included and 0.26 when excluded. This is also the propor-

tion of the error variance due to the individual-specific effects. The hypothesis θ = 0,

exogeneity of the initial condition, is strongly rejected. Rather the estimate of θ is

close to, and insignificantly different from, 1. The impact of the individual effects in

the linearized reduced form for the initial period is not significantly different from the

impact in the structural form for periods 2—6.

Pearson goodness-of-fit statistics are also presented for each of the estimated mod-

els, calculated from the actual and predicted frequencies of all possible binary em-

ployment sequences of length 6.25 The statistic is calculated as

GoF =
64X
s=1

(ns − n̂s)
2

n̂s

where ns and n̂s are respectively the observed and predicted frequencies of the sth cell.

The goodness-of-fit statistics in Table 3 indicate a poor fit to the observed sequences

for the pooled probit model, but a much improved fit for the Heckman estimator of

the random effects probit model. If the Pearson statistic is compared with the χ2(63)

distribution (i.e. not corrected for estimated parameters), it indicates a reasonably

good fit for this latter model in both columns 2 and 4.

The distinction between quits and layoffs was also examined to investigate to

what extent the state dependence in the models in Table 3 might be due to individ-

uals leaving jobs voluntarily. This can be considered in the bivariate random effects

framework described in Section 3.6. The three states are unemployment entered as

a quit, layoff and employment. The model is given by equations (12) and (13), but

with the dependent variables defined as y1i = 1 if individual i quit into unemploy-

ment, and y2i = 1 if individual i was laid off. In the case of independence, with the

selection exogenous, the Heckman estimator can be used on the sample who do not

quit. This gives an estimate of γ very similar to (and in fact slightly larger than) that

in column 4 of Table 3. The potentially endogenous selection in this is addressed by
25Hyslop (1999) groups cells to avoid very low predicted frequencies, found to be a problem with

his data. This is not found to be a problem here. None of the predicted frequencies are below 0.1
for the models of interest. The GoF statistics are calculated on all 64 cells without grouping.
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MSL estimation of the full bivariate model. The estimates are again very similar to

those in column 4 of Table 3 and the cross-equation correlation between the errors is

insignificantly different from zero.26 Both sets of results suggest that the estimated

relationship is not driven primarily by voluntary entrants to unemployment.

A potential alternative explanation for the low wage effect is a difference in elapsed

job duration at time t—1 if low wage workers typically have shorter elapsed durations

and if the probability of job loss is greater for those with shorter durations. This is

tested by adding a variable measuring job duration at t—1, for those employed. This

variable has a significant negative effect on the probability of being unemployed at t,

but its inclusion alters the coefficients on unemployment and low wage at t—1 very

little. The predicted conditional probability ratios remain 1.4 for both. Differences

in elapsed job duration are not responsible for the low wage effects.

4.2 Alternative random effects probit estimators

The corresponding results from using the Wooldridge estimator of Section 3.3 are

given in column 1 of Table 4, and are similar to those from the Heckman estimator.

The estimated coefficients on unemployment and low wage at t—1 are virtually iden-

tical to the Heckman estimates. The APEs and PPRs are therefore also very close.

Combining the Wooldridge estimator based on t ≥ 2 with a simple probit model esti-

mator for t = 1, to enable comparison, gives an inferior log-likelihood to the Heckman

estimator, but a slightly improved GoF statistic.

Results for the model with the assumption of normality for α replaced by a discrete

mass point distribution, as outlined in Section 3.4, are given in column 2 of Table 4.

The results given are for a model with 3 mass points.27 The discrete mixture gives a

slightly improved log-likelihood over the Heckman estimator with normal α. However

the improvement of 0.3 is at a cost of 3 extra free parameters. On the basis of

26See the working paper version (Stewart, 2005) for more detail on these estimates.
27This provides a significant improvement in log-likelihood over the model with 2 mass points,

by 4.02, sufficient to justify the 2 additional parameters. However, adding a 4th mass point does
not provide sufficient further improvement, improving the log-likelihood by only 0.01. The points
presented in the table incorporate the intercept.
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standard information-based criteria, the normal model would be preferred.28 The

estimated coefficients on lagged unemployment and low wage and resulting APEs

and PPRs are similar to those from the Heckman estimator.

Results from estimating the model with autocorrelated errors (Section 3.5) by

MSL are given in column 3 of Table 4.29 The AR(1) coefficient is insignificantly

different from zero with an asymptotic t-ratio of 0.31.30 The coefficient on lagged

unemployment is very similar to that from the Heckman estimator under serial in-

dependence, but with a considerably increased standard error, and the coefficient

on lagged low wage is virtually identical to that from the Heckman estimator. The

Pearson GoF statistic worsens considerably compared with the model under serial

independence.

Column 4 of Table 4 gives the results from MSL estimation of the model of Sec-

tion 3.7, incorporating a random effect in the coefficient on lagged unemployment.

The estimate of σ2 has an asymptotic t-ratio of 2.3. However the Pearson GoF statis-

tic worsens considerably compared with the model without the second random effect.

The estimated correlation between the two random effects, ρ̂α, is insignificantly differ-

ent from zero (an asymptotic t-ratio of -0.3). The coefficient on lagged unemployment

at α2 = 0 is slightly lower than for the single random effect model, but with a much

increased standard error, so that any reasonable confidence interval easily includes

the value from column 4 of Table 3. The PPRs are very similar to those in the model

without the second heterogeneity effect.

Estimation of the full bivariate model for unemployment and low wage employ-

ment, relaxing the assumption of independence gives a positive cross-correlation, al-

though at the cost of a dramatic increase in computer time. Compared with the

Heckman estimator under independence, the APE of lagged low wage rises rather

28The GoF statistic also shows a small improvement.
29100 replications are used for the MSL estimates.
30This is very different from the corresponding model when continuing spells of unemployment are

included where the AR(1) coefficient is significantly negative (with an asymptotic t-ratio of -5.4).
Hyslop (1999) also finds negative autocorrelation in his model of labour force participation.
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more than that of lagged unemployment. The gap between them falls by about one-

third(and is again not significant), strengthening the finding under independence.

4.3 GMM estimates

The results for the discrete mixture suggest that the potential sensitivity of the dy-

namic random effects probit estimator to the auxiliary distributional assumption for

the individual-specific effects is not problematic. To investigate this issue in a dif-

ferent way, GMM estimates of a DLP model as described in Section 3.8 are also

presented. The random effects estimator provides greater efficiency providing the

auxiliary distributional assumption is valid, but is inconsistent if it is not. The GMM

estimator of the “fixed effects” model does not require a distributional assumption,

but is potentially less efficient. Comparing the two sets of results (on a comparable

basis) provides an examination of the validity of the distributional assumptions.

Columns 1 and 3 of Table 5 give OLS estimates of the DLP model including and

excluding continuing spells, comparable to columns 1 and 3 of Table 3. The results

are similar (once put on a comparable basis). The lagged unemployment and low

wage coefficients are similar to the APEs for the pooled probit estimator. Columns 2

and 4 give the Arellano-Bond GMM estimates using only lagged unemployment vari-

ables as instruments.31 The models pass the Arellano-Bond second-order residual

correlation test and the Sargan test of over-identifying restrictions.32 The estimates

of δ2 are not large, alleviating weak-instrument worries, and Blundell-Bond system

GMM estimates are similar to the Arellano-Bond ones. When the Anderson-Hsiao

IV estimator is used with either yt−2 or ∆yt−1 as instrument, the AR(2) test rejects

the null in both cases. Overall the evidence supports the use of the Arellano-Bond

GMM estimator.
31The 1-step estimates are presented, as advised by Doornik et al. (1999). The 2-step estimates

and their standard errors are very similar to the 1-step estimates presented. Using as additional
instruments those used in Table 3 produces very similar estimates.
32If the ωit are not serially correlated, there should be evidence of significant negative first order

serial correlation but no second order serial correlation in the differenced residuals. The test statistics
presented are asymptotically N(0,1) under the null of no autocorrelation. The Sargan instrument-
validity test presented is based on the 2-step GMM estimator and is heteroskedasticity-consistent.
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Focusing on column 4, the APEs for both lagged low wage and unemployment

are larger than those from the random effects probit model (Table 3, column 4).

Relative to the Heckman estimator, the APE of low wage at t—1 has moved slightly

closer to that of unemployment at t—1 : the gap is reduced from 0.020 to 0.014. The

effects of unemployment and low wage at t—1 are again insignificantly different from

one another.33 In terms of predicting subsequent unemployment, the results of the

random effects probit estimators indicated that low wage employment holds a position

roughly half way between previous (but not continuous) unemployment and higher

wage employment. The GMM estimates shift this position to nearly three-quarters

of the way towards unemployment.

4.4 Low pay as a conduit to repeat unemployment

For those who experience repeat unemployment, the data do not provide information

on the wage rates of the job(s) held between the unemployment at t—1 and that at t.

An alternative way to investigate this involves using a second-order model to provide

an estimate for those unemployed at t—2 and employed at t—1 of the impact of their

wage level at t—1 on their probability of repeat unemployment at t.

The results above from all the dynamic random effects probit model estimators

(as well as the GMM estimators of the DLP model) show a strong degree of agree-

ment. The advantage of the Wooldridge estimator is that it requires only standard

random effects probit software, rather than specially written programs. It extends

in a relatively straightforward manner to the second-order case and is therefore the

most convenient to use to investigate the second-order model.

Column 2 of Table 6 gives the results for the Wooldridge estimator of the second-

order dynamic model. Column 1 gives the pooled probit estimates for comparison.

There are 9 combinations of states at t—2 and t—1. Dummy variables are included

for 8 of these with those higher paid at both t—2 and t—1 as the base group. Initial

values of both unemployment and low wage variables in both of the first two years are

33The Wald test of coefficient equality gives a χ2(1)-statistic of 0.28, implying a p-value of 0.60.
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included together with interactions between these and the time-averaged x-variables.

The coefficients for unemployment in both prior periods, unemployment followed

by low wage, low wage followed by unemployment and higher wage followed by unem-

ployment are all highly significant, of similar magnitude and insignificantly different

from one another. The test of coefficient equality between low wage and unemploy-

ment at t—1 following unemployment at t—2 gives a p-value of 0.941. The coefficient

on unemployed followed by higher wage is in contrast not significantly different from

zero (a p-value of 0.092), i.e. this group’s probability of unemployment at t is not

significantly greater (at the 5% level) than that of those employed at a higher wage

at both t—2 and t—1.

The coefficient estimates imply an APE on the probability of unemployment at

t of unemployment at t—2 followed by low-wage employment at t—1 of 0.068, very

similar to that of unemployment in both periods. Someone unemployed at t—2 and

then low wage at t—1 is 3.2 times as likely to be unemployed at t as an equivalent

person higher wage in both periods. The APE of unemployment at t—2 followed

by higher-wage employment at t—1 is 0.019 (and insignificantly different from zero).

There is a significantly increased probability of being unemployed again at t having

been so at t—2 if the intervening point at t—1 was one of low wage employment, but

not if it was one of higher wage employment. Low wage jobs act as a conduit to

repeat unemployment. Higher wage jobs reduce the increased risk to insignificance.

5 Conclusions

This paper examines the extent of state dependence in individual unemployment and

the role played in this by low-wage employment. The three main findings are as

follows.

First, the aggregate state dependence in unemployment considerably overstates an

individual’s risk of repeat unemployment. Over half the measured state dependence

results from continuing unemployment spells (in the sense of there being no inter-
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vening employment) and about a third is removed when unobserved heterogeneity

and initial conditions are taken account of. Despite this, an individual unemployed

at t—1 who finds a job is still more than twice as likely to be unemployed again at

t as someone who was employed at t—1, but otherwise has the same observed and

unobserved characteristics; and this difference is statistically significant.

Second, low-wage employment at t—1 has almost as large an adverse effect as un-

employment at t—1 on the probability of employment at t, and the difference between

the estimated effects is insignificant with all estimators.

Third, low-wage jobs act as the main conduit for repeat unemployment. Those

who get a better job reduce the increased risk of repeat unemployment to insignifi-

cance. The probability of re-entering unemployment for someone who gets a low-wage

job after a spell of unemployment is three times as great as that for someone with

the same observed and unobserved characteristics originally in employment.

In terms of future employment prospects, low-wage jobs are closer to unemploy-

ment than to higher paid jobs. The results in this paper suggest that not all jobs

are “good” jobs, in the sense of improving future prospects, and that low-wage jobs

typically do not lead on to better things. The results are consistent with the hy-

pothesis that a low-wage job does not augment a person’s human capital significantly

more than unemployment. If unemployed individuals’ employment prospects are to

be permanently improved, they need to find jobs where they can augment their skills

(for example through on-the-job training) raise their productivity and move up the

pay distribution.
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Table 1
Unconditional and conditional probabilities of unemployment

Employed Unemployed
Unconditional at t-1 at t-1

All 0.044 0.023 0.491
Sex: Male 0.056 0.027 0.536

Female 0.031 0.019 0.399
Age left f-t education > 16 0.035 0.021 0.380

≤ 16 0.054 0.025 0.570
Years potential experience > 20 0.038 0.021 0.507

≤ 20 0.052 0.026 0.477
Married 0.037 0.020 0.493

Single 0.061 0.031 0.488
Health limits type or amount of work 0.090 0.044 0.592

Does not 0.040 0.022 0.473
Resident in London / South-East 0.043 0.023 0.496

Rest of country 0.045 0.024 0.488
UV ratio in TTWA > median 0.055 0.028 0.506

≤ median 0.035 0.019 0.469

Notes:
1. Pooled data for BHPS waves 2-6 (1992-1996).
2. Sample size = 18,752.

Table 2
Variable definitions, means and standard deviations

Variable Description Mean (SD)

unemp Unemployed at time of interview (ILO/OECD definition) 0.048 (0.215)
lwage Wage < £3.50 (adjusted to April 1997 using AEI) 0.078 (0.269)
ed Age completed full-time education 17.71 (2.906)
x1 Years potential labour market experience /10 2.176 (1.134)
x2 x12

married Married 0.690 (0.463)
female Female 0.459 (0.498)
hlltw Health limits type or amount of work 0.078 (0.269)
lonse London / South East 0.298 (0.457)
uvratio Unemployment-vacancy ratio in individual’s TTWA 0.184 (0.123)

Notes:
1. Pooled data for BHPS waves 1-6 (1991-1996).
2. Sample size = 23,491.
3. Statistics for lwage restricted to those who are employed.
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Table 3
Dynamic Random Effects Probit Models for Unemployment Probability

Including continuing spells Excluding continuing spells
Pooled Heckman Pooled Heckman
probit estimator probit estimator
(1) (2) (3) (4)

Unemp at t-1 1.955 (0.056) 1.285 (0.115) 0.933 (0.090) 0.436 (0.146)
Low wage at t-1 0.309 (0.082) 0.317 (0.103) 0.222 (0.091) 0.218 (0.107)
ed -0.130 (0.051) -0.113 (0.056) 0.117 (0.114) 0.136 (0.131)
x1 -0.193 (0.079) -0.361 (0.113) -0.314 (0.089) -0.405 (0.111)
x2 0.038 (0.016) 0.068 (0.023) 0.061 (0.018) 0.078 (0.023)
married 0.117 (0.161) 0.120 (0.186) 0.100 (0.186) 0.110 (0.209)
female -0.229 (0.047) -0.335 (0.069) -0.212 (0.054) -0.249 (0.066)
hlltw 0.278 (0.120) 0.340 (0.138) 0.493 (0.142) 0.575 (0.161)
lonse -0.282 (0.360) -0.259 (0.402) -0.425 (0.382) -0.473 (0.422)
uvratio -0.781 (0.398) -0.920 (0.475) -2.134 (0.472) -2.359 (0.548)
a(ed) 0.100 (0.052) 0.066 (0.057) -0.140 (0.115) -0.166 (0.132)
a(married) -0.293 (0.169) -0.393 (0.200) -0.242 (0.196) -0.274 (0.222)
a(hlltw) 0.094 (0.152) 0.197 (0.186) -0.264 (0.188) -0.291 (0.217)
a(lonse) 0.266 (0.363) 0.222 (0.408) 0.391 (0.384) 0.426 (0.426)
a(uvratio) 1.829 (0.414) 2.373 (0.516) 3.229 (0.463) 3.720 (0.558)
constant -1.250 (0.197) -1.094 (0.271) -1.187 (0.222) -1.257 (0.273)

λ 0.383 (0.062) 0.262 (0.069)
θ 1.033 (0.175) 0.936 (0.310)

Log likelihood -2732.81 -2703.74 -1981.72 -1970.22
GOF-statistic 137.60 63.04 325.71 61.02
[p-value] 0.000 0.475 0.000 0.547
Sample size 13506 17229 13016 16607

Pred. prob. p̂0 0.029 0.032 0.035 0.038
Pred. prob. p̂1 0.447 0.181 0.155 0.072
Pred. prob. p̂2 0.052 0.052 0.052 0.053
APE: p̂1 − p̂0 0.419 0.150 0.130 0.035
APE: p̂2 − p̂0 0.023 0.020 0.017 0.015
PPR: p̂1/p̂0 15.68 5.76 4.43 1.92
PPR: p̂2/p̂0 1.82 1.65 1.49 1.40
PPR: p̂1/p̂2 8.61 3.49 2.97 1.37

Notes:
1. Standard errors in brackets.
2. The variable a(x) is the mean over time of the variable x.
3. All models also contain year dummies.
4. log L and GoF statistics for columns (1) and (3) combined with period 1 standard probits.
5. Sample sizes given for columns (1) and (3) are for periods 2—6 only.
6. GoF p-value based on χ2(63).
7. p̂0, p̂1, p̂2 = predicted probabilities of unemployment at t given higher wage, unemployed,

low wage at t-1 respectively.
8. APE = Average Partial Effect. PPR = Predicted Probability Ratio.
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Table 4
Alternative Estimators of Dynamic Random Effects Probit Model

Wooldridge Discrete AR(1) Heterogeneous
estimator mixture errors slope model
(1) (2) (3) (4)

Unemp at t-1 0.435 (0.152) 0.423 (0.152) 0.445 (0.327) 0.404 (0.476)
Low wage at t-1 0.211 (0.106) 0.220 (0.108) 0.217 (0.102) 0.214 (0.106)
ed 0.135 (0.131) 0.136 (0.130) 0.127 (0.127) 0.136 (0.066)
x1 -0.393 (0.110) -0.417 (0.113) -0.382 (0.104) -0.403 (0.108)
x2 0.077 (0.022) 0.081 (0.023) 0.074 (0.021) 0.078 (0.022)
married 0.118 (0.208) 0.112 (0.210) 0.108 (0.203) 0.107 (0.209)
female -0.230 (0.065) -0.248 (0.068) -0.236 (0.062) -0.240 (0.067)
hlltw 0.567 (0.160) 0.575 (0.163) 0.552 (0.155) 0.570 (0.161)
lonse -0.478 (0.422) -0.469 (0.429) -0.468 (0.408) -0.476 (0.422)
uvratio -2.278 (0.540) -2.416 (0.576) -2.286 (0.523) -2.332 (0.544)
a(ed) -0.156 (0.132) -0.166 (0.131) -0.156 (0.128) -0.166 (0.066)
a(married) -0.268 (0.222) -0.275 (0.222) -0.268 (0.214) -0.272 (0.222)
a(hlltw) -0.244 (0.220) -0.261 (0.218) -0.280 (0.208) -0.304 (0.217)
a(lonse) 0.432 (0.427) 0.417 (0.433) 0.427 (0.412) 0.427 (0.426)
a(uvratio) 3.798 (0.558) 3.809 (0.615) 3.571 (0.525) 3.729 (0.558)
constant -1.203 (0.270) -1.250 (0.269)

λ 0.235 (0.069) 0.193 (0.060)
θ 1.099 (0.534) 1.078 (0.475) 0.897 (0.413)
Point 1 -4.416 (3.928)
Point 2 -0.805 (0.352)
Point 3 0.352 (0.554)
Prob 1 0.402 (0.179)
Prob 2 0.577 (0.159)
Prob 3 0.021 (0.033)
ρ 0.054 (0.171)
σ 0.557 (0.126)
σ2 0.773 (0.333)
ρα -0.125 (0.483)

Log likelihood -1977.76 -1969.91 -1969.65 -1967.12
GOF-statistic 57.23 57.13 74.45 67.38
[p-value] 0.681 0.685 0.153 0.330
Sample size 13016 16607 16607 16607

Pred. prob. p̂0 0.035 0.037 0.037 0.032
Pred. prob. p̂1 0.068 0.068 0.075 0.061
Pred. prob. p̂2 0.049 0.051 0.053 0.046
APE: p̂1 − p̂0 0.033 0.031 0.037 0.029
APE: p̂2 − p̂0 0.014 0.015 0.016 0.014
PPR: p̂1/p̂0 1.95 1.85 2.00 1.90
PPR: p̂2/p̂0 1.39 1.39 1.42 1.42
PPR: p̂1/p̂2 1.40 1.33 1.41 1.34

Notes: See Table 3.
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Table 5
GMM estimation of Dynamic LPM for Unemployment Probability

Including continuing spells Excluding continuing spells
OLS Arellano-Bond OLS Arellano-Bond

GMM GMM
(1) (2) (3) (4)

Unemp at t-1 0.480 (0.022) 0.315 (0.041) 0.134 (0.022) 0.050 (0.027)
Low wage at t-1 0.020 (0.007) 0.074 (0.014) 0.013 (0.006) 0.036 (0.010)
ed -0.002 (0.001) -0.016 (0.014) -0.001 (0.001) 0.008 (0.014)
x1 -0.015 (0.007) -0.126 (0.105) -0.021 (0.006) -0.061 (0.085)
x2 0.003 (0.001) 0.017 (0.008) 0.004 (0.001) 0.013 (0.007)
married -0.010 (0.004) -0.001 (0.017) -0.006 (0.003) -0.002 (0.014)
female -0.016 (0.003) -0.011 (0.003)
hlltw 0.033 (0.008) 0.020 (0.012) 0.022 (0.006) 0.021 (0.009)
lonse 0.000 (0.004) 0.001 (0.057) -0.001 (0.003) -0.003 (0.054)
uvratio 0.049 (0.017) 0.007 (0.040) 0.026 (0.013) -0.002 (0.031)
constant 0.084 (0.015) 0.003 (0.011) 0.068 (0.013) 0.003 (0.009)

AR(1) -6.64 -9.81 -2.35 -7.95
AR(2) 3.32 1.11 2.03 1.34
Sargan (χ2(d)) 4.09 9.86
(d. freedom (d)) (9) (9)
[p-value] [0.91] [0.36]
Sample size 13506 9783 13016 9425

Pred. prob. p̂0 0.021 0.022 0.019 0.016
Pred. prob. p̂1 0.501 0.337 0.153 0.066
Pred. prob. p̂2 0.041 0.096 0.032 0.051
APE: p̂1 − p̂0 0.480 0.315 0.134 0.050
APE: p̂2 − p̂0 0.020 0.074 0.013 0.036
PPR: p̂1/p̂0 23.96 15.28 8.16 4.19
PPR: p̂2/p̂0 1.96 4.36 1.71 3.26
PPR: p̂1/p̂2 12.21 3.51 4.77 1.28

Notes:
1. Robust standard errors in brackets.
2. All models also contain year dummies.
3. p̂0, p̂1, p̂2 = predicted probabilities of unemployment at t given higher wage, unemployed,

low wage at t-1 respectively.
4. APE = Average Partial Effect. PPR = Predicted Probability Ratio.
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Table 6
2nd-order Dynamic Random Effects Model

Pooled Wooldridge
probit estimator
(1) (2)

UU 1.217 (0.117) 0.673 (0.201)
UL 1.099 (0.178) 0.690 (0.217)
UH 0.616 (0.121) 0.262 (0.156)
LU 0.962 (0.252) 0.656 (0.293)
HU 0.888 (0.135) 0.740 (0.189)
LL 0.236 (0.128) 0.083 (0.189)
LH 0.214 (0.140) 0.132 (0.168)
HL 0.263 (0.154) 0.195 (0.170)

ed -0.039 (0.035) -0.051 (0.039)
x1 -0.339 (0.090) -0.330 (0.098)
x2 0.072 (0.019) 0.073 (0.020)
married -0.048 (0.197) -0.060 (0.204)
female -0.188 (0.056) -0.196 (0.060)
hlltw 0.449 (0.144) 0.416 (0.147)
lonse -1.019 (0.404) -1.034 (0.414)
uvratio 0.040 (0.619) 0.057 (0.634)
a(ed) 0.033 (0.034) 0.056 (0.039)
a(married) -0.106 (0.208) -0.064 (0.218)
a(hlltw) -0.147 (0.188) -0.019 (0.201)
a(lonse) 1.045 (0.406) 1.045 (0.418)
a(uvratio) 0.523 (0.714) 0.661 (0.771)
constant -1.664 (0.232) -1.962 (0.267)
σu 0.149 (0.293)
λ 0.022 (0.084)

Log likelihood -1198.03 -1171.29
Sample size 11461 11461

APE: UU 0.168 0.066
APE: UL 0.141 0.068
APE: UH 0.057 0.019
PPR: UU 6.92 3.11
PPR: UL 5.97 3.19
PPR: UH 2.99 1.61

Notes:
1. Lagged status variables: U=unemp, L=low wage, H=High wage.
2. 1st. letter in lagged status code is status at t-2, 2nd. is that at t-1.
3. All models also contain year dummies.
4. APE = Average Partial Effect, PPR = Predicted Probability Ratio.
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