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ABSTRACT

Estimation of the parameters of the reduced rank regression model in a
Bayesian method requires the solution of two identification problems: global
or strong identification and local identification. Traditionally Bayesians, and

*This work is based on work from the author's Ph.D. thesis and relates to a pa-
per presented at the Econometric Society Australasian Meeting 1998, A.N.U., Canberra,
Australia.

tThe author would like to thank Brett Inder, David Harris, and Gael Martin for valuable
discussions that have improved this paper.
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to a large extent frequentists, have relied on zero-one identifying restric-
tions which require the researcher to impose an order on the variables to
achieve global identification. Examples of this approach include Geweke
(1996), Bauwens and Lubrano (1993), Kleibergen (1997), Kleibergen and
Paap (1997), and Kleibergen and van Dijk (1994). This ordering relies on a,
priori knowledge of which variables enter the reduced rank relations. For ex-
ample, the cointegrating error correction model requires knowledge of which
variables are 1(0) or cointegrate. Incorrect ordering may result in an esti-
mated space for the cointegrating vectors that does not have the true cointe-
grating space as a subset, effectively misspecifying the model. In this paper,
we present an estimation method which does not require a priori ordering
by using restrictions similar to those used in maximum likelihood estimation
by Anderson (1951) of the reduced rank regression model generally, and by
Johansen (1988) in an error correction model specifically. As with much of
the recent work, we focus on the cointegrating error correction model to show
our approach.

Local identification is achieved by nesting the reduced rank model within
a full rank model with a well behaved posterior distribution. This approach
is due to Kleibergen (1997) and is consistent with the principle of a "data-
translated likelihood" suggested by Box and Tiao (1973). In nesting the
reduced rank model in a full rank model, we use a transformation from the
potentially reduced rank matrix II to the matrices a, @ and A where A = 0
restricts II to a lower rank. Results from Roy (1952) enable us to derive the
Jacobian for this transformation.

1 Introduction.

In this paper, a method for Bayesian estimation without a priori ordering
of the variables in the reduced rank multivariate regression model is pre-
sented. The reduced rank regression model has received significant attention
in econometrics with both frequentist and, more recently, Bayesian treat-
ment. Important examples of applications include the cointegrating error
correction model (ECM) (see for example Johansen 1988, Kleibergen and van
Dijk 1994, Kleibergen 1997, Kleibergen and Paap 1997 - hereafter referred
to as K&P, and Geweke 1996) and the incomplete simultaneous equations
model (SEM) (Dreze 1976, Dreze and Richard 1983, and Zellner, Min and
DaHaire 1993, Geweke 1996). Classical likelihood based analysis of the re-
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duced rank multivariate regression model was first presented by Anderson
(1951).

The reduced rank multivariate regression model is,

= XII ± ZA± E= XB E. (1)

where X = [X Z] and B = [II' AT. Further, Y is aTxL matrix of
dependent variables, X and Z are, respectively, T x p and T x k matrices
of explanatory variables, and E is aTxL matrix of errors with covariance
matrix E IT. The coefficient matrix II is of rank r < min(L,p), while A
is full rank. When II has reduced rank it can be expressed as II = 3a where
and a are p x r and r x L and it is assumed rank (a) = rank (0) = r.

An alternative representation is to transform the potentially reduced rank
matrix II to the matrices a, and A where A = 0 restricts II to a lower rank.

Identifying restrictions are necessary for global identification of the ele-
ments of 13 and a. Regardless of whether these identifying restrictions have
been imposed, there may exist areas of local nonidentification in the space
of (13 a) . As outlined below, the problem of local nonidentification has been
extensively investigated, whereas global identification has been solved in the
Bayesian approaches by restrictions which impose an order on the variables
in X.

1.1 Why consider (non)ordering restrictions?

A common method of achieving strong identification, and in fact the only
method we are aware that has been employed in Bayesian studies to date,
is to apply r2 zero-one restrictions on either = /3'2]' or a, such as
setting 0* = [3,371 = I On' (Geweke 1996, Bauwens and Lubrano 1993,
Kleibergen and van Dijk 1994, and K&P 1997). This method of achiev-
ing identification 'forces' a set of r variables to appear in the reduced rank
relationships. For example, in the cointegrating ECM the researcher is re-
quired to make assumptions about which variables cointegrate (or are I(0))
(Johansen 1995a p.94). The researcher must then appropriately 'order' the
variables. However, we may wish to investigate precisely this question of
which variables enter the reduced rank relations, or at least we may wish to
avoid making such strong assumptions.

It is important to consider ordering, as the normalisation [3* = 013r1 is
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only valid if Or' exists. Consider a cointegrating bivariate system

Awt = + et = zt-ia ± et, (2)

where the vectors a = (a1 az) and j3 = [i31 02 ]' . Let Awt = (Lx t Ayt)',and
Wt = (xt . Next assume xt r•J /(1), yt /(0) and that wtO = Ytfiz = zt
/(0) is the only cointegrating relationship. By incorrectly normalizing and
estimating by 3 (= 0/31-1) = [ 1 732], the variable it = wt-ij = xt
is included in the estimated equation, which is not an estimate of zt. Unless
= 0 to exclude it from the equation, (2) will be an unbalanced equation

as it r..i.41) but Atvt /(0). This result would indicate there is no coin-
tegrating relation. Regardless of the value of a, the variable zt has been
excluded, effectively misspecifying the model. Forecasting is an application
which clearly shows the implications of incorrect normalisation. Without a
correct estimate for the disequilibrium errors, zt, it is unlikely the forecast
at T h, h > 0, will be forced back to the space spanned by f3±, the at-
tractor set (Johansen, 1995, p41). If, however, is correctly normalized and
estimated by 13 (= /302-1) = [ #41 1 , it is now possible to estimate 731 = 0
and correctly choose and estimate one cointegrating relation. The forecasts
are then more likely to follow a path that is correct in its response to dis-
equilibrium errors, that is, the forecasts can move toward the attractor set.
Figures 1 (a) to 1 (f) show the consequences for one step ahead forecasts of
incorrectly normalizing for the model in (2). Figures 1 (a) and 1 (d) show
the true error correction term and forecast error, zt and et. Figures 1 (b)
and 1 (e) show the estimates it and et where has been correctly normalised

and estimated as -3 = 
[,

1, 1]' , and finally, Figures 1 (c) and 1 (f) show the
estimates it and et where 3 has been incorrectly normalised and estimated

as -4 = [1, g2] . Both zt and :it display /(0) behavior, as do the errors, et and
et. The estimates :it and et inherit the stochastic trend as sp (0) sp (73)

and so wt-4 f•J /(1). These results clearly show how incorrectly normalizing
to achieve global identification can have serious implications for forecasting
performance.

Insert Figures 1 (a) to 1 (f) here.

This is a simple example of an exclusion restriction (that is a variable
is excluded from the relation) which requires the variables in tut to be cor-
rectly ordered such that 3i-1 exists. Another way 01 may be singular is if
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a subset of the variables enter all reduced rank relations in the same way.
Juselius (1995) considers two important economic questions: long run evi-
dence of purchasing power parity (PPP) and uncovered interest rate parity
(UIP). She uses Danish and German data on the variables log consumer

• prices in Denmark and Germany, pd and pg, log exchange rate edg, the Dan-
ish bond rate id, and the German bond rate ig. If the variables are ordered
as vh = (Pd, P9  eg7id7ig)t, and we assume that the cointegrating relations
contain (pd,pg,eg) only through the PPP relation, pd — pg — edg, this implies
13 = Hco where co is a general 3 x r matrix, with r = 1,2,3,

1 0 0 -
—1 0 0

H= —1 0 0 ,and
0 1 0
0 0 1

such that sp(0) c sp(H). This implies if r> 1, then /31 will be singular.

While we may spuriously estimate 73 = [ /, I /0'2] , sp(73) is not restricted
to be in sp(II) (Johansen 1995a, p.73) and PPP cannot be imposed on all
cointegrating vectors. We are then unable to estimate sp(0), and so there
will be no mechanism to allow forecasts to respond to disequilibriums errors
wt13—E (wt13). Rirther general examples in which 01 is singular can be found
in Johansen (1995a).

As we stated earlier, identifying restrictions are necessary for global iden-
tification of the elements of 13 and a. Clearly, however, how these restrictions
are imposed on a and 3 matters. In Section 2 we discuss the concept of
identification and its treatment in the frequentist and Bayesian approaches
to date. We use this discussion to motivate our approach.

In Section 3 we present the nonordinal transformation of the potentially
reduced rank square matrix II in (1) and the Jacobian for this transformation.
The details of the derivation of the Jacobian and the transformation in the
case where II is not square, are left to the appendices I and II respectively. A
virtue of the method presented in this paper is that we may test hypotheses
about the space spanned by /3 using Bayes factors. To do this, we need
to be able to estimate the model with subject to these restrictions. The
necessary transformations to estimate these models are presented in Section
4. It turns out that these transformations are very similar to those presented
in Appendix II for the nonsquare H. The diffuse and natural conjugate
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priors, the likelihood, the resulting posteriors and the sampling scheme are
presented in Section 5. An illustrative example is presented in Section 6 and
Section 7 concludes.

2 Identification.

In the classical approach, identification is largely treated as a property of
the likelihood function, L = L(Y le). Let 0 be a k-dimensional vector in Rk.
Two points 01 and 02 are said to be observationally equivalent if L(Y191) =
L(Y(02) for all values of Y. The point 01 in Rk is (globally) identified if there
exists no other 0 01 in Ric which is observationally equivalent to 01 (Hsiao,
1983). The point 01 is locally identified if there exists an open neighbourhood,
(.1.' in Rk, containing 01 such that no other 9 in is observationally equivalent
to 01 (Hsiao, 1983). It is easy to show the unrestricted matrices a and 3 are
unidentified by setting 01 = 02K4 and al = ma2 such that 01al = 02K-1iza2

for nonzero scaler or nonsingular r x r matrix K. Therefore, L(3181, al) =
L(Y1/32, a2) for all Y.

Whether another definition of identification is necessary for the Bayesian
is not clear. Several authors have addressed this question and a recent useful
overview of this discussion can be found in Aldrich (1994a). While the impli-
cations of nonidentification for the estimator can vary significantly between
the two approaches, for the purposes of this paper, we accept Kadane's (1974,
p. 175) frequently quoted view that "identification is a property of the like-
lihood function and is the same whether considered classically or from the
Bayesian approach." Identification can then be determined for the parame-
ter prior to choosing an estimation method. Local identification is discussed
first as this is a necessary condition for global identification and because local
identification is relatively easy to determine.

2.1 Local identification.

Research relating to identification appears to fall into three broad, overlap-
ping areas. First, there has been considerable Bayesian work investigating the
pathologies associated with local nonidentification (see for example Kleiber-
gen and van Dijk 1994, Kleibergen 1997, Bauwens and Lubrano 1993, and
Dreze 1974).

Both classical and Bayesian discussions of local nonidentification relate to
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the flatness in the likelihood in the direction of the unidentified parameters,
O. This flatness or observational equivalence results in a singular information
matrix, 10, which in turn results from linear dependence of the elements of the
score vector (Rothenberg 1971, p.580). Haavelmo presents a related result
that if the first derivatives of L (rather than In L) are linearly independent
"for every point in the interior of the parameter space, then every parameter
point is locally nonarbitrary" (Aldrich 1994b, p. 210). This singularity of
the information matrix is used in the classical approach to determine local
identification. Bayesian approaches use this singularity to counter the effect
of the flatness in the likelihood.

Much of the work on Bayesian analysis of cointegration has necessarily
focused on the issue of local nonidentification of the elements in Oa in (1)
with respect to the likelihood at the point where rank (f3a) < r (however
clearly this is not the only cause of local nonidentification), and the near
nonidentification in this region. Although this point has measure zero, using
a flat prior for f3 and a in the cointegrating ECM will result in possibly infinite
posterior moments and improper posteriors (see Kleibergen and van Dijk,
1994) and therefore make it difficult to obtain meaningful inferences about
these models. These pathologies are due to the flatness in the likelihood
being transmitted to the posterior.

The second area of research has covered possible solutions to these patholo-
gies (Kleibergen and van Dijk 1994, Kleibergen 1997, Geweke 1996, and K&P
1997). Methods used to offset the flatness and so enable inference, have in-
cluded using an informative prior (Geweke, 1996) or a Jeffrey's prior (Kleiber-
gen and van Dijk, 1994) for the nonidentified parameters 0, in the restricted
model. The former method produces proper posteriors. However, as Kadane
(1974) shows in theorem 2 for a two point prior, the posterior probability for
an hypothesis on the locally nonidentified parameters at a point of local non-
identification, will simply be the prior probability, that is, the experiment
that generated the data is said to be uninformative for 9. The use of the
Jeffreys' prior is motivated by the fact that the local nonidentification mani-
fests itself as a singular information matrix (Rothenberg 1971). The Jeffreys
prior, MO), uses this singularity (or more accurately the approach towards
singularity) to offset the problematic effect of nonidentification - flatness in
the likelihood - since pj(0) =11011.

The method in this paper uses Kleibergen's (1997 and K&P 1997) ap-
proach of transforming from a general model to a restricted model to over-
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come the problem of local nonidentification even when a uniform prior is
used. That is, the reduced rank model is nested within a more general (full
rank) model which has well a behaved posterior distribution with a uniform
prior, and then the model is transformed such as to parameterize the restric-
tion to a lower rank, effectively conditioning on the given rank r. This is the
transformation from the potentially reduced rank matrix II to the matrices
a, 13 and A where A = 0 restricts II to a lower rank. Specifying a uniform
prior on II will not translate into a uniform prior for (13, a, A). However, this
approach is consistent with Box and Tiao's (p.26 1973) suggestion that a
uniform prior should be used for the parameterization for which the likeli-
hood is 'data translated' - that is, the likelihood "is in location form in terms
of sufficient statistics" (Chao and Phillips 1996, p. 17). In this case, the
variable Y enters the likelihood through the location parameter for II, which
is the OLS estimate, eg. II = (X'X)-1X'Y, and the location parameter for
E, which is the OLS estimate '5" = Y'Y — Y'X (X'X)-1 X'Y. The implied
prior for (0, a, A) given E, is then the Jacobian for the transformation from
the parameters of the general model to the parameters of the nested model.

If the parameters of interest are population moments, Rothenberg's The-
orem 4 (1971) shows they will be (globally) identified. As the conditional
mean of (rX)-1 X'Y is B, then 7r = vec (B) is identified. As global iden-
tification implies local identification, this result implies .2", is nonsingular.
For the matrices E, i = 1, ,j of varying dimensions, let the notation.
o= vec (E1, E2, , Ei) imply = (vec (E1Y , vec (E2Y , , vec (Ej)Y. Us-
ing Haavehno's definition of reducibility (Aldrich, 1994b) and the transfor-
mation of II to (0, a, A), 7r = vec (II, A, E) is regarded as the reduced form of
the reduced rank regression model, and 0 = vec (0, a, A, A, E) as the struc-
tural parameters. Let the Jacobian matrix for the transformation between 7r
and 9 be J. If 7r is an m x 1 vector and 0 is n x 1, then if J is full rank,
is locally identified since 2-0 = J'I,J will be full rank n. Thus 0 is 'statisti-
cally' locally identified according to Rothenberg (1971) since I exists and,
further, 0 is locally identified according to Koopmans since J is fall rank
(Aldrich 1994a).

As discussed in Poirier (1995), Kolm.ogorov (1950) and at length in this
context in Kleibergen (1997), there is no unique way of conditioning on an.
hypothesis with zero measure (such as A = 0). This implies that it is possi-
ble to get different results for Bayes factors for different specifications of the
restricted model, such as reordering the variables in X. Kleibergen (1997)
presents results that allow us to determine specifications of the transforma-
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tion for which the posterior, and therefore the Bayes factors, are invariant.
The invariant specification with nonordinal identifying restrictions is pre-
sented in Section 2.

The third area of Bayesian research has outlined similarities between
Bayesian posterior distributions and finite sample distributions of classical
estimators in certain cases. Chao and Phillips (1996) show the similarity of
the form of the posterior pdf of the coefficients in an SEM with a Jeffreys
prior with the classical finite sample distribution of the LIML estimator for
the same coefficients - both distributions have Cauchy-like tails. Phillips
(1994) shows that the exact finite sample distribution of the classical re-

duced rank regression estimator E = b2;3371(ie., Johansen's) has Cauchy-like
tails and no finite moments of integer order. Whether the Bayesian esti-
mator of B = 02/3-1-1, and the classical reduced rank regression estimator B
show such similarities as in the SEM is an interesting area for possible future
research.

2.2 Global or Strong Identification.

The elements of fi and a are not identified in the strong sense and so a number
of restrictions are required to achieve global identification. We generalise the
results of Bauwens and Lubrano (1993) who formally show the following
result for the case where L = p. If rank (II) = r < min (L, p) such that we
can write II = Oa where and a are p x r and r x L matrices respectively,
Lr -Fpr — r2 elements of fi and a are identified. As there are Lp elements in II
from which we wish to obtain the Lr - F pr elements in fi and a, r2 restrictions
need to be applied. Another way of looking at the number of necessary
restrictions consistent with the method used in this paper, is as follows.
Generally Lp Lr pr. Taking II to be a general matrix, decompose this
into three matrices 0, a and A of dimensions pxr, rxL and (L — r) x (p — r)
respectively such that if II is of rank r, then A = 0 and so II = f3a. This
decomposition requires a number of appropriate identifying restrictions, R,
such that Lp = Lr pr (L — r) x (p — r) — R. Therefore apply aZ = r2
prior restrictions to 13 and a to achieve strong identification. Determining
the number of restrictions required says nothing of the form those restrictions
must take. Therefore we need to discuss when the parameters a and are
identified and then ask the question: do our restrictions identify the elements
of a and 13?
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The restrictions used in this paper resemble those used by Johansen in.
his maximum likelihood estimator of the space spanned by cointegrating vec-
tors. This method of estimation "implies an identification of the individual
coefficients, as the coefficients of the eigenvectors of a suitable eigenvalue
problem" (Johansen 1995b, p.123). This method of estimation is equivalent
to performing a singular value decomposition (SVD) of the unrestricted OLS
estimator II, which has been normalised with respect to its estimate of the
covariance matrix, Sou 0 (Johansen 1995a, p. 94). That is, an SVD is_
taken of the matrix fl* = Soo2.111SA. The Bayesian equivalent, presented in
this paper, is to perform an SVD of II with respect to its covariance matrix,
E (this term is further defined when necessary in Appendix III).

Geweke (1996) addressed this ordering problem by estimating all EL n
r=v r

possible orders and estimating predictive probabilities for each order. This
approach provides a valid means of obtaining the expected values for ,C3,
however it could become cumbersome if L becomes large. In this paper a
method for Bayesian estimation without ordering restrictions is presented in
the reduced rank multivariate regression model. This alternative method of
achieving strong identification is to define r2 elements of 13 (or a) as deter-
ministic functions of the remaining (p r) r (or (L r) r) elements in that
matrix. That is, 3 = I ff2r , where 131 is an r x r matrix and 02 is a
(p — r) x r matrix, is defined such that /31 = 1 (02). This nomination of asas
a function 02 of is somewhat artificial in that if any (p — r) r elements of f3
are known, then the values of the remaining r2 elements are known through
the identifying equations. However, this nomination does help us to derive
the Jacobian. This approach to implementing the restrictions, which is well
established in the frequentist literature, was used by Anderson (1951) and
Johansen (1988) and has the advantage that it removes the necessity for a
priori consideration of the ordering of the variables in X. As cointegration
has become an important concept in econometrics over the past decade and
it implies a reduced rank structure on a matrix of parameters in the ECM,
the ECM will be used throughout the paper as an example to demonstrate
the application of the above method of identffication.
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3 The Nonordinal Transformation.

In this section we present the transformation which avoids consideration of
the order of the variables. This is achieved by nesting the restricted model
within a general model which has a well behaved posterior, such as the full
rank model. To nest the reduced rank regression model in a full rank model,
reparameterize the model by the following transformation

Sii211*E (3)
where E is the variance-covariance matrix of the errors in the model and
the covariance of H is E 0 T'STil. The decomposition in (3) is equivalent
to taking an SVD of II with respect to its variance-covariance matrix, and
is therefore equivalent to the approach Johansen (1988) takes in his maxi-
mum likelihood estimator. The SVD depends on the dimensions of II and
decompositions for nonsquare matrices are presented in Appendix II. Here
it is assumed II is square (p = L) as in the ECM and the SVD proceeds as
follows. Let U = [U, U2 and V = [V1 V2 be appropriate orthonor-
mal matrices where U,, Vi are p x r, U2, V2 are p x — r) and Si and S2
are diagonal r x r and (p — r) x (p — r) respectively. Make the following
transformation:

II* = USV' = [ Ui u2 [ (4)0 [ -1/7j

s ][ v21:][uiT u2][ 6-1 
v

s2
= UiTTIS117; U2S2"q

where the r x r orthogonal matrix T is chosen such that 24-1-' = = I and

Vulsii2DS112U1T =r = diagen,
in which D is apxp positive definite, symmetric matrix. We choose D
to conform with Johansen's matrix at the mode of the likelihood. For the
diffuse prior specification, this matrix will be exactly the same as Johansen's
matrix. That is, D = Si0S0-01S0i where Slo, S, and Soo are defined such
that with a diffuse prior, at the mode of the likelihood 13 will be equal to
the value given by the Johansen maximum likelihood estimator. Denote the
eigenvalues of the p x p matrix S31-12DS112, by (Al, Ap) where Al > >



Ap > 0, although in practice Ai > > Ap > 0. These eigenvalues are also
the squared canonical correlation coefficients. The diagonal elements of r,
(71, ..., -yr), are bounded by Ai > > Ap_r_fi (Schott 1997, p.111), and at
the mode of the likelihood, Ai =

This gives the following expressions for 3 and a,

fl=S112U1T a =

Next, define the following matrices

TIt4Sni- U2 = Ap--r diag (77 , • • • , np-r)
TMEV2T2 = Ap_r = diag(ci, Cp-r)

so that T1 and T2 are (p — r) x — r).
The last term in (4) becomes,

U2S2V = U2T171.512T2TY

so that from (3),

S-10 U2T1 — 131= 51]).U271,11 1 — 11 - - 

a _LE = TV2'E a1 = TcVE-1,

and finally
A = T1S2T2.

The resultant transformation is

II = Oa =

(5)

where i3 is p x r, a is r x p, A is (p — r) x (p — r), 01 is p x — r) and
al is (p — r) x p such that O'f3± = 0 and aia' = 0. Further, we have
aiEal = /p_r and 015131-11,31 = 'p-r. In this transformation, II is restricted
to lower rank where A = 0. The Borel-Kolmogorov paradox states that there
is no unique form for the distribution of any generally specified and a
conditional on this restriction. This implies that Bayes factors will not be
unique, making inference dependent upon the specification of 0, a and A.
However, by defining A such that it is locally uncorrelated at A = 0 with
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and a, as in (7), the resulting posterior will be invariant as will the Bayes
factors.

The identifying restrictions are all imposed on fi in the following normal-
isations,

O'SHO = /

which implies 7*(7'2+1) restrictions, and

O'DO = r = diag(71,

(8)

(9)

which implies a further r7.-( restrictions for a total of r2 restrictions and
(p — r) r free parameters in (3. In the expression (9), r is random with an
implied posterior distribution in the Bayesian method and 71 > > > 0.
The resultant model is now

Y = )(Oa+ XSTili3 j_AalE ZA-FE

where the reduced rank model occurs at A = 0,

= Xf3a+ ZA-1- E.

(10)

The values of the matrices Su., 510, and Soo are chosen such that they con-
form in the posterior with a diffuse prior to the values used for the maximum
likelihood estimator. These matrices are defined in Appendix III.

3.1 The Jacobian for the transformation.

The above transformation gives the following equations.

II = + ST3.1/3.LAal.E, (12)
E = E.

The restrictions are expressed in the r2 equations in

Lvec(OSHO — I) = 0

and
LvecV — n = 0

13



where Lvec(A) is the r(r2+1) vector of lower triangular elements of the r x r
matrix A, and Lvec(A) is the 17±;---1)- vector of infradiagonal elements of A
(Magnus and Neudecker, 1980, Henderson and Searle, 1979).

As E is symmetric, the following results use only its lower triangular
elements. For the purpose of finding an expression for the Jacobian, let 02
contain the free parameters such that given (,82, X ,Y, D), then 01 is known.
Using expression (3.1) of Roy (1952), the Jacobian matrix can be expressed
as

((n, E) (02, a, A, E)) = avec (II, E)

avec (02, a, A, E)'

[
avec(II) avec(II) avec(II) avec(II) 
avec(02)1 avec(a)' avec(A)' avec(E)'
avec(E) avec(E) avec(E) avec(E).
Ovec(f32)1 avec(a)' Ovec(A)' avec(E)'

where the forms of these expressions are presented in Appendix I. From
Appendix I,

avec (E)

avec (02)
avec (E) 

avec (A) —

avec (E)
X r(p-r) avec (a) xpr

avec (E)

x(p-r)2 avec (E) 4P-2 11x21 44,1/

and so the Jacobian has the form:

where

A211 A1 A212213. ((11, E) (02, a, A, E))I = = 
A

= 1A221 lAn — Al2AgA211=

A = 
avec (II), avec (II) avec (II)

ll. 
/avec (32) avec (a) Ovec (AY

Al2 =
aVeC (02)1 aVeC (a)' Ovec (A)'

Ovec (E) avec (E) avec (E)

14

avec (11) 
A21 = 

aveC (E)/

avec (E) 
22 =
AaveC (EY

(15)



3.2 Linear Restrictions on O.

In the Introduction it was argued that normalizing /3 by 13/31-1 will not al-
ways be appropriate as 01 may be singular, depending on the order of the
variables in X. Further, this normalization forces the researcher to declare
which r variables must enter the relationship X3, again ordering so the first
r variables are not excluded from X3. These issues raise the question of what
is the appropriate order for the columns of X and, in particular, what is the
form of /3? That is, what valid linear restrictions can be imposed on /3?

In both the classical and Bayesian approaches, to test the appropriateness
of such restrictions and to estimate the restricted model, requires a specifi-
cation of the model subject to these restrictions. In the classical maximum
likelihood approach, Johansen (1995b) has provided methods for estimation
with, and testing of, these restrictions. In this section we present the Bayesian
equivalent with the SVDs for the models with various linear restrictions on 0.
The three restrictions investigated are presented as the following hypotheses.
(R1) Ho:/3=Hçb

where the dimensions of the respective matrices are: H px s, s x r,r < s.
(R2) Ho : 3 = (b cp) = (b 1)2_0)

where the dimensions of the respective matrices are: b p x s, bd. p x (p — s),
(p — s) x (r — s), s r.
(R3) Ho : = (H101, H202, - • • , HOPt)

where the dimensions of the respective matrices are: Hi. p x si, Si X Ti,
ri si, 1 < r, Ei = r.

The restriction in R1 imposes the same restriction on all of the columns
in 0. The second restriction, R2, assumes we know the form of the first s
columns of 3, b, and the remaining r — s columns, kJ:0, are unknown except
that they are orthogonal to b. The final hypothesis, R3, generalizes the first
two.

The SVD for these hypotheses can be found by using the results in Appen-
dix II which presents the SVD for a nonsquare matrix, co, and the following
transformations.

For R1, the model becomes

Y = XII ZA e=Xlicod-ZA-F E

where yo = irpcx (H'S111/)-1 ithAa_LE. The Jacobian for this transformation
is of the same form as the Jacobian in Appendix I with 811, 0, and II replaced
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by I/1,511H, 0, and co respectively. The definition of 811 remains =changed
in this case.

For R2, the model becomes

Y = XII±ZA-1-e

= Xbcei ZA

= Xbj_cp-1- ZA+E

where Z= [Kb , A= [c4 A']' and cp = 0a2 IPIAa21E. Again

the Jacobian can be found by using the form of the Jacobian in Appendix
I with 811, 0, II and a replaced by bSub..L, 40, and a2 respectively.
The definition of 811 in the simple case of a diffuse prior, becomes 81.1 =
T-1 (X'X — X' Z (Z/Z)-1 Z' X).

Finally, for R3, the model becomes

Y = X11-1-ZA-FE

= XHicoi XH2co2 + • • • + ZA± 6

where go i = Ojai = 1, , /, / < r. Each of
the / Jacobians, J, can be found by using the form of the Jacobian in
Appendix I with 811, 0, II, a and A replaced by HS11 H, (Pi,
and Ai respectively. The definition of Sni again when we have a diffuse
prior, becomes 811i = T-1(X'X — X' Zi X) where the matrix

Zi= [X111 • • • XH/ Z] does not include XHi. Estimation of these models

requires little extra computer coding beyond that required for the general
model using the transformation (7).

4 Priors and Posteriors.

In this section we present the forms of the posterior for the general reduced.
rank regression model and the ECM representation of the vector autoregres-
sive model with one lag (VAR(1)) with no deterministic terms for a simple
application.
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4.1 The Model: ECM for a VAR(1).

The relevant functions for the general model in (1) are presented in the fol-
lowing discussion. However, in some places it is necessary to present relevant
features of these functions in a simple case only, therefore the ECM for a
VAR(1) with one lag and no deterministic terms is used. This model has the
form:

Yt = Xt-ill + et (16)

= Xt_113a + Xt_1 (X/X)-1/31.Aa _LE ± et, t =1, ..., T

where a' and 13 = (/31 are p x r matrices, 131 is r x r, 02 is (p — r) x r,
02

A is (p — r) x (p — r), and the 1 x p vector et is distributed as independent
N(0, E). Let Yt = t,Y = (LX, 6,4 ..., AX4,)', E = (4, e'2, ..., e'T)',
and X = X = (X(), )q., ..., .,so Y = XII + E. The restrictions in (8)
and (9) are imposed on the system such that the parameters a and 13 will be
identified.

4.2 Priors

The information matrix, .2-0, for the structural parameters 9 = vec (a, 0, A, E)
in (16) is presented in Appendix I. The Jeffreys prior is proportional to I/11/2.
Therefore, the form of the diffuse (d) or Jeffreys prior for the parameters in
the reduced form models 7r = vec (H, A, E) (1) and (16) is:

(E, BL 0: izr11/2 lEr(L+p+k+1)/2

The natural conjugate (n) prior for the unrestricted linear model in (1)
and (16) is:

B)n 0; 1E1---(E-FL-Fiv2 exp -2-1trE-1S1

iEr2 ,,,L/2 exp {4rE-1 (B — (B — 12)

where B = [H' Al' and B = [H' Al' for (1) and B = II and B = 11 for
(16). Using the expression for the Jacobian in Appendix I, J, the resultant
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priors for the structural parameters 0 in the transformed nonlinear regression
model (10) are

Pe (E, a, /3, A, = p7r (E, II (a, 0, A) , 
jzryli/2 a 11011/2

and

Po (E, a, 0, A, = (E, (a, 0, A) , A)IJI •

(17)

(18)

The priors for the reduced rank models are found by evaluating the above
expressions at A = 0 and we use the expression I JIA=.01 to represent the value
of the Jacobian at (a, 0, A = 0, E). As in was found in K&P, the above priors
cannot be decomposed to provide useful marginal and conditional densities.
So the same simulation scheme as used in K&P is used in this paper. This
is a Metropolis-Hastings algorithm with the posterior for the unrestricted
model as the candidate density for the reduced rank models.

4.3 The likelihood.

For the full rank models in (1) and (16), assume the rows of E = , . . . , e'TY
are independently and normally distributed as N(0, E). Under these assump-
tions, the likelihood can be written as

L (YIE, 0, a, A, A, X) a IEI exp {—.1tr (E-IgE) } (19)

where
E = (Y — 'Oa — X5711,31Aa1E — ZA)

for (1), and

E = (17 — 'Oa — X (X' X)-1/31Aa_LE)

for the VAR(1) ECM in (16).

4.4 The posteriors.

The posterior for model (1) when we use the diffuse prior is:

Ar(E,BiY,X)d cc Pir(E)dP7r(BIE)d (YIE, B,
cc 1E —(T+L+p-Fk+1)/2 exp {—.1trE-1 (Y — (Y — X B)1
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oc IE1-(p-I-k)/2 exp 1 trE-1 (B — X'.2(: (.B — E)}
2

x 
iEj--(T+L-1-1)/2eXp 

{_ltrE-11/1X PCX)-1 X1371 .

The posterior for the transformed model as parameterised in (10) with the
diffuse prior may be decomposed as follows (see Appendix III).

Pir (E, BY, x)d = p(A,A,a,fl,ElYX)dIJJ

= P (AiA, a,O,E,Y,X)P(Aia,O,E,Y,X)dP(a,01E,Y, X)d
xP (ElY, 2-)d1J1

oc exp (--
2
trE-1 (A — AY Z'Z (A — A)) fErk/2

1

x exp (--2-Ttr (A — — "A)) IEL 2

x exp (--
T
trE-1 (a — -a) (a — a)) lErri2

2

x exp (--
2
trE-1 [S. ± 1E1-

(T+L+1)/21

The terms used in this section are defined in Appendix III. This provides an
expression for the posterior for the reduced rank model (10) at A = 0 as:

p, (A, a,O, EIA = 0, Y, IJIA=ol

= P (AIA =0, a,O,E,Y,XLP (a,01E, Y,X)dP (ElYa-)d VIA=01
1

oc exp (--
2
trE-1 (A — AIA.0)' Z/Z (A — AIA=0)) lErk/2

exp ( T
--
2
trA tEr(P-r)/2

x exp (--
T
trE-1 (a — ay (a — rfi)) lErr/2

2

1
x exp (--trE-1 + Tricsinfi])1E1-(T+L-1-1)/2 JIA=01

2

The posterior for model (1) when we use the natural conjugate prior is:

p, (E, BIY, oc 1E1-(p+k)/2exp (B (Lik --1-2C2) (B — .5)1
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x 1E1-(T+L-1-E-F1)/2exp

The posterior for (10) with the n prior may be decomposed as follows (see
Appendix III).

p, (E, BIY,) = p (AIA, a, /3, E, Y, p (Ala, 3, E, Y., XL

xp(a,OiE,Y;X)P(EIY,X),,,IJI

exp ( 1
--
2
trE-1 (A — AY (H22 + Z'Z) (A — A)) lErk/2

x exp (--2-Ttr (A — 3)/ (A — 3)) 1E1-(P 2

X exp (--2-TtrE-1 (a — (a — a)) lEi-r/2
1 Tfr fi] ) 1E 1-(T E4-+L-1-1)/2 1 ji.X expo (--trE-1 
2

This provides an expression for the posterior for model (10) at A = 0 as:

Pr (A, a, 0, EiA = 0, Y,X)n VIA=01

= P (AIA =0, a, 0, E,37,2C-)P (a, OiE, (ElY;)n
1

oc exp (--
2
trE-1 (A — AIA.0)' (H22 ± Z/Z) (A — AIA=o)) iErk/2

x exp (---TTtr-r3) IEL(P-r)/2

x exp (—.TtrE-1 (a — -a) (a - a)) jEl-r/2
1 

X exp —
2
trE -

7,[ ± biiii]) 12.,1--(T+L+E+1.)/2 jix=01.
—-

These decompositions do not provide conditional distributions useful for sam-
pling, except for A which has a conditional normal posterior distribution in.
all cases. However, they do provide us with amenable forms for finding ex-
pressions of the weights in the Metropolis-Hastings algorithm outlined in the
next section.
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4.5 Sampling scheme. .

The aim of this section is to outline a procedure for obtaining a draw from the
posterior Pe (A, a, 0, EIA = 0, Y, X). The forms of the joint and conditional
posteriors of a, A, and E are not from known classes of probability density
functions. To sample from these posteriors we use the same approach as de-
tailed in K&P. That is, a Metropolis-Hasting algorithm is used with the can-
didate density being that for the full rank model, p, (A, A, a, 0, EP', X) IJI.
This sampling scheme is outlined here. Let k = n or d depending on which
prior we wish to use, 9 = vec (a, A, 0, E) and 6LA = vec (a, 0, E). First we
use the following steps to draw from the candidate density. At iteration i,
for i = 1, • • • , m,

Step 1: Draw E(i) from p, (Pt, X)k .
Draw II(i) from p, PEW, Y, X) k

Step 2: Perform SVD of 11(i) =
Step 3: Compute a(i), A(i) and /3(i) using (5) and (6).

As we are unable to find known conditional pdfs for the parameters in
(10), we sample 0 at once, then sample A conditional on a, A = 0, 3 and
E. The matrix A has a conditional normal posterior pdf in every model
considered in the previous section. As we have sampled A which only ap-
pears in (10), to get draws from (11), we augment the posterior for the
reduced rank model, A, (0-A = 0, Y, X)k VIA=01, with a proper distribution
for A, g (AIO_A, Y, X) . Again, the reader is directed to K&P for details of this
method. The weights used to accept or reject draws are

wi = w(01Y, X) (20)

g (A(i) 10 _A, Y, X) p, (9(_9A1A = 0, 17,2C_)k IJIA=01

Pir

As discussed in K&P, Geweke (1989) shows mrn'> wi converges to the ratio

of the integrals

f g (A(i) 10(i)A,17, X) p, (0(i)AIA = 0, Y, X) k JI A=O I d0

f p, (9(j) IY, k I JI dO

This result is useful for estimating Bayes factors. The steps in the Metropolis-
Hastings sampler are:
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Step 1: Draw 0*(i+1) from Pr (91Y; -20 k •

Step 2: Accept t9(i+1) = 0*(i+1) with probability min 1)

otherwise 0+1) = 0(i).

Step 3: Draw A.(i+1) from p (2110(i+1), 37, x).

The resultant set vec (0+1), il(i+1)) will be a draw from the posterior

-2(_.p (A, A, 0+1) IY, X) = p (A10+1) ,y, (6LAIA = Y7 )k IJIA=o17 g (Ale-AA, -1.C) pr

and the set vec (0(i+1) g+1)) will be a draw from-A

Po (A, 0 -AlY, X)k = (A, I 9 -AIA = 0, VIA=01-

5 Application.

To demonstrate the applicability of the method presented in this paper we
investigate the real-business-cycle model with permanent productivity shocks
proposed in King, Plosser, Stock, and Watson (1991), and present results for
this model using the consumption, investment and output data considered in
Harris (1997). These results are compared with the results from the classical
approach. To investigate the support for various hypotheses, we calculate the
Bayes factor which is the ratio of the marginal likelihoods for the model under
one hypothesis and the model under an alternative hypothesis, m (yIH0) and
m (yIHA) respectively. That is,

BF(01A) = BF(HolHA) = m (MHO /m (yIHA) .

The marginal likelihood for a particular model i, with parameters 0, is defined
by the expression p(Oly, Hi) = p(9lili)L(y10, Hi)/m (yIHi) , where, for this
model, p(Oly, Hi) is the posterior density for 0, p(Oilli) is the prior density
for 0, and L(09, Hi) is the likelihood function for the model. Therefore, for
all 0,

m (ylHi) = I p(0111-i)L(y10, Hi)c19 = p(01Hi)L(y19, Hi)/p(Oly, Hi). (22)

The ratio of the posterior probability for the hypothesis Ho, P (Holy), and
an alternative HA, P (II Aly), is a function of the Bayes factor and the prior
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0

probabilities for these models, P (110) and P (HA) respectively. That is,
P (Holy) I P (HAly) = P(HO) IF (HA) x BF(01/1). Therefore, to estimate
posterior probabilities for the models of interest, estimates of their marginal
likelihoods or the relevant Bayes factors are required. A sampling based
estimator of BF(rjp) where .11, : rank = r, was suggested in K&P and
uses the draws wi of in (20). That is, we estimate B F (rjI)) by BEw(rip)

2
(cm) 1 E wi, where Cr = (27r) 2 (K&P).

i=1

5.1 Consumption, Investment and Output for Australia.

In this section we provide an illustrative application of the methods presented
in this paper. Harris (1997) investigates the evidence in Australian data for
the real-business-cycle model with permanent productivity shocks proposed
in King, Plosser, Stock, and Watson (1991). This model implies two coin-
tegrating relationships. The differences between the log of consum.ption (c,t)
and the log of output (yt), (ct — yt), and the log of investment (it) and the
log of output, (it — yt), will be .40). So the vector xt = (ct, it, yt)' will be
cointegrated with rank of r = 2 and cointegrating vectors 3 = H where

( 
1 0

H . (hi h2) = 0 1
—1 —1

(23)

To demonstrate the applicability of the method, the analysis will investigate
support for the following hypotheses.

Hr : rank r for r = 0, 1, 2, 3, H4 = 11047

H5 : = (h1 h11.05) H6 : = (h2 h21-06) 7 and
= H307,

( 
1 o\

where H3 = 0 0 , 04 and 07 are 2 x 2 matrices, and 05 and 06 are 2 x 1
0 1)

vectors. The hypotheses Ho to H3 state the number of stochastic trends in
xt is 3 — r. H4 states that ct, it and yt enter the cointegrating relations only
through (ct — yt) and (it — yt) and some combination of these two terms is
1(0). H5 and H6 state that at least one of (ct — yt) and (it — yt) respectively,
are cointegrating relations and so are /(0), and H8 is a test of whether it can
be excluded from the cointegrating relations.

Insert Figure 2 here.
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We use the same data as Harris but the sample is extended to cover June
1971 to March 1997. The data, shown in Figure 2, are per capita, quarterly,
seasonally adjusted observations and measured in constant 1989/1990 dollars.
The details on construction of the series can be found in Harris (1997). King
et al. estimate using a VAR(6) with a constant term for the U.S. data. We
find a restricted VAR with 3 lags for it and 2 lags for c,t and yt, with a
constant is appropriate for the Australian data.

The Bayes and maximum likelihood estimates of )3, assuming a rank of
2, are respectively:

( 14.88 2.55 ) —0.34 6.76

B AY ES = 2.23 —2.19 and = —1.50 0.56 .
—17.54 —0.42 1.86 —7.56

The normalised estimates,

( 

1 -0 ) ( 1 0 )

0 BAY ES = 0 1 and OltiL = 0 1 1
—1.028 —1.008 —1.035 —1.011

are comparable with (23) and suggest support for the real-business-cycle
model proposed in King et al. (1991). However, this model also implies
there is one stochastic trend, and therefore the hypotheses about r need to
be investigated. The calculated likelihood ratio test statistics and Bayesian
posterior probabilities of the ranks are presented in Table 1. The classical
results suggest acceptance of r = 1, however the test statistic is close enough
to the critical value to suggest some support for r = 2. The Bayesian evidence
in these results strongly suggests there is one stochastic trend, and so r = 2.
These results, particularly the Bayesian results, do support the hypothesis
of a real-business-cycle model.

In Tables 2, 3, 4, and 5, the results of the tests of hypotheses H4) H57
H6, and H7 conditional on the ranks, are presented. If the true rank were
2, then we would conclude from the results for H4 that there is strong evi-
dence in support of the real-business-cycle model. The classical results for
the hypotheses H5 and H6 indicate that (c,t — yt) and (it — yt) enter the
model as error correction terms only if the true rank were two, however, the
Bayesian results suggest support for H5 and H6 only if we condition on a rank
of one. The ambiguity in these conditional results for different ranks lead
us to consider unconditional results. The Bayesian unconditional posterior
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probabilities of each Hi, P(Hy) = P(Hillir,y)P(Hrly), are included at
r=0

the bottom of Tables 2 to 5. These results, particularly P(Hdy), suggest
the real-business-cycle model with permanent productivity shocks is valid as
there appears to be one stochastic trend and, although (ct — yt) and (it — lit)
are not valid error correction terms, the variables do enter the long run rela-
tions through some combination of these terms regardless of the rank. While
we can compare frequentist and Bayesian conclusions from the conditional
tests in Tables 2 to 5, no classical equivalent to this unconditional inference
exists. Finally, the Bayesian conditional and unconditional results indicate
it cannot be excluded from the cointegating relations. However, using a
classical level of significance less than 2% we would accept this restriction at
the accepted rank of one.

Insert Tables 1 to 5 here.

6 Conclusion.

In this paper we have demonstrated the implications of incorrectly normal-
ising the parameters of a reduced rank regression model to achieve global
identification, and presented a method for estimating this model without us-
ing the ordering restrictions imposed in previous Bayesian and frequentist
approaches. This method uses restrictions on the parameters that are equiv-
alent to those used in the classical maximum likelihood estimator for this
model developed by Anderson (1951) and applied to cointegration problems
by Johansen (1988). The specification of the model is similar to Kleibergen's
approach as it uses a parameterisation of the rank reduction. That is, the
potentially reduced rank matrix II is transformed to (a, 0, A) and the rank
of II is reduced if A = 0. Further, this method is consistent with the prin-
ciple suggested by Box and Tiao (1973) that, if a diffuse prior is preferred,
this prior should be on the parameterisation for which the likelihood is data
translated, that is II. By this approach, the issue of local nonidentification is
avoided as the Jacobian for the transformation offsets the flatness in the like-
lihood that occurs near problem areas, much like the Jeffreys' prior does for
the nonnested reduced rank model. Further, since II is a population moment
and the Jacobian of the transformation is full rank, the elements of (a, 0, A)
are locally identified. The form of the restrictions on 3 imply the elements
of (a, 3, A) are globally identified.
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The form of the restrictions allow sampling based estimates of Bayes
factors for various hypotheses. Estimates of coefficients and posterior proba-
bilities are presented for a simple model and compared with classical methods
of inference. In this empirical example we find strong evidence, both condi-
tional on the rank and unconditional in the Bayesian approach, in support
of the real-business-cycle model of King et al. (1991). An advantage of the
Bayesian approach is that it allows access to unconditional evidence on eco-
nomic relations. There exists no classical equivalent to this unconditional
inference. The approach presented in this paper can be extended to incor-
porate a range of models and allows inference in these models in a unified
approach.
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8 Appendix I: The Jacobian for the Trans-
formation.

From the transformation (12) in Section 2 we have the following equations

II = 5711,31Aa

E=E

and the r2 restrictions equations in (13) and (14)

Lvec(O'SnO — =

and
Lvec(0' DO — r) =0.

To find an expression for the Jacobian, use the results of Roy (1952, p. 118)
which are reproduced here for convenience.

"Theorem 1. If y = fi(xi, , xm, xm+i, , xm+n) (i = 1, . . ,m)
when x'js (j = 1, , m n) are subject to n constraints

fi (X1 . . . Xm; Xm+i, • • • , Xm+n) = 0 (i = m 1, , m n),

then (under the usual conditions for the existence of the Jacobian, including
the non-vanishing of the numerator and the denominator in the following)
we have"

IAY1 • • • 7 YM X1 , • • • Xm) I =
6(fl • • • fm, fm+1, • • •

6(Xi, . . • Xmo Xm+17 • • • Xm+n)

6(fm+1) • • • fm+n)

8(Xm-1-1, • • •

Importantly for our needs, in the proof for the above theorem, Roy
presents the Jacobian as

AY1, • • • Ym : x1,... ,xm)I =
Syi

6Xj

6fi
oXj
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For the purpose of deriving the Jacobian, we treat al, Oi_ and /31 and as
the x'ks, and a, 02, A and E as the x'is in (24). Therefore the form of the
Jacobian matrix for (12) is

“11, (02, a, A, E)) =

where

avec (H, E)

avec (02, a, A, E)'

[
.92_2.EqED_ at_zsla Ovec(II) ai_Le.fill)
avec(a)' avec(/32)' avec(AY avec()'
avec(E) avec(E) avec(E) avec(E) 
avec(a)' avec(/32)' avecptY avec(E)'

avec (II) 
= (IL 018 

avec (II)  avec (al.)
)(avec ( +a))' (avec (aa (avec (a))'

avec (II) 
= (E Srilf31A) •

(avec (al))'

Letting al = [I — a' (ac)'' where c = 0)' and cl = (0 hi-r)' 

a (vec (a±)) 
=a (vec (a))' [[c (ac)' (c (ac)' ac41 — [c (ac)' 0 cl]] Kr,L

where for an m x n matrix A, Kinnvec (A) = vec (A') (Magnus and Neudecker
1988, p. 47), we have

avec (H) 

(avec (a)) = 0)

(E 0 Sri101A) [ [c (ac)' (c (ac)' aci.)1] — [c (ac)' 0 c' j_]] Kr,L

= 0/3) (Ec (acr. ST1113 ±Acii[(c (ac)-1 — Id) Kr,L.

a (vec (II)) a (vec (II)) a (vec (0)) 
a (vec (02))' a (vec WV a (vec (02)Y

a (vec (H)) a (vec (01)) a (vec (0))± a (vec (01))' a (vec (o))' a (vec (02))'
a (vec (II)) (a, 0 Ip)
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a (vec (0)) 
a (vec (02))/ r

( _Tr )1 a (vec  
003--r)xr j a (vec (02))/+ 

lir (Ori rx(p-r) )]

To find the partial derivative aa((vveecc(('41))))„ express 01 as a function of 02. The
r2 restrictions in (8) and (9) provide this expression. These r2 restrictions,
therefore, enter the Jacobian from the following expressions:

= Ir 0/1 (S11)11 01 = Ir — i3 (S11)12 02 0/2 (811)21 01 02 (811)22 02
2Nr (.4. 0'1. (511)11) dvec (01) 2Nr (Ir 0/2 (S11)21) dvec 030

= — 2Nr (Tr 0/3'i (51012) dvec 032) — 2Nr (Ir 0 0'2 (811)22) dvec (02)

2Nr [(4. (S1011) + (Tr 0'2 (811)21)] dvec (0)
= — 2Nr Kir 0 Oi (51010 ± (Tr 13'2 (S11)22)] dvec (02)

LAT, [(Ir (S11)11) + (Tr 0 02 (S11)21)] dvec (i31)
= — L Nr [(Tr 0 14 (511)12) + 0 92 (S11)22)] dvec (02)

which is an "---(4---1) x 1 vector.

OIDO = Fr = Fr — 3iD1202 — 0/2D2101 — 02D2202
2Nr (-Tr 0 dvec (01) 2Nr 02D21) dvec (01)

= dvec (Fr) — 2Nr (Tr 0 /3'11312) dvec 2) — 2Nr 0 13'2D22) dvec (02)

2Nr [(Ir 0 01D11) ± (Ir 0 02D21)] dvec (01)
= dvec r) — 2N, [(4. 0 OiD12) (Ir 0 02D22)] dvec (02)

L.Nr[(Ir 0 OID11) (Ir 0 0/2D21)] dvec (131)
= — 1V, [(Ir 0 0'11)12) (Ir 0 02D22)] dvec (02)

which is an "411 x 1 vector. Combine these expressions as

[L 1Vr [1] r [2] 
dvec (01) = [ LLNN: [431 

dvec (i32)Liv 
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where [1] and [2] are full rank r2, Nr is r2 x r2 rank r(rr), L is r(7-i-{-1) X r2

of rank r(r-2/-1) L is "-Ci---11 x r2 of rank r 7--Y1, SO EN?. [1] is 7'7.14=1) x r2 of rank
r(r
2f1) LNr [1] is r 7-4-11 x r2 of rank 72--(7; and

[1] = (Ir ® (811)11) + 0'2 (511)20 = (4. 0' (sii)i)
[2] = (Ir /3iD11) + (Ir 0 02D21) = (4. 0 O'Di)
[3] = (Ir 0 i3 (811)12) (4 0 0'2 (s11)22) = (Ir 0 0' (s11)2)
[4] = (Ir 0 + (Ir 0 02D22) = (Ir 0 18'D2)

[ D11 D12 (S11)11D = = [D1 D2 Sll = (5D21 1-'22 k 11)21

(s11)12 [(S11)1 (811)2 •(s11)22

Therefore [ L-Nr [1] is r2 x r2 and has rank less than r2 with probabilityLNr [2]
zero. Thus,

dvec(01) =

and therefore,

r EN,. [1] 1 12Nr [3] dvec (02)LNr [2] LNr [4]

a (vec  r liNr [1] 1-1 r EN,. [3] 1
a (vec (02))' LNr [2] j L LNr [4] j'

which is r2 x (p — r) r of less than full rank with probability zero. That
this matrix is of full rank is important to ensure the Jacobian matrix has
full rank. The other matrices in the Jacobian matrix have relatively simple
structures and so it is not difficult to determine they have full rank. Using
the above results, we have,

a (vec (0))  =
r

Next,

EN,. [1] 1-1 
rivrrE431]

_Tr \-1 I orx(p-r) )] — 0 ( N r [2]Ip-r kv-ri X?'

a (vec (11))  = rEaV Sula (vec ,))'
_1

From the transformation in (12), we have )3 = sin2r1 and f3j_ = sAr2
where, r1 = (AT, r2 = u2T1, = Ir, r2r2 = I,. and rcr2 = orx(p_r)•
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Therefore we can form the orthononnal matrix r r2], such that rr
.rp and X = (I + Fr (I — r) is skew-symmetric, that is, .k = This or-

thomorphic transformation between r and .k implies r = (/ + 5)-1 —
(Olkin and Sampson, 1972). We can now find an expression for the matrix
of partial derivatives

(9 (vec (13 a (v ec(,3 j..)) (9 (vec (r2)) a(vecm  (9 (vec (r1))
(9 (vec (m)' (9 (vec (r2))' Nvec(g.))' (9 (vec (ro)' 5(vec(13))'
a (vec (13±)) (T a (vec (ro) (ir A)
(vec (F2))'YP-7. ® (vec (0)Y

a (vec (f)) B(9 (vec (r2)) A2

a (vec (NY 1a (vec (±))/

where A2 is the matrix comprised of the last gp — r) rows of

[ AA — — .rpy (ip ±)]

and B1 is the matrix comprised of the first pr columns of

Finally,

[B1 B2] = — — rpy (rp .

aVeC (1)
(Eal 001)(vec (A))'

avec (II)
= (//, DL

(avech (E))'

avech (E) 

(av ec (a))' —
avech (E) 

(avec (A)Y

° L(L-1-1) „Lr
2

0 
L(L+1) 

2 X (p r)(L r)
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avech (E) 

(vec (02))' 
= 

0141'2+1) xr(p-r)

avech (E) 

(avech (E))' = L(L4-1),, 
" 

L(L-1-1)
2  2



where for an n x n matrix A, Dnvech (A) = vec (A). From the above expres-
sions:

where

A11 -=

A21 =

((H,E) (02, a, A, E))
, ji AA2111 AA2122

— 0221 I All Al2A221 A211 = 1A111

a v ec (II) a v ec (II) a v ec (II)

(avec (a))/ (avec (132))' (avec NY

avech (E) avech (E) avech (E)

(avec (a))' (avec (02))' (avec (A))'

When A =0, then the Lp x Lp matrix

A 
avec (II) avec (II) avec (II) 

11 
(avec (a)Y (avec (02))/ (avec (A)Y

where

avec (II)

avec (II) 
= (//, 0)(avec (a)Y

avec (11) 

(avec (02))'

avec (II) 

(avec (A))'

and

Al2 =
(aVeCh (E))'

A22
avech (E)

-=
(avech (E))'

(a' /p) [ ( °r);(P-r) )] br
4p-r

(Ea l ST11/31)

_ r LNr [1] 1-1 LNr [3] 1
LNr [2] L LNr [4] '

from which it should be apparent IJIA=01 = lAn IA=01 0•

0(p-r)

( 1 \
.k]

8.1 The form of the information matrix for the struc-
tural parameters.

The information matrix in KO' for their invariant specification is block di-
agonal at the point A = 0. This implies the posterior of a and [3 will be
invariant. This relationship between the form of the information matrix (Is)
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for the structural parameters of interest, 9 = (a, 0, A), and invariance pro-
vides a method to show that the specification for 0 in this paper is invariant.
Further, local identification for the parameters of the structural model is es-
tablished via a link with the information matrix for the (globally identified)
parameters of the reduced form model, 7r. We use the ECM model in (16) to
establish invariance in a simple case.

Let JFR and JR be the Jacobians in K&P and this paper respectively.
Next, let 2-0FR and 'OR be the information matrices for 0 in K&P and this
paper respectively, and I = E-3- X'X, the information matrix for the
reduced form model in (16), which is equation (6) in K&P. For the ECM in
(16) with specification (12) at A = 0, the information matrix becomes

2-OR = J/R1-7rJR (25)

where

1,30R

113aR

TaceR

'AAR

IEER

100R If3aR 0 0

2"aaR 0 0
* * 'AAR 0 1

* * * 2-EER

= E-1

(E_Ice, 01 xxixx: XIX-1▪ (E-la' (3. xpc2
f(Ir X1) (Ir X2)11 (aE-la' IT) (ir 0 Xi) (Ir X2)

= alEal 01 (rX)-1 131 = ip—r

= (E-1 E-1) DL.

Thus 'OR is block diagonal at A = 0 which establishes that (12) is an invariant
specification. As discussed in the introduction, as 'OR is nonsingular, and
7r are globally identified as population moments, then 0 is locally identified.
Replacing JR with JFR and 'OR with /0FR, shows the specification in K&P
is invariant, as shown in K&P, and 0 in I<SzP is identified. Kleibergen and
van Dijk (1994) present the Jeffreys' prior for a cointegrating ECM at rank
r using the ordering restrictions discussed in the Introduction. Let I be
the information matrix this model but using the nonordering restrictions
presented in this paper. If we develop the Jeffreys' prior for this model and
denote this prior by pj (0) = ho I , we find PJ (0) = 1181 21 = I-TORI 21 •
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9 Appendix II: Singular Value Decomposi-
tions of Nonsquare cp.

Here the SVD of the (p x L) matrix go* = Snl(PE1 = 7Pa j_Aa.LE is

presented. First consider the case where L > p. Let U = [ 1 U2
pxr px(p-r)pxp

[ V2Lxr Lx(p-r) LxV3(L-p) , and L.5_11 and S2 be diagonal r x r and (p -LxL

r) x (p — r) respectively. Make the following transformation:

(P*
o ol Iv;1.„,usvi.[ u2 ]Lo s2 0 v

IT'S1 0 0 v1:
= [ UIT U2][ 0 e-f2 

v2

A) 0 
tf 
.„7, I

(26)

= UiTT'S,V; U2S2q

where the r x r orthogonal matrix T is chosen such that T'T = TT' = I and

DS U1T = r = diag(71, 7r)

where D is ap xp positive definite, symmetric matrix. Therefore,

= SUiT a =

Next, define the following matrices

71(4Sji1U2T1 = Ap, =

T [17 S S S-1 [V2 v3/ 11 10 00 01 2 V 3]7" 2 = = diag (c , L-r)

so that T1 is (p — r) x (p — r) and T2 = T21
[ (L-r(L-r)x (p-r) 

T22
(L -p)(L-r)x(L-r)

The last term in (26) becomes,

U2S2q = U2271_5:2T1 T2 [ VV32''
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so that from (3)

sTli-th = si-il u2T1

and

aE = T2 [

A = T1S271,

Next, consider the case where p> L. Let U =
pxp

LxL
r) respectively containing the singular values of co*. Make the following
transformation:

i

E Tv. 1
[ Ul

pxr

E - 1 .

U2 U3 1
px(L-r) px(p-L) i

V = [ V1Lxr Lx(L-r)V2 ] and Si and S2 be diagonal r x r and (L — r) x (L —

go* = usv' = [ ul u2 U3][
t5i1 05,2 I 1v1' 1
0 0 I_ v i

[

0 0I_
T1 1 S

= [ [AT U2 U3 ] 0 
05_2 ] i .11/7.1: ]

(27)

= UiTT'SiV; + U2S217

where the r x r orthogonal matrix T is chosen such that T'T = TT' = I and

T'Ul Si-ii DS .i./ UiT = r = diag(n, ..., 'yr)
where D is again apxp positive definite, symmetric matrix. Therefore,

0 = ST1/ (AT a = TI81V11E1.

Next, define the following matrices

i [ r).T]
1 - S1-11 { U2 U3 ] T1

17.175'171 SioS0-01SoiS171 V2T2

= Ap r = diag(771, —, 71p—r)

= A, ...1„-r = diag(ci, •••,c1-r)

so that T1 = [ T11 T12 ]
p-r)x(p-r) (p-r) x (L-r) (p—r) x (p-L and T2 is (L — r) x (L — r).
( 
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The last term in (27) becomes,

U2S2q = [u U3 TITHS2T27M

so that from (3)

and

1
'11)1 = [ u2 U3 7.p = s [ u2 U3

= THS2T27

= TYE-1= a =

10 Appendix III: Decomposition of the Ex-
ponent in the Posterior.

Recall the model in (10):

Y = X11-1-ZA+E=XB-1-E

= Xfia+ XSTIV31Aa i_E ZA±E

where X = [X Z] and B = [II' = [Pa ± SiTALAa_LEY AT. Us-

ing the transformation (3), for the natural conjugate prior the form of the
trace in the exponent in the posterior is

where

trE-1 — XB)' (Y — X B) (B — H(B —p)] (28)

= trE-1 — (H X' X) 13 + .13111B 17117-1-

-Ttralf1731/31flai — TtrE-1,§00/ S;io
±TtrE-1 — (a —

+Ttr (A --A-) (A —

±trE-1 (A — A)' (H22 + ZiZ) (A — A)

X)-1 (H B .X.7) = [Fr AT
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II

a =
= 1 131flal (alEal)-1 = /311-ial

= A — (H22 Z'ZI-1 (H21 ± Z'X)

h. = S—.13-i(Hd-XiX)1-5; Y'Y

M22 = H22 + ZIZ Mal = H2B ZIY M21 = H21 ± ZIX

Ro = Y — ZWM20 R1 = X — ZM2M21

= T:511= RR.;

H =
[H1] [Hil H12 I
H2 _H21 H22

B = [II' 41' .

The form of the trace in,the exponent in the posterior for the diffuse prior
can be found by setting H = 0 and S = 0. Finally, the model with X = X
and B = II is retrieyed by ignoring the last line in (28) and making the
following changes.

= a =
= TS 1 = HB
= H±rX B=

Proof:

(Y — XB)' (Y — XB) S (B — BY H (B — B)

= S — (H X'x  13- H B Y'Y (13 — .5)1 (H+ (B -

= T (11 —if)/ (ll - ± (A— AY (H-22 Z'Z) (A — A)

As A does not appear in the Jacobian, we can see from the above ex-
pression that the distribution of vec (A) conditional on (a, 0, A, E) will be
N (vec (A) , E (H22 ± Z1Z)-1) . As setting A = 0 changes only the loca-
tion of its distribution, A can be ignored in the sampling scheme and inte-
grated out of the posterior so we can focus on inference directly from the
marginal for (a, /3, A, E), which is the parameter set usually of interest, using
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the following results.

(II_ fl)' (11 -
= (Oa -I- -S-i-11.13 jAa _LE - if)' §11 (f3a - 11)

= (0a - fly §n. (0a - fi)

C5-k-11/31AalE - if)' §11 (§i-11/3±Aa.LE - fl) -

(0a — fly -gin (0a —

= ((3a - Oa) ± (Oa - if))' §11 ((3a - pa) + (ea -

(a - a)' (a - + (0a — (Oa — f3a)

+ (pa — oa)' §911 (fia — 11) + (0a - fl)' 'Su. (0a — fi)
= (a - ay (a - a)

+WO:570a - aii3',75713.0a - fr-S-110a + frfia
— — aio:Cinfia +
— a/OS-nil — fi'§noa +

= (a - ay (a -
-1-§010a - - :§olfia -§01/3/3/Sl10

-FaV§io - ce'0'§in - :511/301:9-io + :§oififf§io

-1-§01313':§2.0 — §0113oi-s-10 :§oloosSio
= (a - ay (a - — 0',§10 +

Next, we isolate the terms involving A.

(§cf-p_LAa_LE - fl)' :§11 (E'VOIAai_E - if)
_

= (/31Aa j_iQ- 1-i E - 10±a-LE + §1-1101-Aa_LE - II)
/

:§ii (§1-11-01AaiE - §1-1101a-LE + -8j-1101-A-a1E - fl)

= Ea L (A - AY PL PI (A - a _LE
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▪ (L)1-1 k) 
a 

v)1-1 S11 /31~AO_LE - fl)

-.,)

▪ (51~rili 1131AOIE - 

+ (§i-110,-A-0±E — Fly gin Es-V,(3,-A-0±E-11)

= EaL (A — -A-)/ f31. (A — A) alE

+EalA'O'ITsvii1§31-51-173.1,81:A-ad.E —

±Ecel-A401§1711,§n§li-1101.Aa_LE

-1--EalrgL§V811t101-A-a_LE —

= Ecx1 (A — (A — ce_LE

±EalAi01§1-1101Le-I-E Ece1A101f1

—Eal-ri(31§i-1101-A-ct_LE Ealrol-afilpiActiE
—1173±Aai_E+fr§11fl

= Ea (A — 
-A-)' 
gu-S-scilfil (A — A) a_LE

(celEa1)-1 a _LE — EalY3Lf1

(alEcel)-1 a 111'01 (31:5-fii1/3)-1fillial (alEal)-1 a _LE

+Eal (alEcelrlalfl'ALAcx _LE — 11-1,3±Act1E 11'-§nsfl.

Using the fact that the above expression's appear in the exponent premulti-
plied by E-1 and as a trace, we can simplify further as follows.

trE-1 (-8-3-201Aa_LE — fl) (STIlfAce_LE — fl)

= tralEcel (A — -A-)101-t1/31 (A —

-FtrA1/31f1al — trAlgiffal
--1

—tr (a_LEcel)- (01011 Si) 01.11a±
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+trait-1'01A — tralli'131A

=

—traif1/0101j1al trE-11118i1111

which shows that the form of the distribution of vec (A) conditional on
(a, 0, E) will be N(0, /(p_r)(L_T)) multiplied by the Jacobian.

Therefore

trE-1 (II — ft) — li)

= tr (A — — A) + trE-1 (a — a)' (a — -6)
—

—tra1fff3_031flal — trE-1§10/3'§10
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Table 1: LR statistics and posterior probabilities for ranks.

Rank (r) LR(HrIH3) 5% Critical value P(HrlY)
0 33.04
1 14.29
2 1.972
3 -

29.68
15.41
3.76

_

0.00
0.03
0.96
0.01

Table 2: LR statistics and posterior probabilities of H4 given Hr.
Rank (r) LR(H41117.) p-value P(H41Hr, y)

0 _

1 0.02
2 0.85
3 _

0.90
0.66
-

0.50
0.00
0.98
0.00

P(H4IY) = 0.93
Table 3: LR statistics and posterior probabilities of H5 given Hr.
Rank (r) LR(H5IHr) p-value P(H5IHr, y)

0
1 20.51 0.00
2 2.66 0.10
3 - -

0.00
1.00
0.00
0.00

P(H5ly) = 0.03
Table 4: LR statistics and posterior probabilities of H6 given Hr.
Rank (r) LR(H6IHr) p-value P(H61Hr, y)

0
1 14.31 0.00
2 1.98 0.16
3 - -

0.00
1.00
0.00
0.00

P(H6(Y) = 0.03
Table 5: LR statistics and posterior probabilities of H7 given Hr.
Rank (r) LR(H7IHr) p-value P(H7IHr, Y)

0
1 5.66 0.02
2 15.73 0.00
3 - -

0.00
0.00
0.00
0.00

P(Hdy) = 0.00
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Figure 2: Logs of seasonally adjusted, real private per capita consumption
(ct), investment (it) and output (yt). The data are obtained from the Aus-
tralian dX database and the series identifiers and construction are detailed
in Harris (1997, Figure 1). In this figure, 0.9 has been added to it for pre-
sentation purposes.
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