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. Abstract

The presence of nuisance parameters causes unexpected complications in econometric

inference procedures. A number of modified likelihood and message length functions

have been developed for better handling of nuisance parameters but all of them are not

equally efficient. In this paper, we empirically compare different modified likelihood

and message length functions in the context of estimation and testing of parameters

from linear regression disturbances that follow either a first-order moving average or

first-order autoregressive error processes. The results show that estimators based on

the conditional profile likelihood and tests based on the marginal likelihood are best.

If there is a minor identification problem, the sizes of the likelihood ratio and Wald

tests based on simple message length functions are best. The true sizes of the

Lagrange multiplier tests based on message length functions are rather poor because

the score functions of message length functions are biased.



1. Introduction

Satisfactory statistical analysis of non-experimental data, is an important problem in
econometrics. Econometric models usually involve a large number of influences,
most of which are not of immediate interest. This means that such models contain
two kinds of parameters, those of interest and those not of immediate interest that are

known as nuisance parameters. Their presence causes unexpected complications in

econometric inference. A fairly standard procedure in likelihood based statistical

inference is to concentrate the likelihood function by replacing nuisance parameters by

their respective maximum likelihood (ML) estimators conditional on the parameters

of interest. In such situations, estimators and tests can perform poorly in small

samples (Bewley 1986, Cox and Reid 1987, King 1987, King and McAleer 1987,

Moulton and Randolph 1989, Chesher and Austin 1991). Earlier, Neyman and Scott

(1948) warned that nuisance parameters can seriously compromise likelihood based

inference. In relation to this, King (1996) observed that when nuisance parameters are

present, statistical theory is generally less helpful in suggesting reliable diagnostic

tests. Also, Cordus (1986) noted that the presence of nuisance parameters causes a

shift in the estimated mean of the null distribution of the likelihood ratio test.

The question which then arises is which methods should be used to tackle the

problem of nuisance parameters in order to improve estimators and tests. The

marginal likelihood is one such method for handling nuisance parameters. Estimators

and tests based on this likelihood have better small sample properties compared to

those based on the classical likelihood function (Ara 1995, Cordus 1986, Rahman and

King 1998). In the context of estimating variance components in the linear regression

model, a related approach known as residual (or restricted) maximum likelihood

(REML) (Patterson and Thompson 1971) has gained considerable importance. The

marginal likelihoods cannot be constructed in all situations and REML applies only to

the disturbances parameters in the linear model. As an alternative, Bamdorff-Nielsen

(1983) proposed the modified profile likelihood (MPL) and Cox and Reid (1987)

initiated the idea of the conditional profile likelihood (CPL) which requires that the

parameter(s) of interest and nuisance parameters are orthogonal. Also, using the

combination of REML and CPL, Laskar and King (1998) derived the conditional

profile restricted log-likelihood function (CPRL) for better handling of nuisance
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parameters. They investigated the small sample properties of estimators and tests
based on this likelihood function and three other modified likelihood functions and
compared with those based on the profile likelihood function.

An alternative approach, known as minimum message length (MML), is a

information theoretic criteria for parameter estimation and model selection. The

MML principle needs a prior distribution of the parameters, the square root of the

determinant of the information matrix for the parameters and a likelihood function. In

this context, Wallace and Dowe (1993) mentioned that the inclusion of the first two

factors helps reduce the measure of uncertainty, their ratio is dimension free and

invariant to reparameterization. Extending their research, Laskar and King (1996)

derived six different message length functions using different prior distributions of the

parameters and combinations of CPL and message length functions. They

investigated the small sample properties of estimators based on these message length

functions. Moreover, Laskar and King (1997) investigated the small sample

properties of different tests based on these message length functions. There are many

different modified likelihood and message length functions for handling nuisance

parameters but for econometric problems where estimation and diagnostic testing are

of main interest, all of them are not equally efficient. Thus, it is important to

investigate and find out the best approaches for handling nuisance parameters.

The aim of this paper is to empirically compare all the likelihood and message

length functions in the context of estimation and testing of parameters involved in the

variance-covariance matrix of linear regression disturbances. We extend and compare

the Monte Carlo results of Laskar and King ( 1996, 1997a, 1997b, 1998). This will

enable us to recommend the best functions in estimation and testing problems. In

section 2, different likelihood and message length functions are presented. A Monte

Carlo experiment, conducted to compare the estimators and tests based on all the

likelihood and message length functions are reported in section 3. Some concluding

remarks are made in section 4.

2. Theory

Consider the linear regression model with non-spherical disturbances

y = X13 + u ; u N(0, a2S-2(0)) (1)
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where y is nxl, X is nxk, nonstochastic and of rank k < n, )6 is a kxl vector, we) is a
symmetric matrix and 6 is a pxl vector. This model generalizes a wide range of
disturbance processes of the linear regression model of particular interest to
statisticians and econometricians. These include all parametric forms of
autocorrelated disturbances, all parametric forms of heteroscedasticity (in which case
12(9) is a diagonal matrix), and error components models including those that result

from random regression coefficients. The likelihood and log-likelihood for this model
(excluding constants) are respectively

1L(y;t9 0:72 , f3) if2090 eXp (y — 0)12(0) 1 (y X$)}, (2)
2a-

1 11(y; e,a2 ,p) —flog az --logif1(0)1— , (y S2(0)-1 (y2 2 2c7-

and the log profile (or concentrated) likelihood is

p(y;0) cic — -112 log &20 — —21 10,02(0

where a 20 = (y— f2(60-1 (_ X13 0) I n and /30 = (X II(0)-1 X)-1 X I2(0)-1 y.

(3)

(4)

2.1. Modified Likelihood Functions

Tunnicliffe and Wilson (1989) derived the marginal likelihood for 6 in (1) as

(y;0) = log111(0)1— logl C209)-1 X1 — 12(6)-' a) (5)

where m = n — k. Using the combination of REML and CPL, Laskar and King (1998)

derived the CPRL function of 6 for model (1) as

= (m-2) [loglf2(0)1— logl X1 12(6)-' XI — m 0(60-' a)] (6)2m

Using the idea of Cox and Reid (1987), Laskar (1998) derived the CPL for 0 in (1) as

(y; 0) = — —1 logIX 12(6)' 
XI

(n — 2) logif2(0)1 (m 2) log(fi'12(6)-1 t2).2 2n 2 (7)

Based on the idea of Cox and Reid (1993), Laskar (1998) also derived an approximate

conditional profile likelihood (ACPL) for 6 in (1) as

1 1= 
m— 2 

log(trf2(6)-1 11) — —1041(0)1— —loglx 'nor'2 2 2
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+-
1
tr
[S2(0)- an(e)] - 8).

e=e.

From (5) and (6)

(8)

Icgpr (y; 0) = 
(m— 2) 

in, (y; 0)

so that for the purposes of estimating 0, the marginal likelihood function and the

CPRL are equivalent. This is not necessarily true for likelihood based tests of e
because scores, Hessians and maximized likelihood will be different, although any

differences will obviously disappear as n increases.

2.2. Message Length Functions

Minimum message length is a Bayesian method which chooses estimators to minimize

the length of an encoded form of the data made up of a model and the deviations from

that model (residuals). Wallace and Dowe (1993) state that the MML principle is that

the best possible conclusion to draw from the data is the theory which maximizes the

product of the probability of the data occurring in the light of the theory with the prior

probability of that theory.

For model (1), an approximate message length function given by Wallace and

Freeman (1987) and accurate to 6 =11 1.1 IC.: F(0, cr2, p) is

— log
700, 62 , pme, a2, s)

VF(0,0-216) + 11-(1+ log Ks)
2 (9)

where 71-(9,02,[3) is a prior density for y = (0',a2J3',)', F(0,02,A is the determinant of

the information matrix, s = k+ p + 1, Kis is the s dimensional lattice constant which is

independent of parameters, as given by Conway and Sloan (1988, p. 59-61). For

5 19example K1 = —1 , K, =  and K, =  Wallace and Dowe (1994)12 36.;0, •

mentioned, maximizing (9) is equivalent to maximizing the average of the log-

likelihood function over region of size proportional to 1/ VF(0,a2,p) while the ML
estimator maximizes the likelihood function at a single point. The value of 0 which

minimizes (9) is the MML estimate of B with accuracy 3 =11 11K:F(0,472 ,M)
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4.

Inclusion of 71.(9,c2,f3) and VF(0,C72,$) help reduce the measure of uncertainty, their
ratio is dimension free and invariant to reparameterization (Wallace and Dowe 1993).
Since MML is a Bayesian method and depends on the choice of prior density of the
parameters, there is scope in selecting the prior. Using different prior densities and
combinations of CPL and message length functions, Laskar and King (1996) derived
six different message length functions which are

m— 1 
M.L1 = log a

2 
+ —1ogIS2(0)1 + --7uT2(0) u + — logl X nor'' XI2 2 2a- 2

I dE2(e)-1  an(e)1 [ dwell 
2'\

+-log(72 x tr   
dO 

tr wey
2 dO de

-F-S--(1-1- log I Cs )—log 2 , (10)2

2 1 1 1
ML2 = +—loglE2(0)1+-3-uT2(0)-1 u + S-2,(60-1 X12 9 2a- 2

+-
1
log
(
n x tr
[ dC2(0)-1  d0(0)1 {

tr[S2(0)-1 a2(0)11
de .12 de des

+1(1+ logic.)— log2 , (11)2

+m—k-3 k 1CPMLi = 1og(51 + log11-2(9)1+ log
2 n+k+1

x; x;

2\

+
-I
log n x tr

[ dwe)-1  .9Q(e)1
tr
[
Q(60

_, a2(0)1}
2 dO dt9 de

(12)

where ute = yte — 13, x; = D(9) 2 , D(9) = 11(0) I 10(ml yto = y ,,

= t2 i2 CI; I (n — k —1), lite = y; — .X.::13' fo and 13'e = (X; X,;)-1 X; y; .

m — k — 2 kCPML2 = log 32 + 1ogIS2(9)1+ log
2 n + k

x; x;

( 2\[ ds2(e)-1  dn(e)1 Itr[Q(0)_, dc2(el+—log tr
BO j2 de do

(13)

where k = m, =y;- X;f3; , '13; = (X; X,*,)-1 X; y*e, X; = G1(0) 2 X,

y; = G, (0)-2 y and G1(0) = S2(0) /1E2(0)1
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1 1 1AML1 = 
m — 1 

log + --5-2 4u0 + —210 Xf;Xe I + —21ogIC(9)1, (14)2

(15)
AML2 = flog 5 + 7521 + —21 loglX2fe I + —21 logIC(0)1

where Cr2 = o / IS2(0)17z , G(6) is an nxn matrix comprised of OM with each element

divided by 10,(0)1. and the (i,j)th element of the pxp matrix c(0) is

—
1
tr
[a2 G(0)-1  

G(0)
]

2 do,de,

Details of the LR, LM, Wald, AW and NW tests based on all the likelihood and

message length functions in the context of testing Ho: 0 = 00 against Ha: 0 # 00 in (1)

are given in Laskar and King (1998), Laskar and King (1997a) and Laskar and King

(1997b). Laskar and King (1998) estimated the MA(1) disturbances parameter

constrained between -1 to 1, because of the identification problem for MA(1)

disturbances. It is well known that there is a non-zero probability of getting ML

estimators of -1 or 1 for MA(1) disturbances parameter (Shephard 1993). The score

with respect to the MA(1) parameter is discontinuous and the information matrix is

not well defined at those two points. As a result, Laskar and King (1998) faced the

problem of nonmonotonicity of the power curve of the Wald test. They initially

tackled this problem by rejecting the null hypothesis whenever the estimate of the

MA(1) disturbance parameter is ±1 and called this the AW test. Unfortunately the

AW test cannot totally solve this problem because it takes into account boundary

values of the parameter estimates only. The power curve may be nonmonotonic at

some other points of the parameter space. Laskar and King (1997a) fully overcame

this problem by replacing the unknown parameter values in the variance component of

the Wald test with their null hypothesis values rather than their estimated values and

denoted it as the NW test.

3. Monte Carlo Experiment

Laskar and King (1998) investigated the small sample properties of estimators and

LR, LM, Wald and AW tests based on different modified likelihood functions in the

context of MA(1) and AR(1) regression disturbances. Also, Laskar and King (1997a)
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investigated the small sample properties of NW tests based on different modified
likelihood functions in the context of MA(1) regression disturbances. When message
length functions based estimation and testing are concern, Laskar and King (1996)
investigated the small sample properties of estimators in the context of MA(1)
regression disturbances and Laskar and King (1997b) investigated the small sample
properties of tests in the context of MA(1) regression disturbances.

In order to compare the small sample properties of estimators and small sample
size and power properties of the LR, LM, Wald, AW and NW tests for testing
Ho: y = 0 for MA(1) regression disturbances or Ho: p= 0 for AR(1) regression

disturbances i.e. Ho: 0= 0 based on different modified likelihoods, classical (profile)
likelihood and message length functions, we considered results from above papers and
further a Monte Carlo experiment was conducted for computing the estimators and
small sample sizes and powers based on message length functions with the
disturbances of (1) generated by the AR(1) process

ut = pu,_, + Et (16)

in which Et - IN(0,c2), t = 0,1,...,n . Under (16), u N(0,a211(p)), where

uo N(0, c72 / (1— p2)), Q(p) is the nxn symmetric matrix whose (ij)th element is

pl'il / (1— p2) . For the model (16), all the message length functions are not defined

at p =±1. So, the best way of tackling this problem is to restrict p to the interval

—0.9999 p 5_ 0.9999. (17)

For our purposes, the need to impose the restrictions (17), has a positive implication.
Often when estimators are being investigated, there is uncertainty about which

moments of the estimator's distribution exist. If, for example, the second-order
moment does not exist, then any estimate of it obtained from a Monte Carlo
experiment will be finite but meaningless. In our case, while we do not know the
distributions of our estimators, the restrictions (17) implies that all moments will
exist.

3.1. Experimental Design

The first part of the study covered a comparison of the different MML estimators for
the AR(1) parameter. The estimates based on (i) ML1, (ii) ML2, (iii) CPMLI, (iv)
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CPM1d2, (v) AML1 and (v) AML2 when p = -0.8, -0.4, 0, 0.4, 0.8 were used for the

first comparison. The second part involved a comparison of sizes of different tests
using asymptotic critical values at the five percent level. The third part of the
experiment was divided into two parts. In first part, the Monte Carlo method was
used to estimate appropriate critical values of each of the tests in order to compare the
powers of all tests at approximately the same level. These critical values were
calculated using 2000 replications. In second part, powers of all the tests were
calculated using these (simulated) critical values. The tests involved LR, LM, Wald
and NW tests.

All the calculations were repeated 2000 times using the GAUSS (1996)
constrained optimization routine but with particular care taken in choosing starting
valus (see Laskar, 1998). The following X matrices were used with n = 30 and n = 60:

Xl: (k = 5). A constant, quarterly Australian private capital movements,

Government capital movements commencing 1968(1) and these two variables

lagged one quarter as two additional regressors.

X2: (k = 3). A constant, quarterly seasonally adjusted Australian household

disposable income and private final consumption expenditure commencing

1959(4).

X3: (k = 3). The regressors are the eigenvectors corresponding to the three

smallest eigenvalues of the nxn tridiagonal matrix whose main diagonal

elements are 2, except for the top left and bottom right elements which are

both 1 and whose elements in the leading off-diagonals are all —1.

X4: (k = 2). 'A constant and a linear trend.

These matrices reflect a variety of behaviour. The capital movements
regressors in X1 are rapidly changing with a high degree of seasonality. This is in
contrast to the relatively smooth regressors X2 (seasonally adjusted quarterly data).
The regressors in X3 are smoothly evolving and include an intercept. They cause the
Durbin-Watson statistic, which is an approximately locally best one-sided test against
both MA(1) and AR(1) disturbances (King and Evans 1988), to attain its upper bound.

Also Laskar and King (1998), Laskar and King (1997a), Laskar and King (1997b) and

Laskar and King (1996) considered the same set of X matrices.
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