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Summary

In this paper, different approaches to dealing with nuisance parameters in likelihood

based inference are presented and illustrated by reference to the linear regression

model with nonspherical errors. The estimator of the error variance using each of the

approaches is also derived for the linear regression model with spherical errors. We

observe that many of these estimators are unbiased. A theoretical comparison of the

likelihood functions is reported and we note that some of them are equivalent.

Empirical evidence in the literature indicates that estimators based on the conditional

profile likelihood and tests based on the marginal likelihood have better small sample

properties compared to those based on other likelihood and message length functions.

Key words: Linear regression errors, parameter orthogonality, marginal likelihood,
modified profile likelihood, message length function.



1 Introduction

Satisfactory statistical analysis of non-experimental data, is an important problem

in statistics and especially econometrics. Often in such cases, statistical models

involve a large number of influences, most of which are not of immediate interest.

This means that such models contain two kinds of parameters, those of interest and

those not of immediate interest that are known as nuisance parameters. Their presence

causes unexpected complications in statistical inference.

A fairly standard procedure for making inferences about any parameter of interest is

to replace the nuisance parameters by their respective maximum likelihood (ML)

estimators. In such situations, estimators and tests can perform poorly in small

samples (Bewley, 1986, Cox and Reid, 1987, King, 1987, King and McAleer, 1987,

Moulton and Randolph, 1989 and Chesher and Austin, 1991). An early example of

such a problem was drawn to the attention of the statistical profession by Cochrane

and Orcutt (1949). They showed that the von Neumann ratio, designed to test for

autocorrelation in an observed time series, was biased towards accepting randomness

when applied to ordinary least squares (OLS) residuals from a linear regression. In

this example, the regression coefficients are nuisance parameters and in order to test

the regression errors, these coefficients are replaced by their OLS estimators.

Cochrane and Orcutt's timely warning gave raise to the familiar Durbin-Watson test.

Earlier, Neyman and Scott (1948) warned that nuisance parameters can seriously

compromise likelihood based inference. In this connection, King (1996) observed that

when nuisance parameters are present, statistical theory is generally less helpful in

suggesting reliable diagnostic tests. Also, Cordus (1986) noted that the presence of

nuisance parameters causes a shift in the estimated mean of the null distribution of the

likelihood ratio test. The question then arises: how to tackle the problem of nuisance

parameters in order to improve estimators and tests?

There is a vast amount of literature on the satisfactory handling of nuisance

parameters, the application of which can improve likelihood based estimators and test

procedures. Most of this work has focused on the modification of the likelihood

function and the profile (or concentrated) likelihood function. In this context,

Kalbfleisch and Sprott (1970) derived the marginal likelihood function and

conditional likelihood function as a method of eliminating nuisance parameters.
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Subsequently, Ara (1995), Ara and King (1993, 1995) and Rahman and King (1998)

used the marginal likelihood to construct different tests for linear regression

disturbance parameters and observed a significant improvement in small sample

properties over those of conventional tests. A related approach known as residual (or

restricted) maximum likelihood (REML) (Patterson and Thompson, 1971) has gained

considerable importance in the context of estimating variance components in the

linear regression model. As an alternative approach to handling nuisance parameters,

Cox and Reid (1987) initiated the idea of the conditional profile likelihood (CPL). In

addition, Bamdorff-Nielsen (1983) proposed the modified profile likelihood (MPL)

function and McCullagh and Tibshirani (1990) suggested a slightly different way of

handling nuisance parameters based on a simple adjustment to the profile score

statistic. More recently, Macaskill (1993) extended this work to multiparameter non-

linear regression problems. A similar approach based on the expected log likelihood

was proposed by Conniffe (1987) and involves equating the score vector to its

expected value and solving for the unknown parameters. A slightly different approach

based on singular value decomposition for the likelihood function was proposed by

Hinde and Aitkin (1987). On the other hand, Wallace and Freeman (1987) introduced

the idea of the minimum message length (MML) estimator with a Bayesian viewpoint

as an alternative method of estimation for the parameter of interest. Extending this

research, Wallace and Freeman (1992) and Wallace and Dowe (1994) applied the

MML estimation method to different problems and observed that it gives improved

estimates compared to the ML estimator.

As can be seen from this brief survey of the literature, there is a vast array of

suggestions for handling nuisance parameters. However, these various approaches are

not equally efficient for statistical problems where estimation and diagnostic testing

are of main interest. The purpose of this article is to examine each of the approaches

with an eye to their applicability in the regression model. In particular, their

application is investigated in the context of inference involving parameters of the error

process in the general linear model.

Following the above introduction, this paper is divided into five sections. Section

2 deals with the derivation of the functional form for each of the approaches.

Estimators of the error variance for the simple linear regression model that were
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obtained using each of the approaches are presented in section 3. Section 4 deals with

theoretical comparisons as well as a review of emperical comparisons of different

methods for estimation, testing, model selection and forecasting. Finally, some

concluding remarks are made in section 5.

2 Methods That Deal With Nuisance Parameters

Consider the linear regression model with non-spherical disturbances

y= 0+u; u— N (0,0-212(9)) (1)

where y is nx 1 , X is nxk, nonstochastic and of rank k < n, s is a kx 1 vector, OM is a
symmetric matrix and 6 is a px 1 vector. This model generalizes a wide range of

disturbance processes of the linear regression model of particular interest to

statisticians and econometricians. These include all parametric forms of

autocorrelated disturbances, all parametric forms of heteroscedasticity (in which case

SIM is a diagonal matrix), and error components models including those that result

from random regression coefficients. The likelihood and log likelihood for this model

(excluding constants) are respectively

L(y; 0 , (72 , 13) cc 010(0)1 2 expf— -27-10. 2 ( y — X$)'(0)' (y — X)},

1(y; 0 , a2 , ,6) oc log c72 — —21 logIC2(6)1— (y — XPY11(9)-1 (y — 0)

and the log profile (or concentrated) likelihood is

p (y; 0) cc —2-21og & — —211°0-40)1

where o'2e = (y — 40'1209)-1(Y — 43' e) In and e = (X I2(0)-1 x.)-1 xn(6)-' y.

(2)

(3)

(4)

In the subsequent sub-sections, different likelihoods are illustrated by their application

to model (1) with a view to making inferences about 0.

2.1 Marginal Likelihood

As a useful method for eliminating nuisance parameters, the concept of the

marginal likelihood was first introduced by Fraser (1967) in the structural inference

context, and further developed by Kalbfleisch and Sprott (1970) in the classical

framework. The key idea is to transform y to another random vector, a subvector of
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which has a likelihood (marginal likelihood) that only involves the parameters of

interest and the remainder of which contains no information about those parameters.

Tunnicliffe Wilson (1989) derived the marginal likelihood for e in (1) as

L„,(y,0) = in(e)p-IxT2(6)-1C2g,--2- (5)

where gi = (y — X 3 0)'S2(19)-1 (y — X#13 0) and m = n — k.

Ara and King (1993) developed marginal likelihood based likelihood ratio (LR),

Lagrange multiplier (LM), Wald and King and Wu's (1997) asymptotically locally

most mean powerful (ALMMP) tests for the covariance matrices of regression

disturbances. They pointed out that the problem of testing different 0 values is

invariant under the transformation y oy + Xri where no is a positive scalar and ri

is a kx 1 vector. They also demonstrated that these tests can be constructed by treating

the maximal invariant statistic, w = L'z I (z'LL'z) 2 as the observed data where L is an

nxm matrix such that L'L = 7,2 and LL' = I — X (X X)-1 X ' , and z is the OLS

residual vector from (1). The density function of the maximal invariant statistic is

1 1
f (w,6) = —2- F(m/ 2)7r 2 I L/t2(0) 2 (6)

where = w' (L'S2(9) L)-1 w = 11'1.4011 it lez=glez, a is the generalized least

squares (GLS) residual vector assuming the covariance matrix a2C2(9) and

IL'S2(0)L1= IX'XI-11C2(0)11XT2(60-1X1
(Verbyla, 1990 and Ara and King, 1993). The theory of invariance implies that all

invariant tests Gan be constructed by treating w as observed data.

Constructing a marginal likelihood involves dividing the information in the data

into two parts by means of ancillary statistics, one of which contains 0 only and the

other being uninformative about 0. The marginal likelihood function and the

likelihood of the maximal invariant statistic are equivalent in this case because the

ratio of (5) and (6) is independent of 0. The marginal likelihood function for 0 is

therefore a likelihood function and enjoys the properties of a likelihood. A draw-back

is that the marginal likelihood generally cannot be defined for nonlinear regression,

because the required transformation typically does not exist. Levenbach (1972)
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,

introduced the marginal likelihood for the parameters of a Gaussian autoregressive

process from the marginal distribution of a vector of standardized residuals resulting

from the conditional techniques of structural inference. Bellhouse (1978)

demonstrated the application of the marginal likelihood approach to ARMA models,

lagged dependent variable regression models and polynomial distributed lagged

regression models and discussed the treatment of nuisance parameters for such

models.

2.2 Residual Likelihood

Patterson and Thompson (1971) introduced the idea of REML estimation in the

case of unbalanced incomplete block designs. It was subsequently generalized by

Thompson (1973), while Harville (1974) showed the residual likelihood is equivalent

to the marginal likelihood for all the regression disturbance parameters; i.e. 0 and a2.

In a similar context, Verbyla (1990) presented an alternative derivation of the residual

likelihood for regression disturbance parameters which is based on the log likelihood

S
1, (y, 0 ,a2) = -111-2 log(27a72) --12 logIL'0(9) LI — 2a-. (7)

2.3 Modified Profile Likelihood

Bamdorff-Nielsen (1983) is responsible for the basic idea of the MPL where the

profile likelihood is adjusted by two factors. The MPL function, denoted by L,np(y; 6 ),

is given by

Lmp(y ; 19 ) =
akt

ditto { a21(y,0 , a2, )6)
,

ayt ayt
Lp(y; 0 ) (8)

ar
where yt = (a2 ,fl')' , y = (01, C72 , $T , --,-„: is the matrix of partial derivatives of

ay',

r with respect to re , r is the overall ML estimator of yt , re is the ML estimator

of yt for fixed 0 and Lp(y ; 6 ) is the profile likelihood for O. The modifying factor
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.321(y; 0 ,a2 , fl)

the parameter 0 and

corresponds to the variance stabilization transformation of

is a correction for parameterization that ensures invariance

under reparameterization. The difficulty with applying this formula, as mentioned by

Cox and Reid (1987), is that it requires conditioning on an appropriate ancillary

statistic. The log of (8) is

'mp(Y;0)= log
t

ak
— —

1
log

2

2.4 Conditional Profile Likelihood

432107;0,

drtayt
-t
Ye

This method has been given different names by different authors. Cox and Reid

(1987) called it the CPL, Simonoff and Tasi (1994) and Ferguson et al. (1991) named

it the MPL, Barndorff-Nielsen and McCullagh (1993) denoted it the adjusted profile

likelihood, Mukerjee (1993) called it the conditional likelihood and Fraser and Reid

(1989) named it the approximate conditional likelihood. To avoid this confusion, we

will refer to it as the CPL following Cox and Reid (1987), who introduced this

approach.

Cox and Reid (1987) pointed out that inferences based on the profile likelihood are

inefficient due to lack of orthogonality. They explored a modification to the profile

likelihood, in which the nuisance parameter is reparameterized to be orthogonal to the

parameter of interest. This approach works in two steps. First, the nuisance

parameter is made orthogonal to the parameter of interest which can be achieved by

solving a differential equation. Then, a correction is made to the profile likelihood

function of the transformed model. Let us first examine the orthogonality issue for the

parameters of the model (1).

2.4.1 Orthogonality

The key feature in the application of the CPL to model (1) is the derivation of

transformed parameters whose asymptotic covariances are zero. Two parameters, n
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and c say, are orthogonal if the (i7 ) element of the information matrix is zero. The

information matrix for the vector y = (0', 62 ,PT is given by

A(0) B(9)
I(7) 

= 
d2/07;0,0_2,p)). B' (0) n

ayay' 2c4 
0

.rn(e)-1 x
o o

0
-2

(X460
where the (i,j)th element of A(0) is —1 tr 

aS1(0) -1
and the ith element of B(6)

2 .39 a9

is --1-1-tr S2(0)-1 X") . It is observed from the above information matrix that the
2c des i

parameters (9, 0.2) and /3 are orthogonal but 0 and a2 are not orthogonal. The first

step in constructing the CPL is to make an orthogonal transformation 1, = (0', (72 , Sir

----> = (0', 4/3')' so that the asymptotic covariance of the ML estimators of 19 and 5 are

zero. In this context, Cox and Reid (1987) mentioned that the parameter 0 should be

scalar; otherwise, global orthogonality cannot always be obtained. In this approach,

we assume p = 1, so that 6 is a scalar. We want a transformation from (0, 62) to

(01, 02) keeping 0= 01 fixed and adjusting 02 = 02(0,0'2) so that 0 and 02 are

orthogonal. Huzurbazar (1950) noted that the transformation is established by solving

au 2
.*

1002 
= 
'0a2 i 2 2 - = 0
, a ,47 a0

(9)

where re,02 = (92/ 
(36002 

is the information measure calculated in the (0, 02)

parameterization, i 2 =6,a
E
( d21

dOdo.2
and = E(a2 ,a2 (90.2(90.2

are the

information measures calculated for the (6, a2) and (0.2, 0.2) parameters, respectively.

For the above information matrix, equation (9) becomes

n da2 = 1  
tr[1209)-1 92(0)1.

20-4 dO 2a2 de

There is a degree of arbitrariness in the solution of this differential equation. One

possible solution is
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a2-
8 

or = 0-21C2(8)1;

IC401;
Laskar and King (1998) mentioned that for model (1), this also works when 0 is a

vector. Mukerjee (1993) derived the LR test based on the CPL in a general

multiparameter set-up. Cox and Reid (1987, p.3) discussed a similar type of

reparameterization.

2.4.2 Derivation of the Conditional Profile Likelihood

Returning to the case of p > 1, the log likelihood (3) after the orthogonal

transformation to 1,,n has the form

1
1(y;7,n) = —

2
log 8 — —

28 
(y e — X )'(ye —Xes) (10)

where ye = G(0) 2 y , X e = G(0) 2 X, and G(0) is an nxn matrix comprised of C2(0)

with each element divided by IS2(0)1; . The log CPL for 0 is

where

lcp(y;8) = (y; 0) — —2-1 log

Y*„, =(8,')',

.321(y,ym )

aY*nzay:

rp (y; 0) = — log — So =Rye — xeireYx

(Ye — XePe)]ln, =(X:IXe)' X:Iye and 'y„,* is the ML estimator of ym* for fixed

O. After some algebraic manipulation and ignoring constant terms, we get

or

= 22-1 logS e — I-log{2s ek+2 1X;X. el}

1
k+2-n 1 

2
= log S 2 +10g1X;Xeri log(-2

m — 2 - 1
 log e — —logIX;Xel.
2 2

Therefore the CPL without its constant terms is

1 m-2

Lcp (y; =IX ;X ep 2 (11)
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The effect of the second term of (11) is to penalize those values of 6 that give

relatively high information about c2.

A similar derivation for the simple linear regression model with heteroscedastic

error variances was introduced by Simonoff and Tasi (1994). Cox (1988) mentioned

that for simple exponential family problems, this procedure performs well. It is very

close to the REML procedure for estimating variance components. On the other hand,

Ferguson (1992) observed that this method has the disadvantage of the non-

uniqueness of orthogonal parameterization. If 6 and 6 are orthogonal parameters, it is

also true that h((5) and 6 are orthogonal for any continuous function h.

Ferguson et al. (1991) discussed the properties of the score equation derived from

the CPL using a stochastic asymptotic expansion. They considered the relationship

between the derivative of the score function and its variance and observed that the

CPL is not a true likelihood• function, so it does not have all the properties of a

likelihood function. For example, this likelihood does not have the property that its

second order derivative has a negative mean value equal to the variance of the score

statistic. They also pointed out that (11) is not invariant under reparameterizations of

the nuisance parameter 0-2 and under non-linear transformations.

2.5 Conditional profile restricted log-likelihood

Laskar and King (1998) identified that expression (7) involves the nuisance

parameter c72. Its presence may cause problems in small samples for estimators and

tests of elements of 0 based on 1,(y;61,c2). They eliminated the effect of 0-2 from

(7) by combining Cox and Reid's (1987) CPL method outlined in section 2.4 and

called it the conditional profile restricted likelihood (CPRL), which in log form fore

is

„
m — logiS2(0)1 m — 

2

C(3);6" 
logl X (6)1 

X1m — 2 
log(u'S2(0) ti). (12)

2m 2m 2

2.6 Canonical Likelihood

Hinde and Aitkin (1987) proposed a different approach to handling nuisance

parameters based on a singular value decomposition of the likelihood function.
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Consider the likelihood function L(y, • 6, o,/3) in (2). This likelihood function can be

denoted by L(0, 0*), where e* = (0.2,p)'. The idea behind the canonical likelihood,
is to divide the likelihood function L(6, 

9*)
 into L1(0) and L2( 0*) such that

f L(0,O* )L2(9* )c10* =2L1(0) (13)

L(0 ,0*)L09)dt9 = A'12(0)(14)

which minimize

.111 {L(6 ,0* ) — L1(0) L2(0* )}2 d0d0*

where A2 is the principal eigenvalue of L a pxq matrix defined as follows. For distinct

parametric points 0, ,0*j , i = 1, 2, ..., p, j = 1, 2, ..., q, the likelihood function L(0, 
9*)

can be written as a pxq matrix L with elements = L(0 i L1(9) and L2( 0*) are

given by the principal left and right eigenvectors of the likelihood matrix L. Hinde

and Aitkin (1987) show that these two equations can be written as homogeneous

Fredholm equations of the second kind. Substituting equation (13) into equation (14)

gives

A2 L1(9) = KomL, coo
where the symmetric kernel function is given by

K(0,Ø) = 9,9*)L(0,0* )d0*

In some cases, analytical integration over 0* is possible, giving a q dimensional

kernel function, but for most cases no analytical solution exists and one needs to resort

to numerical solutions. The authors argued that canonical likelihoods can be found

from any two-parameter model, though marginal and conditional likelihoods may not

be found. They demonstrated the application of this method in several two parameter

models and explained the possibility of its application in multi-parameter models,

where integration is needed for the k dimensional kernel function. The authors did not

mention its use in inference. We are therefore not sure whether its use can improve

estimators and tests. The application of this approach is limited in practice, especially

in econometric models containing large numbers of parameters, because for such

models, no analytical solution is possible for L1 and L2.
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2.7 Expected Log-Likelihood Approach

The usual ML estimator is obtained by setting the score equal to zero and solving

for 61. An alternative approach, called the expected maximum likelihood estimator

(EMLE), was introduced by Conniffe (1987) and involves equating the score function

to its expected value. This approach is based on the fact that the true values of the

parameters maximize the expected log likelihood rather than the actual log likelihood.

So, determining the true value of the parameters is the same as determining the

maximum of the expected log likelihood. Exact algebraic expressions for the

resultant estimators may not always be possible, but a generally applicable

approximate procedure is given by Conniffe (1988, 1990a). If # and 62 are the

available estimators of )6 and C2 respectively, an estimator of e can be obtained by

setting

[—d 1(y; 0 , P)] , i = 1, 2, p, (15)
de i

equal to their expectations, or to an approximation of their expectations, and solving

for 0. We have

ai(y;61,0-2,p)
de i -t

Ye

1 a2(0)1 n Lir an 
de i 
(o)-' it I 12' S2(0)-1 (16)tr[1209)-

2 de) 2L-- 

Using the results of Ara and King (1993) and Mahmood and King (1997)

al(y,0,a2 , )6)

de i -t
Ye _

n a2(e)
= tr[1.2(0)-1 

dE2(0) 
+ tr[Pa

2 dOi l 2m dei
(17)

where Pe = S2(0)-1 — S2(6)-1 X (X n(0)--1X)-1XT2(8)-1. Equating (16) with (17), we

have

n tr Pe aQ(e) =[   
n a,  MO) 1  ii 1 ii,c2(60_1,2 .

2m de i 2 dO i
(18)

The estimate of 0 is the iterative solution for 0 from (18). Conniffe (1990a)

mentioned that for a single test parameter, the estimated score test is based on the

difference between the estimated score and its expectation, but in some cases it can

lead to expressions which have no exact algebraic solutions. Also, Conniffe (1990b)

observed that the first-order asymptotic properties of the estimated score test and LM
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test coincide. However, the small sample and higher-order asymptotic properties of

these tests may differ.

2.8 Adjusted Profile Likelihood

This is another approach to handling nuisance parameters, pioneered by McCullagh

and Tibshirani (1990). In this case, an adjustment is made to the profile likelihood

score function to make the mean of the score function equal to zero and the variance

of the score function equal to its negative expected derivative matrix. Two properties

of the profile likelihood score statistic are recovered by this approach, namely, an

adjustment that makes the mean of the score statistic zero again and its variance equal

to minus the expected derivative of the score. Macaskill (1993) extended this

approach to multiparameter non-linear regression models.

The profile likelihood lp (y, 19) for model (1) is given by (4). The ith element of the

score vector, S(6) , is given by

1
Si (0) = lp (y; 0) = — -2- tr[n(e)--1 _c (o)] an(e)  I

de i 2 do i

The key idea is to correct SIM by a px 1 mean adjustment vector m(6) and a pxp

covariance adjustment matrix W(6). The required adjusted score function is

S(0) = W (0) {S (0) — m(0)1 .

The conditions for this adjustment are

E (0)) =0

and

vare,ii (&(0)) = —E e (B(0))

where the expectations are computed under (0,re ) instead of the true parameter point

a —
and the (ij)th element of B(0) is given by —S. (0) . Solving the above equations for

00

m(0) and W(0), we get

m(6) = E e (S (0))

W(6) = [vare  {S(0)}11[—Eesi {H (0)} + (0)r

12
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where the (ij)th elements of H(6) and ip(6) are -_S1 (0) and m.(0) ,
de j de j

respectively. Finally the adjusted log profile likelihood is given by

lap(YO) = 
e 
S (t)dt. (19)

The exponential of (19) is called the adjusted profile likelihood.

McCullagh and Tibshirani (1990) mentioned that sometimes expression (19) can

be computed analytically, but in general Monte Carlo simulation is required. They

discussed the steps involved in the Monte Carlo simulation of the bootstrap sample to

calculate m(6) and W(6) for each value of e over a grid of p dimensional space. This

likelihood is invariant to reparameterizations. The adjustment of the profile likelihood

score function is designed to improve the asymptotic behaviour of likelihood based

estimators and tests, but the authors could not provide strong arguments in favour of

their desired goal. It does, however, have two appealing features: firstly, the centering

of the profile likelihood function, which may improve the consistency of estimators

and secondly, the rescaling of the profile likelihood score function, which may

improve the second order approximation to its variance and chi-square approximation

to the null distribution of LR and Wald statistics.

2.9 Average Likelihood

Aitkin (1991) developed a general likelihood inferential framework for arbitrary

model comparison problems, including problems of inference about a single

parameter. This likelihood is called the average likelihood and is based on a Bayesian

framework. Let n(6, 2,p) = -1 denote the usual non-informative (improper) prior

for (0, 0-2 , 13). The average likelihood for fixed U can be defined as

LA (y; 0) =
L2 (y;6)

'
a
'
P)7r(E1

''P)dcdf3
L(y,0,4 , P)706 ,c, f3)do-df3 •

and for 9 is given by

1-"{(2n — k — 2) I 2} 
LA (y; 0) =IS2(0)1 22 2 S 2.

{(n - k — 2) 2}
(20)
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Aitkin (1993) mentioned that the average likelihood is a simple penalized form of the

profile likelihood. The penalty constant in LA (y; 0) does not involve 6. The average

likelihood and the profile likelihood are equivalent for the model (1), which is

unfortunate, given the aim of this survey.

2.10 Approximate Conditional Profile Likelihood

The major drawback of the CPL is the nonuniqueness of the orthogonal

parameterization and the fact that it may not always be possible to find an orthogonal

parameterization. These two problems were resolved by Cox and Reid (1993) who

derived an approximation to the CPL. This approximation does not require

orthogonalization. For model (1), the log ACPL for 6 in the scalar case of p =1 is

given by

/„cp (y; 0) = p(y;0)— —21 log
a21(y;0 , (72 13) (21)

where yt and re are defined in section 2.3, e is the ML estimator of 64, h is

2 .i62472 / evaluated at ( '&2) and iC2'°2 is the (a2 ,C72) element from the(90.2 e,a

inverse of the information matrix. Using the results of section 2.4.1,

B=
do-2

20-4 1

n20.2 
tr[Q(0)-1 

a2(6)1}

ao

= —
1
tr[S2(60-1 

c912(0)1

de I
The resulting log ACPL function ignoring the constant term is

1 1acp(y;0) &29 — — logIS2(601— —log{ ^ 2 k 2 IXU-1(60x12 2 2 2ae(

or

1 acp (Y ; 
0) =

+-
1
tr[S2(0)- 

a2(0)1 
—8)

de 0=e,

m— 2 1 1
 log(uT2(6)- u) — —loglf2(6)1— noyi XI
2 2 2
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+ -1 tr[C2(0)-1 
(X2(19) 

(0
des 0."6

2.11 Minimum Message Length

(22)

Minimum message length is a Bayesian method which chooses estimators to

minimize the length of an encoded form of the data made up of a model and the

deviations from that model (residuals). Wallace and Dowe (1993) state that the MML

principle is that the best possible conclusion to draw from the data is the theory which

maximizes the product of the probability of the data occurring in the light of the

theory with the prior probability of that theory.

Let x denote the data and H denote a hypothesis in the form of a model with prior

probability Pr(H). The posterior probability becomes

Pr(H1x) = Pr(H u x) I Pr(x) = Pr(H) Pr(xl H) I Pr(x) .

We seek an hypothesis or model H on the basis of the knowledge of x and Pr(x) that

optimally explains x. This can be viewed as the problem of choosing H to maximize

Pr(H1x) or Pr(H) Pr(xl H) . We know from the elementary information-theoretic

coding that an event, E can be coded by a (binary) message of length(E) = —log2 P (E)

where P(E) > 0 is the probability of the event E (Wallace and Dowe 1993). Now

— log2 (Pr(H) Pr(xl H)) = — log2 (Pr(H)) — log2 (Pr(xl H)) .

Maximizing Pr(HI x) is equivalent to minimizing — log2 (Pr(H)) — log2(Pr(xl H)) , for

choosing H. The term — log2 (Pr(H)) gives the message length of the model and the

term — log2(Pr(xl H)) gives the message length of the data given the model. Thus we

are considering a two part message for describing the data, firstly the model and

secondly, the data given this model. Hence the name "minimum message length"

(principle) for selecting a model, H to fit observed data, x.

Let L(x„ u) be the likelihood function for given data x and parameter ,u of

dimension p x 1, 74,u) be the prior distribution of ,u and F(u) = —E(02 log L(x;,u))

dithe

be the determinant of information matrix.- The MML estimate of 1u is (Wallace and

Freeman, 1987, p. 245) that value of I/ which minimize the message length
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-1o 1441.0gx;11)\ P( + —(1 + log Kp )
P.F(Ft) 2

(23)

where Kp is the p dimensional lattice constant which is independent of parameters, as

1 5
given by Conway and Sloan (1988, p. 59-61). For example K1

= 12 K2 = 36/5

and K3 =  
19 

. Wallace and Dowe (1994) mentioned, maximizing (23) is
36.4/2

equivalent to maximizing the average of the log likelihood function over region of

size proportional to 1 / .F.F(TO while the ML estimator maximizes the likelihood

function at a single point. The value of t which minimizes (23) is the MML estimate

of it with accuracy 8 = 1 /11./cF(u) . Inclusion of r(u) and VF(y) help reduce the

measure of uncertainty, their ratio is dimension free and invariant to

reparameterization (Wallace and Dowe, 1993). Since MML is a Bayesian method and

depends on the choice of prior density of the parameters, there is scope in selecting the

prior. As a result, estimators and tests based on the message length may be different

for different priors.

As mentioned by Wallace and Freeman (1987), the MML principle was possibly

first initiated by Solomonoff (1964) as a general principal of inductive inference. This

principle was applied in a series of papers by Boulton (1975), Boulton and Wallace

(1969, 1970, 1973, 1975) and Wallace and Boulton (1968). Their main concern was

the application of the MML principle in estimation and model selection for intrinsic

classification problems (Wallace, 1986, 1990 and Wallace and Boulton, 1968) as a

computer based method. Recently, Wallace and Freeman (1987) advanced the idea of

MML as an alternative method of estimation and test construction. Also, Wallace and

Freeman (1992) applied the MML approach to the problem of estimating the

parameters of a multivariate Gaussian model and found that the MML estimates on

average are more accurate than those of the ML estimator. Following this, Wallace

and Dowe (1993) applied the MML approach to estimating the von Mises

concentration parameter and observed its improved accuracy over the ML estimator

for small sample sizes. Also, Wallace and Dowe (1994) provided a brief overview of

message length based estimation and the application of the message length intrinsic

classification programme, SNOB.
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For model (1), an approximate message length given by Wallace and Freeman (1987)

and accurate to 3 = 1/ K: F(0 , 0.2 , f3) is

—log
[r(0,c2, p)ge , 3.2 p)

VF(0,c2 )6) +:1-1(1+ log Ks )
2

(24)

where 2i(0,02J3) is a prior density for y = F(0,0243) is the determinant of

the information matrix and s=k+p+1. In this section, we assume that 0 is a scalar

sop = 1. Using the results of section 2.4.1,

1 k + 2  log62
—log Re , (72 , ,6) =
2 2

(n X tr[   
00 00

1
+ —21ogl X I2(60-1

tin(0)-1 (W) 112
do 

)— log 2.

Assuming the non-informative prior r(0, a2 ,p) =-k-,  the message length function

(24) becomes

1 1
ML = LI log a2 -F

-1
loglf2(0)I + — n(9)-1(y — 43) + — logIXT2(60-1 X1

2 2 2c 2

( 
n x tr
[ a2(0) OC2(0)-1

tr
[
Q(6)

_, 000soq
de ae de J

2
1

+—log
2

+21
2
(1+ logKs)— log2 . (25)

3 Estimation of Error Variance Using Different Methods

In this section, we use each method to find the estimator of the error variance for

the classical linear regression model. This may help us understand the relative

strengths of the different likelihood based approaches, given this is a situation in

which the classical ML estimator is known to be biased.

Consider the special case of (1),

y= XP + u, u N (0,0'2 I). (26)

The log likelihood of (26) ignoring constant terms is

1(y; isr2 , P) =
n
log o2 X f3r (y — X/3) (27)

2 2 02
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and the profile (or concentrated) likelihood for 62 is

1 ,
Ip(y; 02 ) = — -7--'21-log 0-2 — 2 02 y My (28)

where M=In —X (X X)-1 X'. Differentiating lp(y,C72) with respect to 62 and

equating to zero we get

6.2 = Y'AlY  ,
n

which is the familiar biased estimator of the error variance. In the subsequent

subsections, the estimator of the error variance by the different approaches is

provided.

3.1 Marginal Likelihood

We need to derive the marginal likelihood of 62 from model (26). Let 13 and z =

My be the OLS estimator of p and residual vector from (26) respectively and let L be
the nxm matrix defined for equation (6) so that L'M = L'. Then, consider the one-to-

one transformation of y to 'P' and L'z and observe that

)3 — N(P,c72(XX)-1) and L'z — N(0,0-2 I m).

Note that L'z is mxl and independent of so through this transformation, the

".

likelihood for model (26) can be written as the product of the density for p and the

density for L'z. The latter is the marginal likelihood for 62 because it does not

contain p and there is no loss of information about o-2. In log form and ignoring
constant terms, the marginal likelihood is

' im(y;0-2)=_Ln. log 0.2 Y 'My

2 2a2 '

Differentiating lm(y;a2) with respect to 62 and equating to zero we get

6.2 . Y 'MY 
,

m

which is the familiar unbiased estimator of the error variance.

(29)
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3.2 Modified Profile Likelihood

The log of the MPL for model (26) is given by

1,np (y; c2 ) = lp (y;c2 ) + log
d13

a2

1

2

d21

(y; 0.2 ,f3)

dp9,6' (30)

where i3 is the ML estimator of p and #i3a, is the ML estimator of p for fixed c2 from

(26). The parameters p and C72 are orthogonal, so  „ = 1 and (30) reduces to
(316,2

d2/(y; 0..2,p)
17np(y,a2) = 1 p(y,a2) — log

(921(y; 0.2 716)

From (26),
di6aP'

 so that
- 0-2

(VW

imp (y; 0.2 = 0.2
1 lOgIX XI Y 

2 2 2c 2

Thus, for this model, the marginal likelihood and the MPL are equivalent and

therefore give the same unbiased estimator for 0'2.

3.3 Conditional Profile Likelihood

The information matrix for model (26) is

0
2(3'4

X X
0

2

which indicates that 62 and p are orthogonal and satisfy condition (37) of section 4
below. This implies that the MPL and the CPL are equivalent in the moderate-

derivative sense (Barndorff-Nielsen and McCullagh, 1993; see section 4.1 below).

This fact implies that the estimator of 62 using this approach is the same as that of

the MPL approach.

3.4 Expected Log-Likelihood Approach

In this approach, an estimator of c2 can be obtained by equating

19



d n 1

2o-2 2o-
(31)

k
to its expectation. Taking the expectation of (31), we get — . The estimator of

20-2

a2 is the solution for a2 from the estimating equation

n 1 
---T± 

k
—7 Y'MY = - - — —7" '2a 20- 2a2

which again gives (3-2 = YWY  .
m

3.5 Adjusted Profile Likelihood

The score function S(0-2) is given by

n 1
S(c2) = — +—y'My

2,52 2c4

and the adjusted score function is

= w(0-2){s(0.2)_ m(0.2)}

where m( a2 ) = E a, Ay, (S(6))

and

W(0
.2) = [vara,A, f 

S(Er )11-1 p (dS(c72)) 
4- am
(
72) 

2 ,...._ k,.., 21j j [Th---a2 ,i3. c72 \ acr 2 i ' do. 2 1

Now

m( 0.2 ) =
k dm(c2) . k aS(o-2) _ n 1 ,i,_
2c2 ' dc2 154 ' da2 - 2a4 - a6 Y AVIY'

E
8S(a2)

— - ( )a2 
'16 d62

and

n m.—
2a4 

+ 
a4

var 2 {S(a2)}= 
m 

.a ,./3.cr2
2a

4

n m k 12454
Thus W( 0.2) = {— +—+ = 1.

20.4 a4 2a4 m

The adjusted score function is

3.0.2) = - n 2 ±  y'My k

2a 2a4 
+ 

2a2

.
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The estimator of 62 can be obtained by equating the above adjusted score function to

zero, which gives

. Y'AlY 
,

m

the familiar unbiased estimator.

3.6 Average Likelihood

To find the posterior density for a2, we need to integrate the rth power of L(y;a2 ,$)

with respect to p. Using the non-informative prior 2r(f3,a)=-1 for p and a, the
a

average likelihood for a2 is given by

LA (y;a2) = 22 - eXp[ Y  ]0.. Y2a2
(32)

which is directly proportional to the profile likelihood. In this case, the estimator of

the error variance is not unbiased.

3.7 Approximate Conditional Profile Likelihood

For model (26), likelihood function (21) becomes

lcr0(y,o-2) = 1 p (y;a2) — —21 log
(92/(y; 0.2 

,f3)

dpdp'

The last term in (21) disappears in this case because C72 and p are orthogonal. Finally
ignoring constants, the log likelihood function is given by

1,p0(y; a 2 ) = --112-log a2 — —1 logIX XI Y'MY (33)
2 2 2a 2 •

The estimator of C72 from (33) is the familiar unbiased estimator.

3.8 Minimum Message Length

For model (26), (24) can be written as

—log[
r(a 2 

; 
fig(y

; 
a 2 
' 
)3)1 

+ 
-D 

(1 + log KD)
11 F(a2 , p) 2

(34)
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1where 7r(a2,p 7 =) is the prior density for L(y; , ) is the likelihood

function for model (26), F(0-2 p) is the determinant of the information matrix, and
KD is the D = k + 1 dimensional optimal quantizing lattice constant as defined in

section 2.11. Using the results of section 3.3

!log F(a2,13) = 
k + 2 

2 
log a

2 
±

-1
logi X XI + —

I
log —

n
.

2 2 2 2

1
Using the non-informative prior r(a2, /3) = for the parameters

becomes

ML= log a
2 
+-

1
logirX1+ u + —

1
log—

n 
+—
D 
(1+ K v).

2 2 2a2 2 2 2

(a2 p') , (26)

The MML estimators of the parameter p and C2 are

13' = (XX)-1 X'y and a'2 = Y'MY

respectively. Thus the MML estimator of C2 is unbiased for our choice of prior but

for any other choice of prior this estimator will be biased.

4 Comparison of Likelihood and Related Methods

All the different likelihood functions are designed to deal with nuisance parameters,

although the manner in which they do this is different. The approaches suggested by

Kalbfliesch and Sprott (1970) and Cox and Reid (1987) appear to be the most popular.

Many researchers have used these two likelihood functions for estimation and testing

problems. The other approaches have limited applicability in econometric analysis.

We will now discuss how the different likelihood functions differ.

4.1 Theoretical Comparisons

Bamdorff-Nielsen and McCullagh (1993) investigated the relationship between

the profile likelihood, CPL and the MPL. For model (1), the relationship is

{Limp(y;0)= Di(e)L„(y;e)= Dice)
a21(y,e,a2 , p)

ay' dyt
Lp(y,0) (35)
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where rt and are defined in section 2.3 and D1(0) =lar I d'Y el. In order to

identify situations in which the CPL is equivalent to the MPL, the following

conditions were examined by Bamdorff-Nielsen and McCullagh (1993):

Di09) = 1 (36)

and more generally

D1(0) = 1+ 0(n 1). (37)

They explained that the CPL and the MPL are equivalent in the large-deviation sense

if (37) holds for 0-0= 0(1) and they are equivalent in the weaker moderate-

derivative sense if (37) holds for 0-0= 0(n 2 ) where e is the ML estimator of 0.

For model (26), the marginal log likelihood for a2 is given by (29). Bamdorff-

Nielsen (1988) showed (after a Laplace approximation) that:

1

L m (y; a2 ) ..=, Lp(y;a2){ al(Y;a2 116) 
}-2

dPaf3'

which is an approximation to the CPL in the ( a2 ,,6) parameterization and Lm (y; a2)

is the marginal likelihood for a2. In this case D1( a2) = 1 (normal linear regression),

so that the CPL and the MPL are approximations to the marginal likelihood.

Many authors have tried to compare different likelihood functions. In this context,

Cruddas, Reid and Cox (1989) observed on the basis of a simulation study that CPL

and marginal likelihood are the same for the standardized residuals of short Gaussian

first-order autoregressive processes with different means but common correlation and

variance. Moreover, Bellhouse (1990) found that the CPL and marginal likelihood are

equivalent for correlated parameters in a general normal regression model.

Furthermore, Reid (1995) noted that the CPL is not invariant under one-to-one

reparameterizations of the nuisance parameter a2 that leave the parameter of interest

fixed. She pointed out that this lack of invariance can be avoided by using the MPL.

The marginal likelihood is given by (5) and (X '(0)' x)--1 is proportional to the

estimated variance-covariance matrix of the ML estimator of p for given S2(0). Then

(5) can be written as

(38)
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[est var(11)]1/2(y,O) =
g,n/2 in(e)11/2

(39)

1
Bellhouse (1990) observed that using the transformation A = log o- + —

2 
log IS2(6)1 / n

in (2) and keeping p the same, the CPL for 6 is also given by (5), provided that A and
, and )6 and 6 are orthogonal. Tunnicliffe Wilson (1989) noted that if C2 is

parameterized as ev and ip includes in the parameter set p of the CPL, then it gives
the marginal likelihood. Laskar and King (1998) showed that the marginal likelihood

and CPRL are equivalent via the relationship

m-2 
(y; 0)

so, for the purpose of estimating 0, the marginal likelihood and CPRL are equivalent

but this is not necessarily true for likelihood based tests of O.

There are some similarities between the message length function in (25) and the

marginal likelihood in (5). Returning to the case of p = 1, the MML estimators of s

and a2 conditional on 6 are

6-2 = 12(0)-1 a I m and /3= (X12(9)-1 .x n(60_1 y

Putting these estimators in (25), we get, ignoring constant terms,

ML(y; 0) = Elog 6-2 + —1 log(0)1+ —1 logIX
2 2 2

- 
+1og
(

n X tr
[ a2(0) df2(0)-1]

tr
[11(0)- 9(0)1

2 de de a 0 j

12

(40)

The form (40) is close to the marginal likelihood for 0; the only difference is the last

term in (40).

It can be concluded from the above discussion that in some situations /,,z (y; 0),

imp (y; 0) and /cp(y, 6) are equivalent. Ara and King (1993) demonstrated that 1(y; 6),

and the log likelihood of the maximal invariant statistic are the same. To our

knowledge, there is no available literature on computing adjusted profile likelihoods,

canonical likelihoods, expected likelihoods, and ACPL. This is clearly a shortcoming

of the literature to date.
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Mahmood and King (1997) investigated the unbiasedness property of score vectors

for different likelihood functions considered in section 2. They observed that score

vectors based on the marginal likelihood and CPRL are unbiased. This means that

expected values of the score functions based on these two likelihoods are zero.

Possibly, Godambe (1960) first introduced the concept of unbiased estimating

equations to demonstrate an optimum property of regular ML estimation and

subsequently it was applied and extended by Godambe and Thompson (1974),

Ferreira (1982), Chandrasekar and Kale (1984) and Conniffe (1990a) for different

estimation problems. It can be shown that the score vector for the message length

function derived in section 2.11 is biased. The LM test based on unbiased score

vectors can have good small sample properties (Ara and King 1993, Ara 1995 and

Laskar and King 1998) and those based on biased score vectors can have poor small

sample properties (King, 1987, Honda, 1988 Moulton and Randolph, 1989 and Laskar

and King, 1997b).

4.2 Empirical Comparisons

Many researchers have empirically investigated the performance of different

likelihood and related methods in terms of estimation and testing of 0 in different

contexts. In this section, we review this literature.

4.2.1 Estimation

Cooper and Thompson (1977) applied marginal likelihood estimation to time

series models and investigated the small sample properties of the estimator for the

parameter of the MA(1) model. They reported a significant reduction in bias of the

estimator compared to that of the classical likelihood function. Also Grose (1992)

used the marginal likelihood for estimating the coefficient of lagged dependent

variable in the dynamic regression model. She reported that the estimator based on

marginal likelihood is less biased compared to the OLS estimator. Wallace and

Freeman (1992) applied the MML approach to the problem of estimating the

parameters of a multivariate Gaussian model in which they modelled the correlation

structure by a single common factor. They found that MML estimates on average are

more accurate than those of the ML estimator in terms of estimating both the factor
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loadings and the factor scores, if the former exist. Furthermore, Wallace and Dowe

(1993) applied the MML approach to estimating the von Mises concentration

parameter and observed its improved accuracy over the ML estimator for small

sample sizes.

Laskar and King (1996) investigated the small sample properties of six different

MML estimators in the context of (1) and MA(1) and AR(1) regression disturbances.

They summarized the results using the loss function, Ibias1+ —
1
(standard deviation) +

1
-
2.#2 

'skewness! + —
1

lkurtosis - 31 where = 3. The loss function is dominated by the
2-3

bias and standard deviation terms. In a lot of cases, the estimators are nearly unbiased

so the dominant term was the standard deviation. They reported that the estimators

based on the combination of parameter orthogonality and message length function are

closer to normal for moderate and small values of el.l However, for other values of 0

away from 0, the performance of ordinary message length functions based estimators

are relatively better. Their findings showed that for estimating the MA(1) and AR(1)

disturbances parameter, message length functions obtained by combining MML with

CPL do not perform well. This may be because Cox and Reid's modification adds

more information which, because of its nature, is already contained in the message

length function. Recently, Dowe and Wallace (1997) resolved the Neyman-Scott

problem by using MML principle. They considered multiple Gaussian distributions

with unknown means and identical but unknown standard deviation and observed that

the ML estimator of variance is inconsistent but the MML estimator of variance is

consistent.

Laskar and King (1998) also investigated the small sample properties of the ML

estimator of e in the context of (1) and MA(1) and AR(1) regression disturbances

based on the (i) profile likelihood, (ii) marginal likelihood, (iii) CPL, (iv) CPRL and

(v) ACPL. They concluded that the distribution of the estimators based on the

marginal likelihood, CPRL and CPL are closer to the normal distribution on the basis

of their respective bias, standard deviation, skewness and kurtosis. Laskar and King's

results reflect that CPL based estimators typically have the smallest average loss

compared to those based on the profile likelihood and other modified likelihood

functions. Also Laskar (1998) constructed confidence intervals using different
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modified likelihood functions in order to compare their small sample properties in the

context of AR(1) linear regression disturbances. They reported that the marginal

likelihood based confidence intervals are best and the CPRL and ACPL based

confidence intervals are the second best.

4.2.2 Testing

Cordus (1986) showed, through a simulation study for the classical linear

regression model with AR(1) disturbances, that the use of the marginal likelihood

improves the LR test. She derived a test statistic based on the OLS residuals which is

a modification of the score statistic and observed that the resulting test performs better

than the classical LR test. Also, Cruddas et al. (1989) undertook a simulation study to

find confidence intervals for the correlation parameter, based on observations from a

large number of short Gaussian AR(1) processes with different means but common

correlation and variance. They reported better small sample properties of the CPL

based estimators and LR tests than those of the classical likelihood.

Mukerjee (1993) constructed the LR test for a general multiparameter set-up based

on the CPL and indicated its superiority over the usual LR test. He also showed that

the use of the adjusted profile likelihood can improve the LR test and exemplified this

in the cases of (a) parameter orthogonality and (b) no parameter orthogonality.

Ara and King (1993) derived general formulae for the LR, LM, Wald and ALMMP

tests for linear regression disturbances using the marginal likelihood and investigated

the small sample properties of these tests for testing the parameters of fourth-order

autoregressive disturbances and the presence of Hildreth-Houck random coefficients.

They reported better small sample sizes of these tests compared to those based on the

classical likelihood. Their study also reported better centred power curves of all the

marginal likelihood based tests. In addition, Ara and King (1995) investigated the

small sample sizes and powers of the LR, LM, Wald and ALMMP tests for a

subvector of the parameter vector es based on the marginal likelihood. They reported

better improvements in small sample sizes and powers of the marginal likelihood

based tests compared to those of Ara and King (1993). This significant improvement

of small sample sizes and powers of the tests occurred due to better handling of

nuisance parameters.
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Laskar and King (1997b) investigated the small sample properties of the LR, LM,

Wald and Null Wald (NW, Laskar and King (1997a)) tests in the context of (1) and

MA(1) and AR(1) regression disturbances based on the classical likelihood and six

different message length functions. They reported that all the tests based on simple

message length functions for MA(1) processes and those based 'on combinations of

parameter orthogonality and message length functions for AR(1) processes have better

small sample sizes which are closer to their asymptotic size and their power curves are

better centred. They also reported that in general, sizes of all the message length

based LM tests are significantly higher than the asymptotic size. Because of the

unbiasedness of score functions (Mahmood and King, 1997) of all message length

functions, sizes of their LM tests are very poor, and away from the asymptotic size.

Also, Grose (1997, 1998) constructed the standard t-test, LR, LM and Wald tests

based on marginal likelihood and profile likelihood for the coefficient of lag

dependent variable in the first order dynamic regression model and investigated their

small sample properties. She reported that for positive values of the coefficient, sizes

and powers of all the tests based on marginal likelihood have better small sample

properties compared to those based on profile likelihood but for negative values of the

coefficient, the marginal likelihood based tests do not perform so well.

Rahman and King (1998) developed the marginal likelihood based LM and

ALMMP tests for situations in which the parameter vector of the error structure is

partitioned into two parts, with one being the parameters of interest and the other

being nuisance parameters. For this testing problem, all nuisance parameters cannot

be eliminated using the likelihood of the maximal invariant or the marginal likelihood.

Instead, they constructed tests, in which those nuisance parameters which could not be

eliminated were replaced by their maximum marginal likelihood estimators. They

observed a higher level of improvement in both sizes and powers, particularly for the

LM test, than that reported by Ara and King (1993). It has been found that the

maximum marginal likelihood based LM test can improve both the small sample size

and power relative to that of the conventional LM test

Laskar and King (1998) investigated the small sample properties of the LR, LM

and Wald tests in the context of (1) and MA(1) and AR(1) regression disturbances

based on different modified likelihood functions mentioned in section 4.1. They

28



reported that the sizes of all the tests based on marginal likelihood, CPL and CPRL

are closer to the nominal size compared to their classical counterparts. The powers of

all the tests based on modified likelihoods are better centred and less biased than those

based on the classical likelihood. Sizes of the marginal likelihood based LM tests are

most impressive with almost all of them being closest to the asymptotic size. In this

regard, Mahmood and King (1997) observed that the score function based on marginal

likelihood and CPRL are unbiased and the LM test based on an unbiased score

function can have best small sample properties.

Laskar (1998) investigated and compared the small sample properties of estimators

and tests based on eleven different likelihood and message length functions in the

context of MA(1) and AR(1) regression disturbances. He found that overall the

marginal likelihood is best for testing while the CPL is best for estimation. He also

mentioned that for MA(1) disturbances, sizes of the Wald, alternative Wald and null

Wald tests are more accurate when modified likelihood functions are replaced by

message length functions. These results may be caused by the identification problem

for MA(1) disturbances. If there is a problem of lack of identification, the information

matrix reacts through the F(11) term in (23) and helps solve this problem (Martin,

1997). It seems that the inclusion of this factor may help overcome the side-effects of

the identification problem. Consequently all versions of message length based Wald

tests have better small sample sizes compared to those based on modified likelihood

functions.

4.2.3 Model Selection

Tunnicliffe Wilson (1989) argued that the application of the marginal likelihood

in time series regression has significant effects on model selection. He used the

smallest residual variance as a selection criteria for different models using profile

likelihood and marginal likelihood. Also, Grose and King (1993) proposed the use of

the marginal likelihood for the problem of selecting between AR(1) or MA(1)

regression disturbances in (1). Via a simulation study, they found that the presence of

nuisance parameters can seriously affect the probabilities of correct selection. They

used Monte Carlo methods to find more appropriate penalties and found that the

application of information criteria to marginal likelihoods rather than classical
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likelihoods gives improved small sample selection probabilities. Recently, Baxter and

Dowe (1996) applied the MML criteria for choosing the degree of a polynomial in

least-squares regression and reported that it selects the degree of polynomial

accurately compared to minimum description length (MDL) (Rissanen, 1978),

Akaike's information criterion (AIC) and consistent AIC with Fisher information

(CAICF) (Bozdogan, 1987). More recently, Oliver and Forbes (1997) developed the

Bayes Factor and MML approach of segmenting a time series and compared them

with AIC, MDL and Bayesian information criteria (BIC) using Monte Carlo

simulations. They report that the MML performs better than all other criteria.

4.2.4 Forecasting

Latif and King (1993) introduced a new approach for time-series forecasting

based on the linear regression model in the presence of AR(1) disturbances. They

suggested a weighted average of predictions, assuming different values of the AR(1)

parameter with weights proportional to the marginal likelihood of that parameter.

Their simulation results show that the new approach can produce better forecasts

compared to existing procedures, which is a consequence of the application of the

marginal likelihood.

5 Concluding Remarks

Inference for a parameter of interest in the presence of nuisance parameters is a

long-standing problem for statisticians and econometricians. As a result, many

authors have attempted to modify the likelihood function in several ways in order to

provide a satisfactory way of handling this problem. This paper has discussed eleven

likelihood and related methods which are available for such purposes. For the simple

linear regression model, the ML estimator of the error variance is unbiased in all the

approaches except for the profile likelihood and average likelihood.

Marginal likelihood is a popular approach for making inference about the

parameter of interest. Unfortunately, the marginal likelihood cannot be constructed in

all situations and REML applies only to the disturbance parameters in the linear

model. As an alternative, Bamdorff-Nielsen (1983) proposed the MPL and Cox and

Reid (1987) introduced the idea of CPL. CPL needs the parameter(s) of interest and
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the nuisance parameters to be orthogonal. If orthogonality does not exist, Cox and

Reid suggested reparameterizing the nuisance parameters to get the required

orthogonality. The major drawback of CPL is the nonuniqueness of the orthogonal

parameterization and the fact that it may not always be possible to find an orthogonal

parameterization. These two problems were partially resolved by Cox and Reid

(1993). They derived an approximation to the CPL which depends on the ML

estimator from the profile likelihood. Cox and Reid (1987) mentioned the difficulty

of using the MPL because it requires conditioning on an appropriate ancillary statistic.

As an alternative to modified likelihoods, message length is a Bayesian method,

which contains all the parameters of model (1) and has the usual consequence of

nuisance parameters. There is also evidence which suggests that, where possible,

information criteria model selection procedures such as AIC or BIC should be based

on modified likelihoods rather than classical likelihoods.

In conclusion, the discussion presented in this paper, indicates that the CPL is the

best for estimation and marginal likelihood is the best for testing the parameter of

interest after eliminating the effect of nuisance parameters while if there is a minor

identification problems, message length functions can play a positive role in Wald

tests at least for the general linear regression model.
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