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Bandwidth selection for kernel conditional density
estimation

David M Bashtannyk and Rob J Hyndmanl 14 October 1998

Abstract: We consider bandwidth selection for the kernel estimator of conditional
density with one explanatory variable. Several bandwidth selection methods are
derived ranging from fast rules-of-thumb which assume the underlying densities are
known to relatively slow procedures which use the bootstrap. The methods are
compared and a practical bandwidth selection strategy which combines the methods
is proposed. The methods are compared using two simulation studies and a real data
set.
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1 Introduction

Kernel conditional density estimation was first considered by Rosenblatt (1969) who
studied the problem of estimating the density of Y conditional on X = x where X is
univariate and random. If g (x, y) denotes the joint density of (X, Y) and h(x) denotes
the marginal density of X, then the conditional density of Y KX = x) is given by
f (y I x) = g (x, y) I h(x)

Rosenblatt proposed the following kernel estimator of f:

(11x-x•II.) K (11Y-Yilly)
a b JRy x) = 

nlab Erf =1 I(

77!, K
na 4—'3=1 k 

(1.1)
a

where {(X1, Y1), . , (Xn, Yn)} is a sample of independent observations from the distri-
bution of (X, Y) and JJ • ilx and • are distance metrics on the spaces of X and Y
respectively.

The kernel function, K(u), is assumed to be a real, integrable, non-negative, even
function on R concentrated at the origin such that

fR
K (u)du = 1, f uK(u)du = 0 and (3-2K = u2K(u)du < 00. (1.2)

Popular choices for K(u) are defined in terms of univariate and unimodal probability
density functions.
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1



Bandwidth selection for kernel conditional density estimation 2

The problem of conditional density estimation appears to have lain free of scrutiny until
it was revisited recently and some improved estimators were proposed.

Hyndman, Bashtannyk & Grunwald (1996) give the bias, variance, MSE and con-
vergence properties of (y I x) and proposed a modified kernel estimator with smaller
MSE than the standard estimator in some commonly occurring situations. Fan, Yao
& Tong (1996) proposed an alternative conditional density estimator by generalizing
Rosenblatt's estimator using local polynomial techniques. Stone (1994) followed a
different path and considered using tensor products of polynomial splines to obtain
conditional log density estimates.

In this paper we consider the problem of bandwidth selection for Rosenblatt's original
estimator. We also comment on how to extend the ideas presented here to the improved
estimators introduced later.

We shall rewrite (1.1) as

1 n= --; -/Ewj(x)K (Ily —llbi Yiy

K
w(x) =  

(
 a ) where 

E7i1=1 K (11x-xi1i)
a )

(1.3)

The parameters a and b control the degree of smoothing applied to the density estimate;
a controls the smoothness between conditional densities in the x direction and b controls
the smoothness of each conditional density in the y direction. The selection of a and
b has a critical role in determining the performance of the kernel conditional density
estimate.

Figure 1 shows graphically how the kernel conditional density estimate is constructed.
For simplicity we have used 20 observations, although a much higher number of
observations is required for meaningful conditional density estimation.

Figure 1(a) shows kernel functions with bandwidth b, centered at the observations.
The conditioning X = x is carried out by another kernel function in the X-space.
This second kernel function has bandwidth a and is centered at the conditioning value
x = xo. (This kernel is normalized so that the total weights sum to one.) The kernel
function chosen for this illustration has bounded support and observations outside the
window width a carry zero weight. The shaded region shows those observations which
have non-zero weight.

In Figure 1(b) the conditional density estimate at X = xo is shown. This was obtained
by summing the n kernel functions in Y-space, weighted by the kernel function in
X-space.

Our approach in bandwidth selection will be to minimize the weighted integrated mean
square error function (IMSE), defined as

IMSE(a, b; f,1). ff E {f(y ix) — f (y I x)12 h(x) dx dy. (1.4)
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(a) Kernel conditional density estimation
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(b) Conditional density estimate at x0
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Figure 1: Construction of the kernel conditional density estimate f (y I xo) at the conditioning value
X = xo. The shaded region shows the observations which receive non-zero weight. The weight function
is shown as the heavy line in the top plot.
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Weighting the IMSE by the marginal density h(x) places more emphasis on the regions
that have more data and it also eases the computational difficulty.

We also define the integrated square error function (ISE) as

ISE(a, b; I, f) = {f (y I x) — f (y I x)12 h(x) dx dy. (1.5)

For numerical examples, we will estimate the ISE using

N n

b; X, Y, , f) = —n E E [f(vi I - f(y I Xi)]
2
 (1.6)

where X = {X1,. , Xn}, Y = {Y1, • • • , Yn} and {(Xi, Yi)} is an iid sample with density
g(., .), y' = , yiN1 is a vector of equally spaced values over the sample space of
Y with yi+i — = A, and f is calculated from {(Xi, Yin using (1.3). We average (1.6)
across samples to estimate the IMSE using

m
IVY (a, b; m,y' , f) = E (a, b; X(e) y(),  , f) (1.7)

m t=i

where XV) = {4E), , Zit)}, 17(€) = {Y1(t), , Ye}, and {(4t), Yi(t))} is an iid
sample with density g(., .).

In Section 2 we derive several "reference rules" for the kernel conditional density
estimator making various assumption about the conditional density f(y I x) and the
marginal density h(x).

In Section 3 we discuss an approximate parametric bootstrap method for estimating
bandwidths, similar to that used by Hall, Wolff and Yao for bandwidth selection in
estimating conditional distribution functions.

A third approach is considered in Section 4, where the estimation problem is written
as a regression problem so that a bandwidth selection method from kernel regression
can be modified for use here.

These various approaches to bandwidth selection are combined in Section 5 to provide
a practical strategy for bandwidth selection. The methods are illustrated in Section 6
using two simulated examples and one real data set. Finally, we discuss extending the
bandwidth selection methods to other estimators in Section 7.

2 •Reference rules

Bandwidth rules based on a reference distribution have proven useful in univariate
kernel density estimation (e.g., Silverman, 1986). The most common approach is to
assume the underlying density is normal and find the bandwidth which would minimize
the IMSE given that assumption. This is surprisingly robust and gives reasonable
results even for densities which are quite non-normal. We shall apply the idea here to
obtain a quick and simple method for bandwidth selection for kernel conditional density
estimators.
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Hyndman et al. (1996) showed the asymptotic mean square error for the estimator
(y I x) is

AMSE = lim E {f(y I x) — f (y I x)12

a4c4 111 (x) a f(yI x) a2 f (y I x) b2 52f(y I x) 12
4 h(x) ax ax2 a2 aY 2 f
R(K) f (y I x) 

[R(K) — b f (y I x)] ± 0(k) ± 0(i) ± 0(g)nabh(x)

+ 0(a6) ± 0(b6) 0(a2b4) 0(a4b2)

where R(K) = f K2 (w) dw. .

(2.1)

Then substituting (2.1) into (1.4) gives

ci C2
IMSE — — — c3a4 c4b4 c5a2b2 (2.2)

nab na

where the constants cl, c2, c3, c4 and c5 depend on the kernel K, the conditional density
f (y I x) and the marginal density h(x). The constants are

c1 = R2(K) dx

C2 = I f R(K) f 2 (y I x) dy dx

C3 = 
 ff alch(x) 2 te (x) a f (y 1 x) a2 f  

2
x) dy dx

4 h(x) ax ax2
4h(x) (92f (Y x) 12I dy dx
4 aY2 

C5
= olch(x) 2 hi (x) a f (y I x) a2 f (Y I x) a2 f (y I x) dy dxff 2 h(x) ax ax2 j ay2

C4 =

where the integrals are over the sample space of Y and X.

The optimal bandwidths can be derived by differentiating (2.2) with respect to a and
b and setting the derivatives to zero. We require the sample space of X to be finite to
ensure c1 remains finite.

Hyndman et al. (1996) showed that the optimal bandwidths are approximately

5 -1/6
= ci1/6 4( _)1/4 2c5(a)314a* 

C4 C4

and b* =
-1/6) 1/4 ,5( C3 1/6 4C:1)1/4 _C4 )3/4 -1/6= C1 2C5 n .

* C4 C3 C3

(2.3)

(2.4)

We shall assume that the conditional distribution, f (y I x), is normal with linear mean

r (x) = c dx and linear standard deviation o-(x) = p qx. Hence [Y I X = x]
N (c dx, (p qx)2) and the conditional density is

1 -1 
f(yI x) = 

exP 1 2(p + qx)2
(y — c— dx)2}
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We shall substitute this expression for f (y I x) into (2.3) and (2.4) to obtain reference
rules for bandwidth selection. We also need to specify the marginal density h(x). We
consider two possibilities: a uniform marginal density over the space [t, u] and a normal
marginal density with mean 1.1h and standard deviation oh. The parameters of the
assumed conditional and marginal distributions will be estimated for the data. When
q 0, we use iteratively reweighted least squares to estimate c and d, with p and q
estimated by minimizing

E (yi — — cix)2 — qx)2}2.
i=0

To differentiate between the various assumptions about the marginal distributions and
methods used we will use the following notation for the reference rules:

bandwidth [marginal][weight]

where the subscripts can take the following values.

• marginal = N and marginal = U assume the marginal density is normal and
uniform respectively.

• Weight= i implies that the IMSE is weighted by h(x). In the IMSE defined by
(1.4) we have used i = 1. In Section 2.3 we shall consider an IMSE with i = 2.

For example aui denotes the optimal value of a assuming h(x) is a uniform density,
and the IMSE is weighted by h(x). The conditional distribution is always assumed to
be normal.

The derivation of each reference rule requires extensive algebraic manipulation. The
following rules were obtained with some help from the computer algebra package Maple.

2.1 Uniform marginal distribution

To evaluate the reference rule for a and b with h(x) uniform over [, u], we substitute
the conditional and marginal densities into the constants cl, , c5. We then integrate
the constants initially with respect to y over the sample space (—oo, oo) and secondly
with respect to x over the sample space [i, u]. The constant terms are

c1 = R2(K)(u — f) c2 = log 
f

R(K) (p qu)
c3 =2q.fir 

p q?) 512 q\iii(u — t)

3 a.rcZW 
4

3 olz 3 ukz(2d2 — 3q2)

128 q\Fr(u — .e) 
C5 =

128 TV:11-(u — f)

± u)4 (13 

qf)4 

quy (p ge)4 
W 19q4 ± 4c/4 28q2d2, d 0 and q 0.
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These values are then substituted into (2.3) and (2.4) to obtain the following reference
rule:

aui

• bUl

21512 fili2(K)(u — 1)2q

3norkzw3/4{fill 2d2 — 3q2]

aui

1/6

(2.5)

Clearly the size of the bandwidths are affected by the assumptions made on the
conditional density, marginal density and the number of observations.

Suppose we now assume that the conditional standard deviation is constant (let q = 0).
We again substitute the conditional and marginal densities into the constant terms and
obtain

ci = R2(K)(u — l) c2= 
R(K)(u — l)

C3 = 
3 c4 d4 

2p07 32 p5 V;ir

3 4 34d2
C5 =  

16p5.177-•

This gives the following special case of the reference rule for q = 0:

4.0F R2(K)(u — 1)135 1/6

n4 d5 
aui

bui

4 d5

= dayi

where d 0. If q = 0 and d = 0 the conditional densities are equal for all x, and there
is no need to condition on X.

2.2 Normal marginal distribution

We now assume that the marginal density h(x) is normal with a constant mean ith
and constant variance u. We further assume that conditional density f(y I x) has a
constant variance, that is q = 0. (We have not been able to solve the equations for the
more general case of q 0.) Following the same procedure as for the normal-uniform
reference rule we initially integrate the constants over the sample space of y (—oo, oo).
Integrating the constants over the sample space of x (—oo, oo) for a normal marginal
density results in infinite bandwidths. Therefore we choose limits of the integral over
x to be ph ± ko-h. Then we obtain

Cl = 2R2(K)kuh

3 erf (1z/4 olcc/2

C4 = 32 p5fi

C2 =

C5 =
16 p5fi

R(K)kuh

POF

3 erf (1c/4 4c/2

1 dd2V(k)
C3 =

64 73/20p5

where v(k) = 3erf (k/f2) d2o-h37 — 8f2-7-1-p2k exp (—k2/2) 87/32erf(k/-V-2)
fox

and erf(x) = exp(t2/2) dt.
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Substituting the constants into (2.3) and (2.4) we obtain the following reference rule:

16R2(K)Ic75/4p50-h5/2 1/6)

aNi =
nd5/2o-k

V5 (k)  
) 1/4

± 3d (v(k)erf1/3(k/))

R372o-h4erf(k/4 3

I  d2v(k)  
1/4

bNi = am.
37ruherf(k/f2-)

3/4] 1/6

(2.6)

Numerical values of the erf(x) function can be computed using an approximation given
in Abramowitz Sz Stegun (1970).

The value of k controls the size of the sample space in the x direction. Therefore as we
increase k we also increase aNi and bNi. Common choices for k would be 2 or 3, and
this would represent approximately 95% and 99.7% of the sample space respectively.

2.3 Modified IMSE function

The constant
ci = R2 (K) dx

will be infinite unless the sample space of X is finite. Consider the alternative weighted
IMSE function

IMSE2{f} = fl E {f(y I x) — f (y I x)1 h2 (x) dx dy. . (2.7)

where we weight the MSE by the square of the marginal density. Then the IMSE has
the same form (2.2) but with different constants. The constant c1 becomes

c1 = I R2 (K)h(x) dx = R2 (K)

and we observe now that we no longer need to restrict the sample space x to be finite.
The other constants are

R(K) aid2 (4p4 ± 3oid2)
C2— C3— 

2p /F 64 13,p5

3 alc 3 if 11 ( d2
4 —  C5 =  

64 cfhp57 32 uhP57.

Assuming a normal marginal density h(x) with mean iih and variance o, and constant
conditional variance (i.e., q = 0), we obtain the following reference rule:

ui 

1671-R2(K)4/2p5  
}1/6

{nd5/2 
f (u5/(34))1/4 + (3d4u3)1/41_

(d2u/(3a)) 1/4 aN2

aN2 =

bN2 =

where u = (3d2crh2 ± 42).

(2.8)
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3 A bootstrap bandwidth selection approach

Following the approach of Hall, Wolff & Yao (1997) for estimation of conditional
distribution functions, we propose an approximate parametric bootstrap method. We
fit a parametric model

= /30 + /31 Xi +... XP ClEi

where Ei is standard normal, 00, , Ok and u are estimated from the data and k is
determined by AIC. We form a parametric estimator f (y I x) based on the model. Then
we simulate a bootstrap data set \TM = DTP, , Ye} based on the observations
X = {X1, , Xn}. We choose a and b to minimize

1 M 
117/(a, b; m, , == 

--T E A (a, u; X, y(t), y', I),
E=1

the bootstrap estimator of the IMSE (assuming the above parametric model).

This scheme is easily modified to other parametric models. For example, to allow for
heteroscedasticity, replace a by (a v Xi) in the model.

4 A regression-based bandwidth selector

Fan et al. (1996) noted that the conditional density estimator Ry I x) obtained from
(1.3) is the value of /3 which minimizes the weighted least squares function

E wi(x){vi(y) _/3}2 (4.1)

where vi(y) = b-1K(IYi — y i/b) is a kernel function. For a given bandwidth b and
-

a given value y, finding f(y I X) is a standard nonparametric problem of regressing
vi(y) on X. Fan, Yao and Tong use this idea to define local polynomial estimators
of conditional densities. We shall exploit the idea by modifying a bandwidth selection
method used in regression to derive an alternative method for selecting the bandwidth
a given the bandwidth b. Hardie (1991) describes selecting the bandwidth for regression
by minimizing the penalized average square prediction error.

For conditional density estimation, define the penalized average square prediction error
as

2

Q b(a , y) = n-1 E {vi(y) — E wi(xi)v, (y) p(wi(Xi)). (4.2)

where p(u) is a penalty function with first order Taylor expansion p(u) = 1 ± 2u+O(u2).
In the numerical examples in Section 6, we use Akaike's (1974) finite prediction error
p(u) = (1 u) 1 (1 — u).

Substituting Ei = Vi(y) — f (y I Xi) into (4.2) and expanding the penalty term p(wi(Xi)),
we find

Qb(a, Y) n--1 E {Ei f (Y I Xi) - f(Y I Xi)12 ± 2Wi(Xi)] •
i=1

(4.3)
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Expanding Qb(a, y) to find the leading terms and ignoring the lower order terms we
obtain

Qb(a, y)

where AS E (a, y) = n1E (Y I xi) — I Xi)12

= n-1 E ± ASE(a,y) + 2n-1 E siEgy - j(y I Xi)]
i=1 i=1

+ 2n-1 E 4wi(Xi) ± 0(a-2n-2) ± 0(2 -1) (4.4)

(4.5)

denotes the average squared error.

We now show that the third and fourth terms on the right hand side of (4.4) cancel
each other out.

First we compute the conditional expectation of the third summand of Qb(a, y):

E [272-1 Ei[f(y xi) - f(y I xi)] I xi . xn]
n n

= 2n-1 E E [Ei[f(Y I Xi) — E w(X)v(y)1 I xi.... X] 
j=1

n n

= 2n-1 E E [Ei[gY i Xi) — E wi(Xi)(Ei ± f(Y1xJ))11X]...-Xn1
i=1 j=i
n n

= 2n-1 E E [Ei[f(Y I Xi) — E wi(xin I xi)] 1 xi . . . xn]
n n

—2n' E E 
[ 

Ei w(X)E xi ... Xi]

2n-1 E E [Ei I Xi • • • Xni [i(Y i Xi) — wi(xi)f(yi=i J=1
n n

—2n-1 E E wi(Xi)E [Es i I Xnj .
i=i j=i

Now, {Ei} are independent random variables with E(Ei I X1, , Xn) = 0(b2) and
variance a2 (Xi). The conditional expectation becomes

E [2n-1 12.=1 Ei{f (y I Xi) — (y I Xi)] I X1 Xn]

= —2n-1 E wi(x)0-2(xi) + 0(b2).

The conditional expectation of the fourth summand in (4.4) is

E [2n-1 E Ei• 2,Wi(Xi) . x] = 2n-1 E wi(xi)(72(xi).
i=i i=i
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Thus, the conditional expectation of the third summand is approximately equal to the
negative of the conditional expectation of the fourth summand of Qb(a, y), so that

n

Qb(a, y) = n-3- E E7, ± AS E(a, y) ± 0(b2) ± 0(a-2n-2) + 0(a3n-1).

We define the penalized average squared prediction error Qb(a) as

2

-AE E /E wj(x)[vi(y) - vj(y1k)11 p(wi(Xi))
n k=1 i=1 j=1

N n n

n A N
= A E El ± Tr E ASE(a,y) + 0(b2)± 0(a-2n-2) ± 0(a3n-1)

i=1 k=1

where where {y,. . . , Viv} are equally spaced over the sample space of Y with yi+i —yi =
A. Note that the first term in this expression is independent of a and that the second
term is asymptotically equal to the IMSE defined by (1.4). Therefore, for fixed b,
minimizing Qb(a) is asymptotically equivalent to minimizing the IMSE.

Qb(a) =

For computational purposes, it is convenient to write Qb(a) as

A
.Qb(a) = —n

PT (V — WTV) 0 (V — WTV)1

where V is an n X N matrix with (i, j)th element vi(y'j), W is an n X n matrix with
(i, j)th element wi(xj), 0 denotes the element-wise or Hadamard product, 1 denotes a
vector of ones, and p denotes the vector with ith element p(wi(xj)).

5 A practical bandwidth selection strategy

The preceding sections describe several bandwidth selection methods. The reference
rules are fast and easily implemented but make strong assumptions about the data.
The bootstrap method is less affected by the assumed distributions, but is slow to
implement. The regression-based rule usually works well in finding a value for a, but
it assumes b is given.

In this section, we describe an algorithm which effectively combines these methods to
provide a practical bandwidth selection strategy.

1 Find an initial value for the smoothing parameter b using one of the reference rules.
For most applications, we have found rule Ni works well.

2 Given this value of b, use the regression-based method to find a value for a.

3 Use the bootstrap method to revise the estimate of b by minimizing
M(a,b,m, y', f) with respect to b while holding a fixed at the value obtained
in Step 2.
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Rule a b IMSE (x10-6)
Ul(q 0 0) 0.94 4.7 4.0
Ul(q = 0) 0.98 4.9 3.8
N1(k = 2) 0.74 6.8 3.5
N1(k = 3) 0.80 7.4 3.6
N2 0.86 4.8 4.1
Regress 0.93 7.5 4.0
Bootstrap 0.87 6.5 3.4
Combination 0.91 6.7 4.0 
Optimal values 0.80 7.5 3.5

Table 1: Bandwidth estimates and IMSE values for Example 1. These are all means of 50 simulated
samples each consisting of 100 observations.

Steps 2 and 3 may be repeated one or more times. We have found this algorithm
provides a relatively fast and useful approach to finding good bandwidths.

To illustrate the selection methods and the strategy described above, we shall use
simulation on two examples and apply the methods to some real data.

6 Applications and comparisons

We compare the various bandwidth selection methods through two simulated models
and by application to some data from the Old Faithful Geyser. In all cases, we have
used the Gaussian kernel, K (u) = 0(u) = exp(-u2/2)/Tr.

Example 1

Consider the simple model Yi = 10+ 5Xi Ei where {Xi} and {Ei} are two independent
sequences of normally distributed independent random variables with X1 N(10, 9)
and Ei N(0, 100). In this case, the optimal bandwidths are given by (2.6) as am. =
0.80 and bNi = 7.5 (where k = 3).

We shall compare these with the estimated bandwidths obtained from the various
methods. We shall also estimate the IMSE for each bandwidth selection method using

eL, b; m,y' , f) from (1.7) with m = 50, the values of {Vi, , Viv-} chosen to cover the
interval [-10, 130], N = 25, and f (y I x) = -260 (Y-1175x) . For the bootstrap method,

m = 25 is used in calculating /c/(a, b; m,y' , f) for each a and b.

The bandwidths and estimated IMSE obtained are given in Table 1. These are the
means of 50 simulated samples each consisting of n=100 observations. Boxplots of the
bandwidths and ISE values are given in Figures 2-4. It is not surprising that the Ni
rule performs best as it assumes the true underlying density in this case. Note that the
b values for the regression method are obtained from the Ni rule. The N2 method uses
a different optimality criterion, which explains why the b values are generally smaller
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co

Example 1: a values

1
1

U1 (q=0) U1 (q#0) Ni (k=2) Ni (k=3) N2 Regress Boostrap Combination

Figure 2: Values of a for each method from 50 samples. The dotted line shows the optimal value of
a = 0.80.

Example 1: b values

co _

—

to —

_

U1 (q=0) Ul (q0) Ni (k=2) Ni (k=3) N2 Regress Boostrap Combination

•••••

Figure 3: Values of b for each method from 50 samples. The dotted line shows the optimal value of
b = 7.5.
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Example 1: ISE values
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U1 (q=0) Ul (q#0) Ni (k=2) N1 (k=3) N2 Regress Boostrap Combination Optimal

Figure 4: Estimated ISE values for each method from 50 samples. The last boxplot shows ISE values
for 50 samples using the optimal values of a = 0.75 and b = 7.0.

than those obtained from the other methods. Both the bootstrap and combination
methods tend to give lower values of b than the optimum. The main effect of using
the combination method instead of the bootstrap method seems to be it increases the
variability of the a value. However, it is much faster.

Example 2

In this example we use the model

Yi = 2 sin(rXi) +E

where {Xi} and {si} are two independent sequences of random variables with Xi
uniformly distributed on (0,2) and Si I Xi = WiNi + (1 — Wi)Mi where Wi is a binary
variable with Pr(Wi = 1) = Pr(Wi = 0) = 0.5, Ni i- N(Xi, 0.09) and A A N(0, 0.09).
Figure 5 shows a scatterplot of 100 observations from this model.

For this model, the optimal bandwidths can be found by minimizing the estimated IMSE= ho (y-2073n7rx) ± 016 0 (y-2sonvx—x).M (a, b; m,y' , f) where f (y 1 x) Using m = 25,
N = 25, and the values of {VI, ... , yiN} chosen to cover the interval [-2.5, 2.5], we
obtained optimal bandwidths of a = 0.053 and b = 0.30.

We shall also estimate the IMSE for each bandwidth selection method using (1.7) Again,
we use m = 50 and the values of fyii, .. . , yiN1 are chosen to cover the interval [-2.5, 2.5]
with N = 25. For the bootstrap method, m = 25 is used.

The bandwidths and estimated IMSE obtained are given in Table 2. As for example

,



,

.,

Bandwidth selection for kernel conditional density estimation 15

>-

CV -

T... -

0 -
o

c;1 -

o oo o
6) o

o 0 cc) cr3 o cp0 o

o 
0 00 0 0 0

o o0 0

o o o 8 o
coo 0 o o

°030 o
o 
o
o cp oc2

o
o

o

o

o

o

o

o 
o

o

o
o

o

o

o

o
o

o
o

o

o

i I I 1 I
0.0 0.5 1.0 1.5 2.0

x

Figure 5: Scatterplot'of 100 observations from the model used in Example 2. Note the bimodality in
the conditional densities for large X.

Rule a b IMSE (x10-4)
Ul(q 0 0) 0.29 0.42 3.9
Ul(q = 0) 0.32 0.45 4.1
N1(k = 2) 0.31 0.54 4.1
N1(k = 3) 0.31 0.58 4.2
N2 0.25 0.50 3.7
Regress 0.059 0.57 2.6
Bootstrap 0.067 0.47 2.1
Combination 0.063 0.56 2.5
Optimal values 0.053 0.30 1.8

- Table 2: Bandwidth estimates and IMSE values for Example 2. These are all means of 50 simulated
samples each consisting of 100 observations.
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Example 2: a values

i

,

U1 (q=0) U1 (qt0) N1 (k=2) Ni (k=3) N2 Regress Boostrap Combination

Figure 6: Values of a for each method from 50 samples. The dotted line shows the optimal value of
a = 0.75.

Example 2: b values
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Figure 7: Values of b for each method from 50 samples. The dotted line shows the optimal value of
b = 7.0.
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Example 2: ISE values

—

—

—

U1 (q=0) U1 (q#0) N1 (k=2) Ni (k=3) N2 Regress Boostrap Combination Optimal

Figure 8: Estimated ISE values for each method from 50 samples. The last boxplot shows ISE values
for 50 samples using the optimal values of a = 0.05 and b = 0.30.

1, these are the means of 50 simulated samples each consisting of n=100 observations.
Boxplots of the bandwidths and ISE values are given in Figures 6-8. All the reference
rule methods give values of a and b well above the optimum. Both the bimodality and
non-linear mean of the conditional distributions lead to smaller optimal bandwidths
than under the assumptions behind the reference rules. However, the regression method
is still selecting values of a close to the optimum despite assuming a value of b which is
much too high. The combination and bootstrap methods both lead to good values for a
in this case. However, b values from both methods are too large, probably because of the
assumption of normality in the bootstrap procedure. As in example 1, the combination
method produces bandwidths with greater variability than the bootstrap method.

Old Faithful Geyser data

Azzalini & Bowman (1990) give data on the waiting time between the starts of successive
eruptions and the duration of the subsequent eruption for the Old Faithful geyser
in Yellowstone National Park, Wyoming. The data were collected continuously from
August 1st until August 15th, 1985. There are a total of 299 observations. The times
are measured in minutes. Some duration measurements, taken at night, were originally
recorded as S (short), M (medium), and L (long). These values have been coded as 2,
3 and 4 minutes respectively. This data set is also distributed with S-Plus.

Figure shows a scatterplot of the data. Table 3 shows the results of applying the various
bandwidth selectors to these data. The conditional density estimator obtained using
the bandwidth from the combination selector is shown in Figure 10.
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Rule a 
Ul(q 0) 5.1 0.27
Ul(q = 0) 6.1 0.33
N1(k = 2) 3.9 0.81
N1(k = 3) 4.1 0.87
N2 4.8 0.34
Regress 2.2 0.87
Bootstrap 3.6 0.40
Combination 2.4 0.48

Table 3: Bandwidth estimates for the Old Faithful Geyser data.
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Figure 9: Old Faithful Geyser data: duration of eruption plotted against waiting time to the eruption.
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Figure 10: Estimated conditional density of eruption duration conditional on waiting time to the
eruption. Bandwidths chosen using the combination method.

7 Extensions to other estimators

Hyndman et al. (1996) considered a modified kernel estimator which has zero mean-bias
and under certain conditions a smaller IMSE. The standard kernel estimator (1.3) was
modified such that the new conditional density estimator had a mean function that
could be specified by a smoother with better bias properties than that inherited by the
standard kernel estimator, namely the Nadaraya-Watson smoother.

Following the same approach as in Section 2, we find that the IMSE and the optimal
bandwidths a* and b* of the modified kernel conditional density estimator take the same
form as for the standard kernel conditional density estimator, except that the constants
c3 and c5 are different:

flcr4 h(x) f 
`a 

h' (x) a f (y-r(x)lx) ▪ a2f(y ax-r2(x)ix) 12 d dx4 l h(x) ax y
C3 

C5 = f 2 h(x) a x ax2
o4 h(x) 12h1' (x) a f (y -r (x)lx) ▪ a2f(y-r(x)ix) 1 {Delldy dx,

where r(x) = E(Y I X = x) is the conditional mean.

Thus, reference rules can be derived for this estimator in the same way as for the
standard estimator. We give just one example, the Ul rule with q 0:

215/2N/FR2(K)(u —  }I/6
am

3(19)3/4no-kze(Vfg — 3)

and bui = (19/4)1/4qam
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where z and w are defined as for (2.5). Note that this is the same as setting d = 0 in
(2.5).

To extend these reference rules to Fan, Yao and Tong's local polynomial estimator, one
would first need to derive the IMSE of that estimator using Theorem 1 of their paper,
then find expressions for the optimal values of a and b, analogous to (2.3) and (2.4).
Extensions of the reference rules to the case where there is a multivariate explanatory
variable is more difficult.

The bootstrap selector can be easily applied to any estimator. The regression-based
selector can be adapted to other estimators (including the multivariate case) by replac-
ing wi(Xi) by the weight from the "equivalent kernel" obtained when the estimator is
written as a linear smoother.
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