Producers Valuation of Feeder Cattle Characteristics

Samuel D. Zapata
Assistant Professor and Extension Economist, Department of Agricultural Economics, Texas A&M AgriLife Extension Service, Texas A&M University, Weslaco, TX. samuel.zapata@ag.tamu.edu

Levi Russell
Assistant Professor, Department of Agricultural and Applied Economics, University of Georgia, Athens, GA. lrussell@uga.edu

David Anderson
Professor and Extension Economist, Department of Agricultural Economics, Texas A&M AgriLife Extension Service, Texas A&M University, College Station, TX. danderson@tamu.edu

Selected Paper prepared for presentation at the Southern Agricultural Economics Association (SAEA) Annual Meeting, Jacksonville, Florida, February 3-6, 2018

Copyright 2018 by Samuel D. Zapata, Levi Russell and David Anderson. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Producers Valuation of Feeder Cattle Characteristics

Samuel D. Zapata
Levi Russell
David Anderson

02-05-18

2018 SAEA Meeting
Jacksonville, FL
Feeder Cattle

- Young steers, heifers and bulls to be placed in a feedlot, where they are fattened prior to slaughter.

- Purchased at live auction markets

- Price is determined by observable characteristics:
 - Premiums: European breeds, color
 - Discounts: Horns, sex
Hedonic Price

- Feeder cattle price: $ r(z) = r(z_1, ..., z_m) $

- The effect of cattle characteristics on market prices has been extensively studied:
 - Schroeder et al., 1988
 - Schulz et al., 2015
 - Zimmerman et al., 2012

- Prices reveal nothing about producers’ valuations or structural demands.
Price vs. Preferences

$r(z_1, z_2^*, ..., z_m^*)$

Adapted: Rosen, 1974
Price vs. Preferences

Adapted: Rosen, 1974
Objectives

- Estimate the underlying valuation functions behind observed prices.
- Develop better marketing, management and educational programs for feeder cattle producers.
Outline

- Motivations
- Theoretical Framework
- Data
- Model Estimation
- Preliminary Results
Theoretical Framework
Theoretical Model

- Two input types:
 - Heterogeneous: Feeder cattle
 - Homogenous: Composite

- Output quality is a function of the quantity and quality of the inputs used.
 - $q \leq \Gamma(X, z, \lambda)$ (quality constraint)
 - $p(q) = p(q_1, ..., q_k)$ (price)

- Objective of producers (buyers) is to maximize profit:
 $$\max_{q,z} \pi = p(q) - c(r, z, q, \lambda)$$
• Producers’ valuation of heterogeneous input \((z) \):
 \[
 WTP = \theta(z; \pi, q, \lambda)
 \]
 \[
 \pi = p(q) - c(\theta, z, q, \lambda)
 \]

• Optimal choice of \(q \) and \(z \):
 \[
 p_i(q) = \frac{\partial c}{\partial q_i} = c_{q_i}, \quad i = 1, \ldots, k
 \]
 \[
 z_i = -\frac{\partial c}{\partial z_i} = -c_{z_i}, \quad i = 1, \ldots, m
 \]

• Thus, profit is maximized when
 \[
 \theta(z^*; \pi^*, q^*, \lambda) = r(z^*)
 \]
 \[
 \theta_{z_i}(z^*; \pi^*, q^*, \lambda) = r_i(z^*), \quad i = 1, \ldots, m
 \]
Data
Data Collection

 - County Extension Agents
 - Standardized data collection process
 - Individual animals rather than lots

- Gathered information includes
 - Price
 - Color
 - Sex
 - Frame size
 - Fill
 - Body condition
 - Muscle score
 - Brahman influence
 - Dehorn status
 - Weight
 - Date
Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Proportion (%)</th>
<th>Variable</th>
<th>Proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide Color/Pattern</td>
<td></td>
<td>Condition</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>29.59</td>
<td>Average</td>
<td>79.29</td>
</tr>
<tr>
<td>Red Brindle</td>
<td>5.62</td>
<td>Fleshy</td>
<td>13.10</td>
</tr>
<tr>
<td>Brown</td>
<td>5.05</td>
<td>Thin</td>
<td>7.61</td>
</tr>
<tr>
<td>Black with white Face (BWF)</td>
<td>8.48</td>
<td>Muscle Score</td>
<td></td>
</tr>
<tr>
<td>Dun</td>
<td>10.17</td>
<td>1</td>
<td>4.12</td>
</tr>
<tr>
<td>Gray</td>
<td>4.99</td>
<td>2</td>
<td>55.12</td>
</tr>
<tr>
<td>Red</td>
<td>12.80</td>
<td>3</td>
<td>40.76</td>
</tr>
<tr>
<td>Red with white Face (RWF)</td>
<td>7.91</td>
<td>Brahman Influence</td>
<td></td>
</tr>
<tr>
<td>Smokey</td>
<td>4.16</td>
<td>0%</td>
<td>24.43</td>
</tr>
<tr>
<td>Spots</td>
<td>2.06</td>
<td>25%</td>
<td>35.31</td>
</tr>
<tr>
<td>White</td>
<td>9.18</td>
<td>50%</td>
<td>25.33</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>75%</td>
<td>12.50</td>
</tr>
<tr>
<td>Bull</td>
<td>31.12</td>
<td>100%</td>
<td>2.43</td>
</tr>
<tr>
<td>Heifer</td>
<td>40.72</td>
<td>Horns Status</td>
<td></td>
</tr>
<tr>
<td>Steer</td>
<td>28.16</td>
<td>Dehorned</td>
<td>69.02</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
<td>Horned</td>
<td>30.98</td>
</tr>
<tr>
<td>Medium</td>
<td>63.40</td>
<td>Weight (CWT)</td>
<td>5.40 (0.02)</td>
</tr>
<tr>
<td>Large</td>
<td>32.08</td>
<td>Price ($/CWT)</td>
<td>177.11 (0.86)</td>
</tr>
<tr>
<td>Small</td>
<td>4.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill</td>
<td></td>
<td>Mean (S.E.)</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>71.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>25.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrunken</td>
<td>2.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Considerations

- Cattle attributes:
 - Continuous: Weight
 - Discrete (S levels): Color – black, white, spots, etc.,

- Hedonic literature is based on continuous attributes.
 - Profit maximization implies: $\theta_{z_j} = r_j$
 - No FOC for discrete attributes

- The true valuation of discrete characteristics is not directly observed
 - Revealed preference choices imply: $\theta_{z_{ks}} \geq r_{ks}$
Model Estimation
1. Hedonic Price

- Hedonic price function: \(r(z) = r(z_1, \ldots, z_m) \)
 - Random Effects: \(r(z) = z'\beta + z'\gamma \)

- Marginal implicit prices
 - Continuous: \(\frac{\partial r}{\partial z_i} \)
 - Discrete: \(r(z|z_{ks} = 1) - r(z|z_{ks} = 0) \)

- The hedonic price is estimated for each auction location to avoid potential identification problems (Brown and Rosen, 1982).

- Marginal prices are inferred for each observation (\(\hat{r}_i \)).
2. Producers’ Valuation

- Theory: \(r_i = \theta_{z_i} = -c_{z_i} \)

- A functional cost function could be used to estimate \(\theta_{z_i} \)
 - Theoretical properties of \(c(r, z, q, \lambda) \)?
 - \(-c_{z_i} \approx V_{z_i} + u_i\)
 - \(V_{z_i} = f(r, z, q, \lambda) = f(x; \alpha) \)

- Marginal valuation functions
 - Continuous: \(\hat{r}_i = x'\alpha + u_i \)
 - Discrete: \(\hat{r}_{ks} \leq x'\alpha + u_{ks} \)
Preliminary Results
Price Differentials

<table>
<thead>
<tr>
<th>Variable</th>
<th>Weighted Mean (SE)</th>
<th>Variable</th>
<th>Weighted Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide Color/Pattern</td>
<td></td>
<td>Condition</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>-</td>
<td>Average</td>
<td>-</td>
</tr>
<tr>
<td>Red Brindle</td>
<td>2.81 (0.53)</td>
<td>Fleshy</td>
<td>-1.52 (0.24)</td>
</tr>
<tr>
<td>Brown</td>
<td>-5.44 (0.32)</td>
<td>Thin</td>
<td>-1.35 (0.75)</td>
</tr>
<tr>
<td>Black with white Face (BWF)</td>
<td>6.55 (0.45)</td>
<td>Muscle Score</td>
<td></td>
</tr>
<tr>
<td>Dun</td>
<td>4.27 (0.33)</td>
<td>1</td>
<td>-2.31 (0.81)</td>
</tr>
<tr>
<td>Gray</td>
<td>-0.35 (0.59)</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Red</td>
<td>-5.58 (0.19)</td>
<td>3</td>
<td>2.57 (0.14)</td>
</tr>
<tr>
<td>Red with white Face (RWF)</td>
<td>1.02 (0.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokey</td>
<td>2.27 (0.73)</td>
<td>0%</td>
<td>-0.004 (0.20)</td>
</tr>
<tr>
<td>Spots</td>
<td>-16.27 (2.05)</td>
<td>25%</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>-0.26 (0.41)</td>
<td>50%</td>
<td>5.96 (0.16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75%</td>
<td>3.00 (0.38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%</td>
<td>2.46 (1.57)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>Horns Status</td>
<td></td>
</tr>
<tr>
<td>Bull</td>
<td>-</td>
<td>Dehorned</td>
<td></td>
</tr>
<tr>
<td>Heifer</td>
<td>-1.92 (0.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steer</td>
<td>6.68 (0.21)</td>
<td>Horned</td>
<td>-2.10 (0.21)</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
<td>Weight (CWT)</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>-</td>
<td>-11.70 (0.35)</td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>0.07 (0.16)</td>
<td>Trend</td>
<td>-0.06 (0.004)</td>
</tr>
<tr>
<td>Small</td>
<td>2.85 (0.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>0.12 (0.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrunken</td>
<td>-14.16 (2.57)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future Work

- Estimate valuation function:
 - $V_{zi} = f(r, z, q, \lambda)$
 - Input price: *hedonic price, corn futures*
 - Quality: *feeder cattle attributes*
 - Production parameters: *location, time*

- Develop educational programs for feeder cattle producers
 - Identify buyer preferences
 - Price vs. valuation
Thank you!

Samuel D. Zapata
samuel.zapata@ag.tamu.edu
@SZapataD12