
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ISSN: 1444-8890 

ECONOMIC THEORY, 

APPLICATIONS AND ISSUES 
 

THE UNIVERSITY OF QUEENSLAND 

 

Working Paper No. 78 

Estimating Input-Mix Efficiency in a 

Parametric Framework: Application to 

State-Level Agricultural Data for the 

United States 

By 

Shabbir Ahmad 

 

September, 2017 



 

 

  



 

 

ISSN 1444-8890 

ECONOMIC THEORY, APPLICATIONS AND ISSUES 
(Working Paper) 

 

 

 

Working Paper No. 78 

 

Estimating Input-Mix Efficiency in a Parametric 

Framework: Application to State-Level Agricultural 

Data for the United States 

 

By 

 

Shabbir Ahmad1, 2 

 

 

September, 2017 

 

 

© All rights reserved 

 

  

                                                           
1 Business School, The University of Queensland, St Lucia Campus, Brisbane QLD 4072, Australia 
Email: s.ahmad@uq.edu.au 
2 I am grateful to Knox Lovell, Christopher O’Donnell, and George Battese for their valuable comments on earlier 
drafts of this paper. I am thankful to Janet Hohnen for her editorial help in the final draft of the paper. The earlier 
versions of this paper have been presented in seminar series at UNE Business School, University of New England, 
Armidale, Australia and School of Economics, The University of Queensland, Brisbane, Australia. I would also like to 
thank to participants of both seminars for providing their feedback on the paper. 

mailto:s.ahmad@uq.edu.au


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WORKING PAPERS IN THE SERIES, Economic Theory, Applications and Issues, are 

published by the School of Economics, University of Queensland, 4072, Australia. 

Production of the series Economic Theory, Applications and Issues and two additional 

sets were initiated by Professor Clem Tisdell. The other two sets are Economics Ecology 

and Environment and Social Economics, Policy and Development. A full list of all papers 

in each set can be accessed at the following website: http://www.uq.edu.au/rsmg/clem-

tisdell-working-papers  

For more information write to Professor Clem Tisdell, School of Economics, University 

of Queensland, St. Lucia Campus, Brisbane 4072, Australia or email 

c.tisdell@economics.uq.edu.au 

In addition, the following working papers are produced with the Risk and Sustainable 

Management Group and are available at the website indicated. Murray-Darling Basin 

Program, Risk and Uncertainty Program, Australian Public Policy Program, Climate 

Change Program: http://www.uq.edu.au/rsmg/working-papers-rsmg  

For further information about these papers, contact Professor John Quiggin, Email: 

j.quiggin@uq.edu.au 

http://www.uq.edu.au/rsmg/clem-tisdell-working-papers
http://www.uq.edu.au/rsmg/clem-tisdell-working-papers
mailto:c.tisdell@economics.uq.edu.au
http://www.uq.edu.au/rsmg/working-papers-rsmg
mailto:j.quiggin@uq.edu.au


1 
 

Estimating Input-Mix Efficiency in a Parametric Framework: Application 

to State-Level Agricultural Data for the United States  

 

ABSTRACT 

This paper contributes to the productivity literature by demonstrating novel econometric 

methods to estimate input-mix efficiency (IME) in a parametric framework. Input-mix 

efficiency is defined as the potential improvement in productivity with change in input mix. 

Any change in input-mix (e.g., land to labor ratio) will result in change in productivity. We 

minimize a nonlinear input-aggregator function (e.g., Constant Elasticity of Substitution) to 

derive an expression for input-mix efficiency. We estimate a Bayesian stochastic frontier for 

obtaining mix efficiency using US state-level agricultural data for the period 1960 – 2004. We 

note significant variation in input-mix efficiency across the states and regions, attributable to 

diverse topographic, geographic and infrastructure conditions. Furthermore, comparisons of 

allocative and mix efficiencies provide insightful policy implications. For example, the 

production incentives such as taxes and subsidies could help farmers in adjusting their input 

mix in response to changes in input prices, which can affect the US agricultural productivity 

significantly. We provide a simple way of estimating mix efficiency in an aggregate-input, 

aggregate-output framework. This framework can be extended by i) using flexible functional 

forms; ii) introducing various time- and region-varying input aggregators; and iii) defining 

more sophisticated weights for input aggregators.   

 

Key words: Mix efficiency, aggregator function, Bayesian stochastic frontier, productivity 

 

JEL Codes: D21, D24, C43 
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Estimating Input-Mix Efficiency in a Parametric Framework: Application 

to State-Level Agricultural Data for the United States  

 

 

1 Introduction  

Identification of recognizable sources of productivity change plays an important role in policy 

development for various industries. Consistent and reliable productivity components help 

policy makers to assess whether more benefit could be reaped through expenditure on research 

and development for technical progress, or through achieving scope economies (O'Donnell, 

2012a). Productivity can be changed through policy instruments, such as taxes and subsidies, 

by altering input-output combinations (i.e., scope economies). As noted by Hsieh and Klenow 

(2009, p. 1404), incorrect use of input or output mixes can ultimately reduce the level of 

productivity. It is well accepted that increased productivity is important for a society’s long 

term economic welfare. O'Donnell (2012b) proposed a comprehensive decomposition of 

productivity measures using an aggregate-input, aggregate-output framework. Within this 

framework, he decomposed productivity change into technical-efficiency change, scale-

efficiency change, mix-efficiency change and other measures of efficiency change (e.g., scale-

mix efficiency).  

 

Mix efficiency (a relatively new concept) is defined as the potential improvement in 

productivity when input or output mixes are altered. Any change in output mix (e.g., balance 

of crops and livestock) or input mix (e.g., land-to-labor ratio) results in a change in 

productivity. Mix efficiency is similar to allocative efficiency, but it differs in terms of its 

economic interpretation. Both measures are derived by solving a (cost or aggregate input) 

minimization problem. An improvement in mix efficiency increases productivity, which in turn 

contributes to the improved wellbeing of the people. On the other hand, improved allocative 

efficiency results in increased profit or reduced cost for a firm, which increases that firm’s 

prosperity. The benefits of increased productivity far exceed the benefits of increased profit in 

enhancing social welfare. In this context, mix efficiency seems to be more important than 

allocative efficiency. The concept of mix efficiency used here is based on aggregate input 

quantities (a purely productivity-based concept) whereas allocative efficiency is a distinct 

value-based concept.  
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This paper contributes to the literature on productivity by developing an analytical method to 

measure mix efficiency in a parametric framework. The measurement of mix efficiency has 

been proposed using nonparametric data envelopment analysis (see O'Donnell, 2010, 2012a; 

Rahman and Salim, 2013; Mughera et al., 2016). The paper develops a parametric econometric 

measure for input-oriented mix efficiency using linear and nonlinear aggregator functions. An 

important advantage of this econometric approach is that it is relatively easy to impose 

regularity (curvature conditions) on the production function and to undertake statistical 

inference about mix efficiencies. Our expression for input-mix efficiency is derived along the 

lines of the work of Schmidt and Lovell (1979).  

 

The aim of the paper is to minimize both linear and nonlinear aggregator functions to derive 

an expression for input-oriented mix efficiency. We choose the constant elasticity-of-

substitution (CES) aggregator function for our input-minimization problem. While economists 

have used value-based CES aggregators to construct aggregate utility and demand functions 

and aggregate production functions, these aggregators have hardly been used as input 

aggregators (e.g., see Shapiro and Wilcox, 1997). The flexibility of the CES aggregator 

function leads to different linear and nonlinear aggregators that can be used to construct various 

multiplicatively complete productivity indexes (for details, see O'Donnell, 2012b). The CES 

aggregator is a generalized form which encompasses various other forms of aggregators (e.g., 

Lowe, Cobb-Douglas) as special cases (see Arrow et al., 1961, p. 230). The CES aggregator 

also leads to several corresponding productivity indexes such as the Geometric Young, the 

Lloyd-Moulton or the Färe-Primont indexes (de Haan et al., 2010; Lent and Dorfman, 2009).   

 

The results of mix efficiency are illustrated by applying our methodology to agricultural data 

for 48 states of the United States over a 45-year period, 1960-2004. Using a Bayesian stochastic 

frontier, we estimate the highest posterior densities (HPD) and their respective confidence 

intervals (to draw statistical inferences) for state and regional mix efficiencies. Empirical 

findings indicate that large variations in input mix across states or regions are associated with 

substantial differences in mix efficiency. For instance, the mix efficiencies of states in the 

Mountain Region differ considerably from those of states in the Corn Belt. These findings have 

several implications for agricultural productivity growth in the US, as estimation of mix 

efficiency can help identify likely change in net returns resulting from varying input mixes.  
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The paper is organized as follows: Section 2 describes the different input-aggregator functions 

that can be used to derive input-mix efficiency in an aggregate-input framework. The 

distinction between allocative and mix efficiencies is set out in Section 3. Analytical methods 

for deriving input-mix efficiency are discussed in Section 4. Section 5 provides an empirical 

application of mix efficiency using US state level agricultural data. In this example, we 

estimate the Bayesian production function to compute input-oriented mix and allocative 

efficiencies. Finally, Section 6 provides concluding comments. 

 

2 Technology-Based Aggregator Functions 

Computation and decomposition of productivity in an aggregate framework requires choosing 

particular input and output aggregators. The class of input and output aggregators includes both 

linear and nonlinear functions. O’Donnell (2012b) provides a detailed discussion of various 

price - and technology-based input- and output-aggregator functions and their respective 

properties. To conserve space, we only illustrate technology-based input-aggregator functions.  

 

Let tq   +
𝑀

 and sq  +
𝑀

 be output vectors in the current and reference periods, and let tx  

+
𝐾

 be an input vector in the current period. An input-aggregator function can be expressed as

( )t tX X x , where (.)X  is a non-negative, nondecreasing and linearly homogenous function. 

Technology-based input-aggregator functions can be represented by input distance functions 

𝐷𝐼(𝑞, 𝑥𝑡) = max{: 𝑥𝑡/  L(q)}, with L(q) being the set of input vectors feasible for output 

vector q. Four input-aggregator functions based on input distance functions are 

  ( ) ( , )t

t I t tX x D q x   (1) 

 ( ) ( , )s

t I s tX x D q x   (2) 

 ( ) ( , )r

t I r tX x D q x   (3) 

 
1/2

( ) ( , ) ( , )t s

t I t t I s tX x D q x D q x      (4) 

Input-aggregator function (1) uses current-period output and technology to aggregate the 

elements of 𝑥𝑡; input-aggregator function (2) uses reference-period output and technology; 

input-aggregator function (3) uses an arbitrary-period output and technology, where ,r s t ; and 

input-aggregator function (4) is the geometric mean of (1) and (2). Adapting the work of 

Malmquist (1953), in a consumer context, to a producer context, Caves et al. (1982), Bjurek 

(1996), and Färe and Primont (1995) used these input-aggregator functions and analogous 

output-aggregator functions, based on output distance functions, 𝐷𝑂(𝑥, 𝑞𝑡)=min{: 
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𝑞𝑡/P(x)}, where P(x) is the set of output vectors feasible with input vector x, to construct 

different input- and output-quantity indexes, from which they constructed different 

productivity indexes (see O'Donnell, 2014, p. 190). 

  

Other technology-based input-aggregator functions, not based on input distance functions, are 

available, three of which are: 

 
1/

1
( )

K

t k ktk
X x x





 
    (5) 

 
1

( ) k
K

t ktk
X x x




   (6) 

 
1

( )
K

t k ktk
X x x


 . (7) 

   

The CES input-aggregator function (5) forms the basis for a CES input-quantity index that 

shares a structure with the Lloyd–Moulton consumer price index (Lloyd, 1975; Moulton, 

1996), which approximates a superlative price index without requiring current-period data 

(Shapiro and Wilcox, 1997; de Haan et al., 2010). The CES input-aggregator function 

approaches the Cobb-Douglas input-aggregator function (6), which forms the basis for the 

geometric Young input-quantity index, as 0, and collapses to the linear input-aggregator 

function (7) if =1. Each satisfies the requisite regularity conditions under parametric 

restrictions. These aggregators can be used to derive various measures of productivity. 

However, we confine our attention to measure the input-mix efficiency component. 

 

3 Allocative Efficiency versus Input-mix efficiency 

Traditional input allocative efficiency (IAE) is a component of cost efficiency, a measure of 

the success with which a firm pursues the economic objective of minimising the cost of 

producing its chosen vector of outputs, given an input price vector, w  ++
𝐾

. Cost efficiency 

CE(q,w,x) = c(q,w)/wTx ≤ 1, with actual cost wTx and minimum cost c(q,w), the value of the 

solution to the problem minx{wTx: x  L(q)}. Cost efficiency decomposes into the product of 

technical efficiency, TE(y,x) = wT(x/DI(q,x))/wTx ≤ 1, and input allocative efficiency (IAE), 

(q,w,x) = c(q,w)/ wT(x/DI(q, x)) ≤ 1. At an allocatively efficient input vector all input price ratios 

are equal to the corresponding marginal rates of technical substitution.3  

 

                                                           
3 If ( )f x  is not everywhere differentiable, then [ ( ) / ( )i jf x f x  ]+ ≤ /i jw w  ≤ [ ( ) / ( )i jf x f x ]- i,j, as would be the 

case if technology were modelled with data envelopment analysis.   
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The economic consequences of allocative efficiency are well understood, motivating 

researchers to use different approaches to measure cost and revenue (or profit) allocative 

efficiency (Leibenstein, 1966; Coelli et al., 2005; Kumbhakar and Lovell, 2000). Misallocation 

of resources reduces the benefits for producers. If firms are unable to equate the marginal 

productivity of input factors to their respective prices, this may increase the cost of production, 

ultimately decreasing the benefit to society. A vast literature has debated the consequences of 

allocative inefficiencies for firms in different sectors including the manufacturing, agricultural 

and services sectors (Lau and Yotopoulos, 1971; Toda, 1976; Schmidt and Lovell, 1979, 1980; 

Greene, 1980; Kumbhakar, 1991, 1997 Kumbhakar and Tsionas, 2005; Brissimis et al., 2010). 

It is argued that the introduction of regulations and distortionary policies can affect the costs 

and revenues of firms, leading to inappropriate allocation of resources which reduces profit. 

However, mix efficiency indicates the extent to which a firm’s productivity can be altered by 

changing input-output combinations.  

 

Input-mix Efficiency 

Following O’Donnell (2012b), we define the concept of technical and mix efficiency in 

aggregate quantity space and provide a graphical illustration. Consider that two firms, A and 

B, use aggregate inputs, 1 1 2 2

A A A

t t tX x x    and 1 1 2 2

B B B

t t tX x x   , to produce an output vector 

represented by an isoquant, ( )tI q , where 1  and 2  have specific values (e.g., input shares). 

The dashed lines represented by A

tX  and B

tX  are called iso-aggregate inputs because the lines 

map all the points having specific aggregate input for each firm passing through a and b, that 

are technically inefficient. The curve passing through c  and e  shows all technically efficient 

inputs to produce an output vector (isoquant ( )tI q ). While holding input mixes and the output 

vector fixed, the firm operating at point a  can reduce its aggregate input to the point, c . This 

radial contraction is well known as the concept of technical efficiency (Farrell, 1957). Thus, 

the input-oriented technical efficiency of firm a can be defined as /A A

t t tITE X X , where, A

tX  is 

the minimum aggregate input quantity when both input mixes and the output vector are held 

fixed.4 On the other hand, input-mix efficiency occurs as a consequence of relaxing restrictions 

on input and output mixes. If input mixes are allowed to vary while holding the output vector 

fixed then the firm can further reduce its input aggregate (i.e., the minimum possible input 

aggregate given the same coefficients 1   and 2 , defined above). This occurs at point e, a 

                                                           
4 / ( , ).t t I t tX X D q x   



7 
 

further reduction in aggregate input by changing input mixes but holding the output vector 

constant, which is represented by ˆ
tX .5 Thus, the input-mix efficiency of Firm A is defined as

ˆ / A

t t tIME X X . O'Donnell (2012b, p. 261) also uses the term ‘pure’ input-mix efficiency 

because input mixes are allowed to change while holding the output vector fixed. Thus, input-

mix efficiency measures the potential change in productivity when restrictions on input mixes 

are relaxed (as shown in panel b of Figure 1). An obvious consequence of mix efficiency 

(particularly IME) is that managers may avoid overuse of some inputs in response to 

substitution policies, which may increase the productivity of firms. However, the concept of 

mix efficiency has not been well-understood in the context of productivity measurement. 

 

 

(a)         (b) 

Figure 1: Relationship between Mix Efficiency and Productivity 

 

Proposition 1. For a given level of technical efficiency (arbitrarily chosen), any increase in 

input-mix efficiency will lead to an increase in productivity. 

 

Proof. This can be proved using Figure 1. Consider that Firm A and Firm B are technically 

efficient at points, c and e, respectively. Because both firms produce the same output (as can 

be seen geometrically), any further reduction in the input aggregate (towards the minimum 

possible point) by relaxing restrictions on input mixes leads to an increase in input-mix 

efficiency. In other words, any movement from c  to e  (i.e., change in input mixes) leads to an 

increase the input-mix efficiency; hence, productivity increases (i.e., ˆIME / A

t t tX X ). This 

                                                           
5  

0

ˆ argmin ( ) :( , ) .t t t t
x

tx X x xq T


    

 

 

 

 

  

 

0 

 

  

 

  

  

  

Aggregate 
Output 

0 

  

  

 

    

Aggregate 

Input 
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statement is valid for any level of technical efficiency, given the specific aggregator function 

used to construct input aggregates passing through a, b, c and e. An increase in IME can also 

be confirmed from Figure 1(b), where movement from point c to point e, allows the firm to 

vary input mixes, while holding the output vector fixed; hence, productivity increases. QED. 

 

4 Analytical Model of Mix Efficiency 

we consider a multi-output, multi-input technology. The production possibility set is presented 

as follows: 

  ( , ) : ( ) ( ) ), (K M r

t t t t

J

t t tT x q g q c z hz x         (8) 

where ( ,..., ) M

t it Mtq q q    is a vector of output quantities; 1( ,..., ) K

t t Ktx x x    is a vector of input 

quantities; 1( ,..., )t t Jt

Jz z z    is a vector of exogenous factors such as technical change and 

other production characteristics (e.g., geographic); r  represents returns to scale; (.) : Mg     

is an output-aggregator function, assumed to be non-negative, nondecreasing and linearly 

homogenous in outputs; (.) : Kh     is assumed to be monotonic (i.e., nondecreasing in 

inputs), quasi-concave, upper-semi continuous and linearly homogeneous; and (.) : Jc     

is nondecreasing. Both (.)g and (.)h  are separable in outputs and inputs (Chambers, 1988, p. 285; 

Chamber and Fare, 1993, pp. 197–198). Further, this technology characterization satisfies the 

regularity properties of inactivity, boundedness, free disposability of inputs and outputs, and 

essentiality. The alternative representation of the above technology is the input distance 

function as described by Shephard (1953, 1970). The input distance function shows how much 

the input vector can be scaled down while the output vector is held fixed.6 Given the technology 

in equation (8), the input distance function is described as 

 

1

1

( )
, ,

( )
( ) 1

( )

r

t
t t

I t t

r
t

c z h x
D q

q

zx

g

  .  (9) 

The input distance function given in equation (9) is the characterization of the underlying 

production technology presented in equation (8) and satisfies certain properties (under the 

regularity conditions of the production possibility set discussed above). If the technology 

satisfies the above assumptions, then the input distance function is concave, nondecreasing and 

linearly homogenous in inputs (see Färe et al., 1985; Färe and Primont, 1995; Kumbhakar and 

Lovell, 2000). 

                                                           
6 Properties of input and output distance functions are given in footnote 5 of O'Donnell and Nguyen (2013). 
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IME: An Aggregator Function with Homogenous Technology 

In this case, we assume a homogenous production technology for our input-aggregator function 

minimization problem and derive the first-order conditions to obtain the minimum input 

aggregator. Consider the technology given in equation (8) as 

 ( ) ( ) ( )r

t t tg q c z h x .  (10) 

We solve the input-aggregator function minimization with a nonlinear aggregator function to 

obtain an expression for input-mix efficiency by choosing a CES nonlinear aggregator and a 

homogenous Cobb-Douglas production function by using an aggregate output, to obtain 

minimum input aggregates for a technically and mix-efficient firm. The CES aggregator 

function, as given in equation (5), is a non-negative, nondecreasing and linearly homogeneous 

function and subsumes many other aggregator functions (see Samuelson and Swamy, 1974, p. 

574).   

 

If a firm chooses an input vector which is technical efficient on the production frontier, then 

( ,  x ) 1.I t tD q   The aggregate input-minimization problem for the firm is: 

  ˆ min ( ) : ( ) ( ) ( )r

t t t t t
x

X X x g q c z h x  .  (11) 

The returns-to-scale parameter r , can take any positive value (i.e., 0r  ). For example, 1r   

implies that the production function exhibits increasing returns to scale (IRS), 1r   shows 

decreasing returns to scale (DRS) and 1r   exhibits constant returns to scale. The minimization 

problem discussed here is different from that discussed by Schmidt and Lovell (1979). We use 

a nonlinear aggregator to derive an expression for mix efficiency whereas conventional cost 

minimization or revenue (or profit) maximization is undertaken using linear aggregators, and 

they have market prices to characterize the aggregator; in contrast, we only have parameters to 

specify and estimate. 

 

The Lagrangian for the input-aggregator minimization is defined as: 

 ( ) ( ) ( ) ( )r

t t t tL X x g q c z h x      .  (12) 

The first-order conditions are: 

 1( ) ( ) ( ) ( ) 0 for 1,..., .r

k t t k t

k

L
X x rc z h x h x k K

x
 

   


   (13) 

and 

 ( ) ( ) ( ) 0r

t t t

L
g q c z h x







   (14) 
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where, ( ) ( ) / and ( ) ( ) / .k t t kt k t t ktX x X x x h x h x x       If the firm is technically efficient then taking 

the ratio of the first-order conditions of the k-th input and first input yields  

 
1 1

( ) ( )
for 2,...,

( ) ( )

k t k t

t t

X x h x
k K

X x h x
  .  (15) 

If a firm is technically and mix efficient, it will choose x  that satisfies equation (15). However, 

if the firm makes errors in choosing the correct input mixes then mix inefficiency would 

prevail. In this situation, the first-order conditions fail to hold. Therefore, 

 
1 1

( ) ( )
exp( ) for 2,...,

( ) ( )

k t k t
k

t t

X x h x
k K

X x h x
    (16) 

where 21, ,..., k    is a vector of 1 1K    input quantity-adjustment scalars, which becomes zero 

if the firm utilizes an input mix that minimizes the aggregator input function. The interpretation 

of   is straightforward. The presence of optimization errors (i.e. 0  ) may increase or decrease 

the use of kx  (relative to 1x ) depending on value of  . We interpret these errors as mix 

inefficiency, whereas Schmidt and Lovell (1979) in their cost-minimization problem refer to it 

as allocative inefficiency. If 0  , then the firm will underutilize the k-th input mix with respect 

to input 1 and 1   indicates that the firm will overutilize the k-th input mix with respect to 

input 1. The significant difference between our minimization problem and existing cost 

minimization or revenue-maximization problems is that we use the nonlinear aggregator 

function for optimization. If we use a linear aggregator function then the input-mix efficiency 

can be derived in a similar fashion to the derivation of Schmidt and Lovell (1979) cost 

allocative inefficiency. However, our expression has a fundamentally different interpretation 

because we do not use input prices to construct our input-aggregator function.  

 

Proposition 2. If the input-aggregator function is nonlinear (i.e., of CES form) and the 

technology is homogeneous (i.e., Cobb-Douglas), then the level of IME can be obtained by 

solving the input-aggregator minimization problem, which gives

1

2 1

ˆ
1

exp exp( )

t
t K K

t k
k k k

k k

X r
IME

X

r




  

 

 
 
   
   

   
   
 

.  

 

Proof. We use Cobb-Douglas production technology, homogenous of degree r, as follows 

 
1

( ) k

K
r

t kt

k

h x x




   (17) 
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By differentiating the input-aggregator function given in equation (5) and the production 

technology represented by equation (17) with respect to kx , we obtain 

 

1
1

1

1

( )
( )

K
t

k t k kt k kt

kk

X x
X x x x

x


  







  
     

   (18) 

 1

1

( )
( ) k

K
t

k t k kt kt

kkt

h x
h x x x

x

 




 


   (19) 

If the firm is mix inefficient then the first-order conditions become  

 
1 1

1 1

1 1 1 1

exp( )k kt k kt
k

t t

x x

x x





 


 

 

 
   (20) 

The mix inefficient (but technically efficient) firm chooses tx  that solves the following: 

 

1

1
1

1

exp( )k
kt t k

k

x x
 


 

 
  

 
.  (21) 

After substituting equation (21) into equation (14) and combining with equation (17), we solve for 1tx  

and ktx   

 

  

1

1 1
1

1

1 21

( ) exp

k

K Kr
k kr r

t t t k

k kk k

x c z g q
r

 

 


 



 

 
           

  

    (22) 

  

1

1 1

1 2

( ) exp exp( )

k

K Kr
k kr r

kt t t k k

k kk k

x c z g q
r

 

  
 

 



 

 
           

  

  .  (23) 

Combining equations (22) and (23) with equation (5), we find the input aggregate of a 

technically efficient firm 

 

1
1

*

2 1

( ) exp exp( ) ( )
K K

k r
t k k k k t

k k

X x b g q
r


  

 

   
    

   
    (24) 

where, * 1

1

( )

k

K r
k

k t

k k

b c z











 
     
 

  

 . 

If the firm is mix efficient then kx  corresponds to 0k   for 2,...,k K , and equation (24) 

becomes      

 

1

1

*

1

( )

k

K r
k k r

k k t

k k k

x b g q

 

 

 

 
     
 

  

   (25) 
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By substituting equation (25) into equation (5), we obtain the minimum possible aggregate 

input (holding the output vector fixed) as 

 

1
1

*

1

ˆ ( ) ( )
K

r
t k k t

k

X x b g q





 
  

 
 .  (26) 

Finally, input-mix efficiency is given as the ratio of equation (26) to equation (24) and 

1

K

kk
r


   

 

1

2 1

ˆ
1

exp exp( )

t
t K K

t k
k k k

k k

X r
IME

X

r




  

 

 
 
   
   

   
   
 

.  (27) 

QED. 

 

This expression for mix efficiency can be used to describe many other special cases, some of 

which we consider in the following section. As discussed previously, the final expression of 

IME in equation (27) is a closed-form solution that is bounded, i.e., 0 1tIME  . (see Schmidt 

and Lovell, 1979; Kumbhakar, 1988).  

 

Some Special Cases 

As discussed earlier, the CES aggregator function encompasses many functional forms, so that 

we can obtain many other expressions of mix efficiency by restricting the value of .   

For instance, if the input-aggregator function is linear as given equation (7), then the IME 

expression becomes  

 
1

2 1

ˆ
1

exp exp( )

K

k

kt
t K K

t k
k k k

k k

X
IME

X

r




  



 

  
  

    
   

   
   



 
.  (28) 

The expression of IME in equation (28) is similar to that of Schmidt and Lovell (1979), which 

can also be obtained by minimizing a linear input aggregator given in equation (7), subject to 

the input distance function given by the equation (9). The IME defined in equation (28), can 

be derived using any linear input aggregator (e.g., Lowe).   

 

Proposition 3. If the parameter k  is substituted with input prices kw , these expressions will 

exactly produce Schmidt and Lovell (1979) allocative efficiency estimates. 

See proof in Appendix A. 
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5 An Econometric Model  

The estimation of mix efficiency in an econometric framework requires estimation of the 

production technology and aggregator function. If technology is represented by multiple 

outputs as in equation (8), then the output distance function can be represented as 

 ln ( , , ) ln ( ) ln ( ) ln ( )r

o t t t t t t tD q x z g q c z h x v      (29) 

where (.),g (.),c and (.)h  are as previously defined, and tv  is an error term taking into account 

statistical noise due to factors such as droughts or floods and other errors of approximation. 

The error terms for all t are assumed to be independent and identically distributed such that

2~ (0, )vtv iid N  . 

In the multiple–output, multiple-input case, it is common practice to estimate an output or an 

input distance function (Atkinson et al., 2003; Coelli et al., 2005). The estimation of these input 

or output distance functions requires that one of inputs or outputs is considered a dependent 

(endogenous) variable, whereas the other (input or output) variables are treated as exogenous 

variables. However, it is likely that two or more inputs (in the case of the input distance 

function) and two or more outputs (in case of the output distance function) may be correlated 

with the statistical error terms. As a result, the estimates become biased because of the 

endogeneity issue. This endogeneity problem is usually remedied by applying two-stage least 

squares or the Generalized Method of Moments (see Atkinson and Primont, 2002). However, 

the choice of arbitrary moment conditions is disadvantageous if the instruments are not defined 

appropriately (O’Donnell, 2014, 2015).  

 

In the case of a single output, the distance function defined by equation (29) can be expressed 

in conventional stochastic frontier form as    

 

 ln ln ( , ) ln ( , )r

t t t t tQ c z h x v u       (30) 

where ( )t tQ Q q  is an aggregate output; 
0

1

1( , ) exp( )
L

l l

l

tc tz D  


  ; 
1

( , ) k

K
r

t t

k

h x x




 , where

lD  represents regional dummies; t denotes the time period; 1 2 3 4( ,  ,  ,  )kt t t t tx x x x x  represents the 

input variables, capital, land, labor and materials; and ln ( ,  ,  )t o t t tu D x q z   is a one-sided error 

measuring the extent of firm technical inefficiency.  

 

In this paper, we use the Cobb-Douglas approximation which has extensive application in 

agricultural productivity measurement (e.g., see Battese and Corra, 1977; Kalirajan, 1981, 
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1989; Battese and Coelli, 1988, 1992, 1995; Bravo-Ureta and Evenson, 1994; Timmer, 1971; 

O’Donnell (2012a, 2012b). Another popular approximation that has also been used widely in 

agricultural productivity is the translog production function (i.e., the second-order 

approximation of a linearly homogeneous production function) by Kumbhakar (1994), Darku 

et al., (2015), Moreira and Bravo-Ureta (2016), Reinhard et al. (1999), and Tsiaonas et al. 

(2016). However, these approximations cannot impose pointwise regularity (positivity, 

monotonicity, and curvature) restrictions unless all second-order coefficients collapse to zero, 

in which case the translog production reduces to the Cobb-Douglas production function 

(O’Donnell, 2013; Serletis and Feng, 2015). We use the Cobb-Douglas production function to 

estimate IME levels. 

  

 A log-linear Cobb-Douglas frontier with a single aggregate output is represented as follows: 

 
0

1

1

1

ln ln
L K

t l l k kt t t

l k

Q t D x v u   
 

         (31) 

where the parameters 0  and 1  represent constant terms and the rate of neutral technical 

change, respectively; whereas 0k   and (1,..., )J   denotes a vector of unknown parameters 

such that 
1

K

k

k

r


 . Because agricultural practices vary significantly in different regions of the 

US (e.g., Corn Belt vis-à-vis the Appalachians) due to geographical and climatic conditions 

(see Ball et al., 2010), it is important to account for regional differentials in mix efficiency in 

our analysis. The data show that the different regions in the US produce different agricultural 

outputs and use different input mixes. The variation in input mix may be partly due to variation 

in the production environment. For example, output from the Pacific region (e.g., fruit and 

vegetable crops) is different from output from the South East (e.g., livestock). Similarly, the 

use of inputs varies from region to region. One way to account for these differences is by 

introducing regional dummies into the model. The inclusion of regional dummy variables 

allows us to change the production environment across regions. We use the approach of Ball 

et al. (2010) to classify these regions. According to them, the Pacific region, which is 

considered one of the most productive regions, is treated as the base region.  

 

We estimate the Bayesian stochastic production frontier by using pooled data of the US 

agricultural sector to obtain IME estimates. The main advantages of the Bayesian stochastic 

frontier estimation are that: a) one can draw exact inferences on efficiencies; b) it is easy to 

incorporate prior information and regularity restrictions; and c) the method provides a formal 
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treatment of parameters and model uncertainty through numerical integration methods for 

complex stochastic frontier models. Statistical inference on efficiency measures is essential for 

policy purposes. The Bayesian method allows estimation of the posterior distribution by 

assigning a subjective probability distribution to a parameter, using the available sample 

information. In this way, one can draw the highest posterior densities (HPD) of state-specific 

efficiency measures. Computation of exact standard errors enables us to draw inferences on 

whether the efficiencies of one state are statistically significantly different from those of 

another state. 

 

In Bayesian stochastic frontier analysis, the distribution of inefficiency components is 

determined using a posterior simulator (e.g., the Gibbs sampler). Van den Broeck et al. (1994) 

provided the earliest estimation of a stochastic frontier function using Bayesian methods with 

cross-sectional data. Later, a series of papers described this method using both cross-sectional 

and panel data sets (see Koop et al., 1997; Osiewalski and Steel, 1998; and Griffin and Steel, 

2007). More recently, O’Donnell (2014) has applied the Bayesian method to estimate US 

agricultural productivity.  

 

The compact form of the model of equation (31) can be written as: 

 y X v u     (32) 

where ln ty Q ; X  is a matrix of order ( 2)T K J   ; '

0 1 1( ,  ,  ,...,  ,  ,...,  )t K J        represents 

the vector of parameters to be estimated; 1( ,..., )Tv v v  is a vector of normal random errors 

representing the combined effect of measurement errors and errors occurring due to 

approximation of the functional form; and ),...,( 1 Tuuu   is the vector in non-negative 

inefficiency effects.  

 

All elements in v are assumed to be identically and independently distributed with joint 

probability density function (pdf): 

 
1~ (0 ,  )T Tv N h I

  (33) 

where  is a precision variable (i.e., the inverse of the variance 
2

v );  represents a vector of 

zeros having dimension T; and  denotes the identity matrix of order T. The pdf of v is given 

by . The vector of random variables, u , is also independently distributed 

h 0T

TI

1( | ) ( | 0, )Np v h f v h
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and accounts for technical inefficiency, which is assumed to be exponentially distributed i.e., 

)~ exp(u  .  

 

To proceed with Bayesian estimation, we choose appropriate priors and distributions for the 

parameters of interest. To impose regularity conditions, in the case of the Cobb-Douglas 

production function, input elasticities are assumed to be non-negative. For instance, to 

incorporate regularity conditions into the estimation procedure, an informative prior,

, is considered, where ( )I   is an indicator function that is equal to 1 if 

the production function satisfies monotonicity, and 0 otherwise. In this analysis, the following 

priors are assumed to generate posterior densities: 

 

 ( , , , ) ( , ) ( | ) ( )p h u p h p u p       (34) 

 
1

( | ) ( | )
T

t

t

p u p u 


   (35) 

 * *1
( ) ln( ) ln( )p   



 
   

 
  (36) 

where *  indicates the prior median technical inefficiency level, and also * (0,1)  . We choose 

the median technical efficiency of 0.90 (i.e., prior estimate).7 The posterior densities are not 

sensitive to the choice of priors.  

 

The likelihood function is given by: 

 '( | ,  ,  ) exp ( ) (y )
2 2

T
h h

p y h u y X u X u  


   
        

   
.  (37) 

The combination of the prior with the likelihood function generates the posterior density ( ).P   

The conditional posterior pdfs can be derived by using the likelihood function of equation (8) 

and combining it with the priors defined by equations (5) through (7), which are described as:  

 
' 1( )ˆ( | , , , ) | , ( )N

X X
p h u f Ry I

h
    

 
   

 
  (38) 

 '1
(( | , , , ) / 2, ) ( )

2
|Gy y X u yu f Xp h h T u      

 
  

 
  (39) 

  1 1 ' *( | , ,   , ) | 1,  ln( )Gyp h u f T u         (40) 

                                                           
7 Studies using the same data set used the average efficiency equal to 0.90 as an informative prior. For instance, 

O'Donnell (2012) assumes 
* 0.90   using in his study for the same data set. 

( ,  ) ( )p h h I R   
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  ' 1 1 1( | , , , ) | , ( 0 )  t N t tp u h f u X y h h I uy            (41) 

where ' 'ˆ ( ) ( )X X X y u   . 

 

The pdfs given by equations (37) through (41) are simulated using the Gibbs sampling method, 

which involves the accept-reject Markov chain Monte Carlo (MCMC) algorithm. Further 

details can be found in Koop et al. (1997). 

  

To illustrate the proposed methods of mix efficiency (and also allocative efficiency), US 

agricultural data are used for the econometric estimation of mix efficiency. The state-level US 

agricultural data were compiled by the Economic Research Service of the United States 

Department of Agriculture (ERS-USDA). The data consist of an aggregate output and four 

inputs for 48 states for 45 years from 1960 to 2004, which are pooled to obtain 2160 

observations.8 The input data cover capital, land, labor and materials. The capital input 

comprises equipment and buildings, whereas labor includes both hired labor and the self-

employed (see Ball et al., 2004). Material inputs include fertilizers, other chemicals and energy 

components.9 We use the aggregate output that was constructed by ERS-USDA.10  

  

6 Empirical Example 

To obtain a parsimonious model, we estimated several specifications of the Cobb-Douglas 

production and the final model includes time interaction with the materials input (i.e., 4tx t  ).11 

We only report the maximum likelihood estimates of the restricted production function 

(without regional dummies) and Bayesian ML estimates of the Cobb-Douglas production 

function (that includes regional dummies) in Table 1. Further, a joint hypothesis test is 

conducted to see if inclusion of regional dummy variables affects estimates of the agricultural 

production function. The value of the likelihood ratio test statistic (450.14) is highly significant 

at the 1% level of significance ( ), indicating that different geographic and climatic 

environments profoundly impact agricultural production. Panel (a) of Figure 1 presents the 

                                                           
8 More details on the construction of the output and input variables can be found in Ball et al. (2004). These details 

are also available on ERS-USDA website: http://www.ers.usda.gov/data. 
9 All inputs are adjusted for quality using hedonic prices. A detailed methodology for the quality adjustment of 

inputs can be found in Kellogg et al. (2002). 
10 Output quantity indexes have been constructed using the methods of Elteto and Koves (1964) and Szulc (1964), 

known as the EKS indexes (see Ball et al., 2004). 
11 This specification has been chosen based on Akaike Information Criteria (AIC), which gives the minimum 

value of likelihood function. We also note that the materials input variable increased consistently throughout the 

study period. 

2
9(0.01) 3.17 

http://www.ers.usda.gov/data
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convergence plots for all elements of these estimates, indicating that MCMC is stationary for 

all reported parameters. These plots are based on 500,000 draws after burning in the first 5000 

draws. The marginal posterior densities of all estimated coefficients are also shown in panel 

(b) of Figure 2.  

 

  

(a)                                                   (b)  

Figure 2: MCMC Convergence Plots and Posterior Densities of Parameter Estimates 

Results indicate that all input coefficients are positively and statistically significant at the 1% 

level. For instance, the output elasticity of capital is 0.32, which indicates that a 1% increase 

in capital input contributes about 0.32% to total agricultural output. However, the highest 

posterior densities (HPD) interval indicates that the elasticity coefficient varies between 0.271 

and 0.362 with 95% probability. For instance, the 95% HPD for the dummy variable coefficient 

for the Southeast region indicates that the average increase in agricultural production in this 

region lies between 2.1% and 15.1%, whereas the Mountain region experienced an average 

decrease in production by 22.1% with 95% HPD [-0.296 and -0.149]. The neutral part of 

technical change ( t ) shows an average annual increase in agricultural production of about 

3.0%.12 

  

                                                           
12 However, the geometric mean of technical change (computed by using the expression,

  4 4Tech exp ln 1t t tx t       ), shows an annual increase of 1.73%. 
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Table 1: Estimates of Cobb-Douglas Stochastic Production Frontier for US Agricultural Sector 

 Maximum Likelihood  

Estimation 
 Bayesian Maximum Likelihood 

Estimation 

Variables Coefficients Estimates 
Standard 

Errors 

 
Estimates 2.50% 97.50% 

Capital 1  0.250 0.001   0.316 0.271 0.362 

Land 2  0.128 0.016   0.165 0.128 0.200 

Labour 3  0.495 0.020   0.437 0.392 0.483 

Materials 4 t   0.007 3.0 103   0.006 0.005 0.007 

Northeast 1  --- ---   -0.112 -0.178 -0.041 

Great Lakes 2  --- ---   -0.288 -0.362 -0.219 

Corn Belt 3  --- ---   -0.186 -0.251 -0.119 

Northern 

Plains 4  --- --- 
 

 -0.203 -0.273 -0.133 

Appalachian 5  --- ---   -0.363 -0.425 -0.300 

Southeast 6  --- ---   0.086 0.021 0.151 

Delta 7  --- ---   -0.101 -0.171 -0.033 

Southern 

Plains 8  --- --- 
 

 -0.408 -0.488 -0.327 

Mountain 9  --- ---   -0.221 -0.296 -0.149 

Time t  0.029 0.001   0.028 0.027 0.030 

Constant 0  -1.296 0.031   -1.093 -1.163 -1.022 

Log Likelihood Function -265.460 ---    -40.400 --- 

 2  0.075 ---   0.004 0.058 0.065 

   0.007 ---   0.008 0.002 0.032 

Sample Size 2160 --- ---   --- --- --- 

 

  

6.1 Estimates of Input-mix Efficiency (IME) Levels   

A central theme of this paper is the estimation of the mix efficiency levels of states/regions 

within an econometric framework, which has not been attempted before. The methodology we 

propose for estimation of input-mix efficiency is obtained by minimizing aggregator functions.  

A Bayesian stochastic production frontier is used to demonstrate IME estimation. As 

mentioned earlier, Bayesian estimation enables us to draw finite-sample statistical inferences 

about unknown parameters. The HPD intervals are useful, particularly for efficiency estimates 

where posteriors are not symmetric. In that situation, HPD intervals are more useful than point 

and interval estimates obtained from classical stochastic frontier estimation. We use both linear 

and nonlinear (constant elasticity of substitution) input aggregators to obtain expressions for 

mix efficiency. 
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We compute measures of allocative efficiency obtained from the same formulae by substituting 

input prices in equation (28).13 Allocative efficiency estimates can be obtained by using both 

linear and nonlinear aggregators, but, for illustrative purposes, we only obtain allocative 

efficiency estimates using (conventional) linear price aggregators. We illustrate mix and 

allocative efficiency estimates at state and regional levels for the period 1960–2004.  

 

6.2 Mix Versus Allocative Efficiency Estimates: Linear Aggregator 

The proposed econometric estimation of mix efficiency requires estimates of the parameters of 

the aggregator function and production technology. We obtain the estimates of the production 

technology by estimating a Bayesian stochastic production frontier. Then, to compute mix 

efficiency for the linear aggregator based on equation (28)), we use the Lowe aggregator, which 

requires average input prices to construct those input aggregates (O’Donnell, 2012a). We then 

combine these aggregates with the estimates of the technology parameters to obtain input-mix 

efficiency.  

 

Table 2 presents state-level comparisons of mix efficiencies for the linear input aggregators, 

for the years 1960-2004. The posterior means and the respective confidence intervals of mix 

efficiency are based on equation (28). Estimates of state-level mix efficiency are presented in 

columns 2–4. All mix-efficiency estimates are bounded between 0 and 1 for individual states 

over the entire period. The average mix-efficiency score for the entire sample is 0.85; however, 

there is large variation in input-mix efficiencies (0.46–0.99) across the different states. We also 

observe substantial differences in mix efficiencies across the regions, which also vary over 

time. For example, for the US as a whole, the average mix efficiency increased from 0.77 in 

the year 1960 to 0.85 in 2004. However, the changes over this time period were markedly 

different across the states and regions. We highlight Bayesian point estimates and 95% HPD 

intervals of mix efficiency for a few selected states (i.e., 2.5%, mean, 97.5%). For example, 

Iowa exhibited the highest level of mix efficiency [0.932, 0.953, 0.971] for the entire study 

period. States with notably lower mix efficiencies include New Mexico [0.499, 0.541, 0.585], 

and Wyoming [0.552, 0.594, 0.636]. It is notable that the most mix-efficient states are located 

in the Corn Belt, whereas the least mix-efficient states are in the Mountain region. These 

differences in mix efficiencies across states may partly be due to selection of different input 

                                                           
13 I am grateful to Eldon Ball and Knox Lovell for providing me a series of input prices which have been used to 

compute allocative efficiencies in the US agricultural sector. 



21 
 

mixes depending on economic factors such as input prices, soil productivity, crop yield and 

relevant infrastructure, as well as geographic and climatic factors. For instance, farmers in 

different states allocate different combinations of input resources, based on economic factors 

(i.e., farmers in one state may be using more capital per acre compared with other states), which 

may affect mix efficiency (or productivity). As discussed earlier, mix efficiency is a 

productivity concept, which varies with change in input mix. For example, the highly mix-

inefficient states may be selecting cost-effective input mixes (i.e., they are allocatively 

efficient) rather than choosing an input mix that gives the maximum productivity. By using 

input prices in the estimator of equation (28), we can obtain the allocative efficiency levels, as 

proposed by Schmidt and Lovell (1979). We substitute input coefficients ( k ) with respective 

input prices ( kw ) in equation (28) to obtain allocative efficiency estimates. These estimates and 

their respective HPDs are presented in columns 5–7 of Table 2. It appears from the table that 

state-level estimates of allocative efficiency vary widely. There are substantial differences in 

allocative efficiencies across states which change over time. At the beginning of the period, 

significant allocative inefficiencies were prevalent in the US agricultural sector. These have 

improved over time. Differences remained widespread across states (from 31% to 88%), and 

over time (from 47.2% to 85.7%). Whereas most of the highly mix-efficient states show higher 

allocative efficiencies, their rankings for allocative efficiency differs markedly from the 

rankings observed for mix efficiency. Looking at the allocative efficiencies of selected states, 

we note that Iowa ranked 18th, with mean values for allocative efficiency of [0.79, 0.82, 0.85], 

whereas the values for New Mexico with [0.28, 0.31, 0.35] and Wyoming with [0.29, 0.32, 

0.36] were the lowest of all states. These differences might be partly due to economic factors. 

For example, if prices changed for any reason (e.g., tax changes) then farmers who were unable 

to adjust their input mixes quickly would become allocatively inefficient.  

 

Figure 3 portrays comparisons of regional mix and allocative efficiencies. The posterior 

densities of mix and allocative efficiencies show wide variations within as well as across the 

regions. It is noticed that the Corn Belt region ranks highest, with an average mix efficiency of 

0.935, followed by the Great Lakes with an efficiency score of 0.919. The Mountain region 

shows the lowest mix efficiency of all regions in our estimates. This region includes New 

Mexico, Arizona, Nevada and Wyoming; they are located in southwest and northwest regions, 

which have diverse topography and climate, ranging from the Rocky Mountains to the deserts. 

There may be other factors (e.g., production environment) affecting the value of land in these 
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states, including location, soil quality, topography and geographic and economic factors. 

Looking at geographic differences and availability of resources such as land, we note that 

Alabama and Florida are in the Southeast region, while Iowa is in the Corn Belt; both these 

regions are more productive than the Mountain region where Wyoming is located.  
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Table 2: State-Level Posterior Means and 95% HPD Intervals for IME and IAE Efficiencies 

  IME   AE 

State 2.5% Mean 97.5%   2.5% Mean 97.5% 

Alabama 0.883 0.915 0.943  0.701 0.740 0.776 

Arkansas 0.879 0.911 0.940  0.740 0.777 0.812 

Arizona 0.564 0.609 0.655  0.371 0.411 0.453 

California 0.795 0.838 0.879  0.787 0.820 0.851 

Colorado 0.840 0.876 0.909  0.604 0.645 0.685 

Connecticut 0.814 0.849 0.881  0.810 0.845 0.877 

Delaware 0.923 0.947 0.967  0.713 0.744 0.773 

Florida 0.776 0.820 0.863  0.770 0.805 0.839 

Georgia 0.895 0.925 0.952  0.725 0.763 0.800 

Iowa 0.932 0.953 0.971  0.792 0.824 0.853 

Idaho 0.873 0.905 0.935  0.758 0.797 0.833 

Illinois 0.931 0.951 0.968  0.754 0.792 0.828 

Indiana 0.923 0.945 0.964  0.787 0.823 0.856 

Kansas 0.872 0.904 0.933  0.675 0.715 0.753 

Kentucky 0.855 0.887 0.917  0.810 0.846 0.880 

Louisiana 0.885 0.914 0.941  0.799 0.835 0.868 

Massachusetts 0.774 0.812 0.848  0.786 0.824 0.859 

Maryland 0.912 0.939 0.961  0.795 0.828 0.859 

Maine 0.835 0.869 0.902  0.771 0.805 0.836 

Michigan 0.892 0.919 0.943  0.838 0.871 0.901 

Minnesota 0.911 0.936 0.959  0.817 0.846 0.873 

Missouri 0.863 0.895 0.924  0.783 0.819 0.853 

Mississippi 0.874 0.906 0.935  0.724 0.766 0.806 

Montana 0.638 0.679 0.719  0.423 0.464 0.506 

North Carolina 0.852 0.886 0.917  0.813 0.848 0.881 

North Dakota 0.820 0.853 0.885  0.604 0.647 0.689 

Nebraska 0.874 0.907 0.936  0.682 0.723 0.763 

New Hampshire 0.817 0.851 0.883  0.770 0.807 0.843 

New Jersey 0.818 0.852 0.885  0.804 0.840 0.873 

New Mexico 0.499 0.541 0.585  0.276 0.311 0.349 

Nevada 0.619 0.661 0.702  0.397 0.437 0.479 

New York 0.864 0.895 0.923  0.816 0.845 0.873 

Ohio 0.898 0.923 0.945  0.822 0.857 0.888 

Oklahoma 0.815 0.853 0.888  0.662 0.705 0.747 

Oregon 0.837 0.872 0.904  0.780 0.819 0.856 

Pennsylvania 0.845 0.878 0.909  0.825 0.855 0.883 

Rhode Island 0.812 0.846 0.878  0.816 0.849 0.880 

South Carolina 0.856 0.889 0.919  0.766 0.806 0.844 

South Dakota 0.816 0.851 0.885  0.571 0.613 0.656 

Tennessee 0.859 0.891 0.920  0.803 0.840 0.875 

Texas 0.753 0.794 0.832  0.553 0.596 0.639 

Utah 0.789 0.828 0.865  0.593 0.637 0.682 

Virginia 0.873 0.903 0.931  0.806 0.842 0.876 

Vermont 0.853 0.885 0.915  0.761 0.798 0.832 

Washington 0.874 0.905 0.933  0.852 0.882 0.910 

Wisconsin 0.867 0.898 0.926  0.823 0.851 0.876 

West Virginia 0.823 0.857 0.889  0.760 0.801 0.841 

Wyoming 0.552 0.594 0.636   0.289 0.323 0.360 
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Figure 3: Posterior Densities of Regional Mix and Allocative Efficiencies 
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To make an indirect comparison of mix and allocative efficiencies among different states, we 

compute transitive Lowe indexes for three selected states, Alabama, Florida and Wyoming, for 

the period 1960-2004, with reference to the values of Alabama in 1960 (i.e., Alabama 1960 = 

1). Figure 4 shows the Lowe indexes of mix and allocative efficiency changes in these states 

for this period. Mix efficiencies in Alabama remained higher than those of both Florida and 

Wyoming over the entire period. For example, in 2004, the change in mix efficiency in 

Alabama, compared with 1960, was 17.2% higher than that of Florida14, whereas the change 

mix efficiency in Florida was 56.8% higher than that of Wyoming15. The transitivity axiom 

also allows us to compare Alabama with Wyoming indirectly via Florida. It implies that, in 

2004, the mix efficiency in Alabama was 83.7% greater than in Wyoming.16 Similarly, we can 

compare the allocative efficiency of Alabama with that of Wyoming using this transitivity 

axiom.  

 

To further illustrate state-level mix and allocative efficiencies, we calculate some input ratios 

for selected states. We find that, in 2004, the capital-to-land ratio in Iowa was nine times higher 

than in Wyoming (1.46/0.16 = 8.98), whereas the land-to-materials ratio was markedly higher 

in Wyoming than in Iowa (9.39/0.96 = 9.78). Similarly, the capital-to-land ratio in Alabama 

was almost eight times that in Wyoming. On the other hand, the land-to-materials ratio in 

Alabama was one-ninth that of Wyoming. A similar result is found for Florida where the 

capital-to-land ratio was much higher than that of Wyoming but the capital-to-materials ratio 

was quite low relative to that of Wyoming. It appears that large variation in input mix across 

states or regions is associated with substantial differences in mix efficiency. This may, in part, 

reflect variation in input prices and other economic incentives across states. Different prices of 

inputs may drive farmers to choose more land in states where land prices are low as compared 

with states where land prices are high.17 

 

Although there has been a marked improvement in resource allocation in the US agricultural 

sector during 1960-2004, the posterior means and 95% HPD intervals of these estimates 

                                                           
14 

2004 2004 2004 1960 2004 1960/ ( / ) / ( / ) 1.225 /1.077 1.172AL FL AL AL FL ALIME IME IME IME IME IME      

15 
2004 2004 2004 1960 2004 1960/ ( / ) / ( / ) (1.071/ 0.683) 1.568FL WY FL AL WY ALIME IME IME IME IME IME      

16 
2004 2004/ ( / ) ( / ) 1.178 1.568 1.837AL WY AL FL F WYIME IME IME IME IME IME            

17 National Agricultural Statistics Service United States Department of Agriculture (NASS-USDA) also publishes 

cropland prices by region and states which differ from real estate prices. For example, cropland prices (per acre) 

for Alabama, Florida, Iowa and Wyoming in 2004 were $1800, $3900, $2320 and $1010 respectively. 
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confirm the substantial differences across states. For instance, Alabama has been ranked 10th 

in terms of mix efficiency but 35th in terms of allocative efficiency. Iowa and Illinois have 

been ranked 1st and 2nd in terms of mix efficiency but ranked 18th and 30th, respectively, in 

allocative efficiency. 

 

 

 

 

 

  

  

 

Figure 4: Mix Versus Allocative Efficiencies (Alabama, Florida, Wyoming) 
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6.3 Mix Efficiency Estimates: Nonlinear Aggregator 

To compute mix efficiency using the nonlinear aggregator, we require values of   and   in 

addition to values for technology parameters. If the technology is represented by a CES 

production function, then we can obtain parameter values by estimating the production 

function. However, in the case of nonlinear aggregator function, different economically 

feasible values of these parameters can be used. For this analysis, we use average input shares 

(i.e., ) to construct input aggregates along with estimates for technology parameters. We 

choose different arbitrary values of the substitution parameter   to compute mix efficiency.18 

Average mix efficiencies reported in this section vary with the changing values of .  The use 

of different values of   permits us to test the sensitivity of the mix efficiency with the 

possibility of substitution of inputs. State-level average input-mix efficiencies, based on the 

different values of the substitution parameter (i.e., 0.5,  0.7 and 1.2  ), are presented in 

Figure 3. Our results for mix efficiency should coincide with the results of the linear aggregator; 

however, these differ from the above-stated estimates because here we use input shares as 

weights of the aggregator function instead of average prices (as used previously). Because the 

expression of mix efficiency given in equation (27) with 1   collapses to the mix efficiency 

expression given in equation (28), it should produce identical results for the value of 1  . But 

because we use different weights of the aggregate input (i.e., average input prices rather than 

input shares), these estimates differ slightly in magnitude. However, the ranking of states and 

regions is not affected at all. We note that the state-level mix efficiencies change monotonically 

with the changing value of 𝜃 (as presented in Figure 5). However, the ranking of the states does 

not change with different values of  . Similarly, Figure 4 presents estimates of regional mix 

efficiencies based on different values of  .  

                                                           
18 Because input-mix efficiency is monotonically increasing (decreasing) with the increasing (decreasing) values 

of  , therefore, choosing different values of the substitution parameter only changes the efficiency score without 

changing the ranking of states.  
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Figure 5: Regional Mix Efficiencies - CES Aggregator (1960–2004) 

 

7 Conclusions 

Effective policymaking requires identification of the main sources of productivity change. It is 

always helpful to identify whether productivity can be improved either by shifting the 

production frontier (i.e., technical change) or by changing input mixes (i.e., mix efficiency). 

Whereas conventional measures of efficiency such as technical and allocative efficiency have 

been in use for many years, the concept of mix efficiency in productivity measurement is a 

relatively new. This paper contributes to the efficiency and productivity literature by deriving 

an expression for input-oriented mix efficiency (by minimizing the input-aggregator function 

subject to homogenous Cobb-Douglas technology) in an econometric framework. A constant 

elasticity of substitution (CES) input aggregator has been used to derive these expressions. The 

empirical application confirms that econometric estimation of mix efficiency is feasible. The 

application of Bayesian econometric methods of estimating mix efficiency has the major 

advantage of drawing precise statistical inference, which is difficult when using nonparametric 

methods.  

 

The empirical findings, based on the Bayesian stochastic frontier model, show a large variation 

in mix efficiencies across different states and regions. Allocative efficiency estimates were also 

obtained for all 48 states for the entire period, 1960–2004, and compared with the mix-

efficiency estimates. However, the regions differ substantially in ranking when allocative 
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efficiencies are compared with mix efficiencies. We found a considerable improvement in 

resource allocation in almost every region for the period under consideration. However, the 

regions differ substantially in ranking when allocative efficiencies are compared with mix 

efficiencies. For example, Iowa and Illinois remained the highest mix-efficient states but their 

ranking changed to 18th and 30th in terms of allocative efficiency. It is noticed that states 

located in the Mountain region showed a declining trend in mix efficiency but an increasing 

trend in allocative efficiency during these years. For example, Wyoming showed a significant 

increase in allocative efficiency but a decrease in its mix efficiency. These variations in mix 

and allocative efficiencies provide a useful summary of their contribution to agricultural 

productivity and economic welfare. Appropriate allocation of input mixes in response to 

changes in input prices and the varying production environment has improved mix efficiency 

across different regions. These findings have many implications for future policy making. For 

instance, the introduction of production incentives, such as taxes and subsidies, will encourage 

farmers to adjust their input mixes (e.g., capital and labor) in response to changing input prices. 

This adjustment could significantly influence the productivity potential of the US agricultural 

sector. 

 

We propose a simple method to derive an expression for measuring input-mix efficiency levels. 

However, this study can be extended in various directions. First, it would be useful to introduce 

the time-varying or region-varying input-aggregator functions, to account for the use of 

different inputs for the different regions. It would also be interesting to investigate the relative 

importance of input variability over time, particularly, due changes related to input-specific 

(e.g., seed) improvements in technology. Second, we use both average input prices and shares 

to construct linear and nonlinear input aggregates; these could be replaced with other types of 

aggregators, as discussed in Samuelson and Swamy (1974). Last, we used the Cobb-Douglas 

production technology, but this could be replaced by more flexible functional forms such as 

translog. 
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9. Appendix  

 

Proposition 3 

Proof. Given the input-mix efficiency from equation (28) 
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 Now by simply plugging k kw   into equation (42), we have  
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Similarly, substituting  k kw   into equation (59) gives, 
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Where, 

 1 2E E E    (46) 

Now plugging Equations (50), and kr  back into equation (28) will produce input allocative 

efficiency estimates as given in Schmidt and Lovell (1979). 

Hence, 
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QED. 
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