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1. Introduction 
In this paper a model is developed to indicate 

how a risk-averse, expected utility-maximizing farm­
er would decide on the amount of grain to be 
stored on the farm and on hedging activities 
through forward sales and/or futures transactions. 
Assumptions about the farmer's circumstances are 
indicated in the next section. A specific decision 
problem is developed. In Section 3, a qualitative 
solution is presented. The qualitative solution does 
not depend on detailed knowledge of the farmer's 
utility function or expectations of future prices. It 
depends only on the assumptions of risk aversion 
(decreasing marginal utility of wealth) and on the 
means of the decision-maker's subjective probability 
distribution of future prices. 

Since we are largely ignorant of details of 
utilities and expectations, it seems desirable to 
determine as fully as possible the consequences of 
general properties believed to prevail. In the stor­
age-hedging context it is encouraging that, under 
risk aversion, quite a few inferences can be drawn 
from the means. These are summarized in a 
"conclusion tree" on page 4. 

If a specific utility function and a specific 
distribution of unknown prices are assumed, then 
corresponding quantitative optimal choices can be 
deduced. This is done in Section 4 for several alter­
native combinations of utility function and probabili­
ty distribution. It turns out that the qualitative 
decisions of Section 3 are a very useful first step in 
calculating more precise optima. 

The present model is centered on decisions at 
harvest time. It is thus incomplete in not treating 
problems of marketing decisions that may be made 
during the growing season and in not considering 

The University of Minnesota, including the Agri­
cultural Experiment Station, is committed to the 
policy that all persons shall have equal access to its 
programs, facilities, and employment without 
regard to race, creed, color, sex, national origin, or 
handicap. 
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alternative strategies for closing positions taken at 
harvest time. These and related issues are briefly 
considered in Section 5. Despite the limited scope 
of the analysis presented here, it does sharpen 
some of our insights into considerations affecting 
storage-hedging decisions and, hopefully, it will 
prove a useful step in the development of more 
comprehensive theories. 

The detailed derivations of some of the results 
for the "conclusion tree" are developed in Appendix 
A. Appendix B gives the result of relaxing one of 
the independence assumptions maintained through­
out the rest of the paper. Some properties of an 
interesting family of utility functions are viewed in 
Appendix C. 

2. The Model 
A grain farmer has recently harvested and has n 

bushels on hand. He must decide how much to sell 
now, how much to store, how much to contract for 
future delivery, and what position, if any, to take on 
the futures market. 

Suppose that some months ahead is the time (T) 
of year when this grain usually attains its seasonal 
peak price and that his opport~ity to sell forward 
would involve deliverv at r. 1 L a epresent his cur­
rent cash price and(c\{known) t e price at which he 
can contract for r-cfenvery. Let m (O ~ m ~{@ be 
the amount he decides to store and g (0 ~ g\t m) 
be the quantity he decides to sell forward. 

He can also take a hedging (short) position on 
the futures market. Let(Dbe the current price (per 
bushel) for futures conttacts maturing at r. Assume 
that any physical grain stored and not covered by a 
forward contract will be sold at r and any short 
futures position will be closed at r. His return will 
then be: 

Tr= r{a(n - m)- fs} + cg-dm + A(m-g) 
+ (b + f-q-B)s 

where: 
r: cumulation factor converting current dollars 

to dollars at timer; r = (1 + + R) where R 

1. For Minnesota crops, wheat and oats would typically be harvested in 
August with a peak price in January. The respective months would be 
Novemper and June for corn; October and June for soybeans. See 
H'?uc~ l 8 l. In the winter wheat belt, harvest is in June or July with top 
price in December or January. The assumption that forward sales nec­
essarily involve delivery at T 1s relaxed in Sec. 5, page 9. 



is annual interest rate and j is number of 
months until r. 

f: margin requirement per bushel for futures 
transactions. 

d: direct cost of storage. 
A: a random variable, unknown price to be 

realized for local cash grain at r. 
B: a random variable, unknown price of matur­

ing futures contracts at time r. 
q : commission on futures contracts. 
s: size (in bushels) of short position in futures 

market (O ~ s). 
m, g, s are the decision variables. Rewriting: 

(2.1) 7T = ran+ (A- ra - d)m + (b - (r- 1)f- q - B)s 
+ (c- A)g 
= k0 + (A- k1)m + (kcB)s + (k3- A)g. 

The k; are known when m, s, g must be decided. In 
the formal analysis which follows, it is assumed that 
the farmer acts as though he has a subjective prob­
ability distribution of unknown A and B and acts to 
maximize expected utility of return or gain with re­
spect to that subjective distribution. The restrictions 
O ~ s, O ~ g ~ m ~ n are imposed to reflect usual 
circumstances and practices. He could , of course, 
store more than his supply (m> n) by acquiring 
some grain from neighbors or dealers. This would, 
however, involve expenses not included in the 
above equation for his return. In an initial model it 
seems desirable to keep the analysis as simple as 
feasible by omitting possibilities that would ordinar­
ily not be seriously considered. Similarly, he could 
sell forward more than he stores (g> m), but this 
would require him to locate additional grain before 
delivery causing additional expenses and risks 
and diverting the decision-maker from his usual 
activities. 

There is also nothing to prevent a farmer from 
taking a long (speculative) position on the f~tures 
market. This possibility could be incorporated in the 
present model by: letting s be positive or negative 
and substituting { - (r- 1)f- q} Is l for {- (r - 1)f- q }s 
in (2.1 ). However, with the current crop on hand, a 
farmer is unlikely to take a long speculative position 
and, again, it seems desirable in the first instance to 
consider alternatives that are commonly relevant. 

With these provisions, the farmer's decision 
problem is to choose m, s, g to maximize the ex­
pected utility function 

(2.2) 'l')(m,s,g) = EtJ,{(A- k1lm + (k2-Bls + 
(k3 - A)g} 

subject to O ~ s, 0 ~ g ~ m ~ n where tJ, is utility of 
gain.2 Gain is measured from (ran) the amount he 

. In almost any applied decision problem, there will be some aspects of 
the decision-maker's future wealth that are not affected by the current 
decision-fluctuations in the value of assets he is not considering sell­
ing, accidental personal liabilities or windfalls, etc. Elsewhere { 6, page 
101 } I have called these his initial prospect and the aspects that are 
affected by current decisions a venture. Denoting the initi!II prospect 
by a random variable X and the venture by a random va_ria_ble Y, the 
decision-maker's problem is to choose a venture to max1m1ze the 
expected utility E</,(X+Y) where</, is his ~ti_lity of.wealth function: If X 
and Y are stochastically independent, this 1s equivalent to choosing a 
venture to maximize E,J,(Y) where ,J,(y) = E </, (X+y). In {6}, I called ,J, 
utility after gain but utility of gain now seems less awkward. 

would realize at timer if the whole supply were 
so ld now. 

3. A Qualitative Solution 
The storage-hedging problem indicated above 

has the mathematical form of the usual portfolio 
problem. If (1) tJ,' > 0, (2) tJ," < 0 (risk aversion), and 
(3) lim tJ,'(x) = O; then existence of a solution is 

x-o 
guaranteed by a theorem of Leland { 9} or its gener­
alization by Bertsekas { 1 }. tJ," < 0 implies that 'I'/ is 
strictly concave. Strictly concavity together with the 
fact that the admissible set { (m,s,g): o~ s, O ~ g ~ 
m ~ n} is convex implies that the solution is 
unique. Denote the solution, or optimal choice, by 
(m, s, g). 

In many applications an investigator will not 
know the exact subjective probability distributions 
of the decision-makers, so it is of interest to see 
what conclusions can be drawn from partial infor­
mation. In this section, a number of conclusions are 
obtained from assumed relations among the known 
constants k1, k2, k3 and the subjective expected 
values of the unknown random variables A,B. Prop­
erties (1), (2), (3) of the preceding paragraph are all 
that are assumed about the utility function. 

It is convenient to start with a change of varia­
ble. Let w = m - g; w then represents grain that is 
stored but not covered by a forward contract. Sub­
stituting (m - w) for g in (2.2) and collecting terms, 
expected utility may be written: 

(3.1) O(m,s,w)= 'l')(m,s,(m - w)) = EtJ,{(k? - k,)m+ 
(k2 - Bls + (A- k3)wJ 

0 ~ s, 0 ~ w ~ m ~ n 
Tentatively suppose s, w were known and consider 
the optimal value of m. Under mild regularity condi­
tions { 4, page 9}, one can differentiate expected 
utility under the integral, yielding: 

(3.2) Dm0(m,s,w)= (kck1)EI/J '{(k3- k1)m + (k2 - B)s 
+ (A- k3)w} 
ca{k3- k,l . 

where"~" means "agrees in sign with." 
That Dm0 agrees in sign with (k3- k1) is justified 

by recalling that tJ,'> 0 and, therefore, EtJ,'> 0. Sup­
pose k3- k, > 0. Then expected utility increases 
whenever m increases and is maximized when m is 
made as large as possible, namely m = n. Thus: 

(3.3) kck, > 0 ? m = n,;. 
Aiternat1vely, 1f k3 k, < 0, expected utility is 

maximized by making m as small as possible, 
namely m = w (see the restrictions associated with 
(3.1)), so k3- k1 < 0? m = w. Since w = m - g, this 
can also be stated: 

(3.4) k3 - k1 < 0 ? g = 0. 
These and other results are conveniently com­

piled in the "conclusion tree" <;>n pa_ge_ 4. At e~~h 
branch or terminal there is an 1dent1fy1ng pos1t1on 
number in parentheses. Below the position number 
is a piece of information and below the information, 
in square brackets, is a conclusion justified by that 
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Conclusion Tree 
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(1) 
k3-k1>o 

~=aj 

(2) 
k3-k

1
<0 

[g=Q] 

(1.1.1) 

/4k2-EB>O 

/ J>O, g=aj 

(1.1) .- (1.1.2) 

k -EH-k ~o ~k2-EB<O 3 2 
l]n-g) . s=Qj []=Q] 

(1. 2) 
k -EH-k <Q 

3 2 
[]<aj 

(2.2) 
EH+k -k ~0 

2 1 
~-s=Q] 

(1. 1. 3) 
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(1. 2 .1) 
k

2
-EB>O 

[?> (n-g) >Q] 

(1.2.2) 
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2
-EB<O 
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~ (1.2.3) 
"k

2
-EB=O 

l]=n-g>Q] 

(2.1.1) 
,/k2-EB>O 

/ 

/ l]>m>Q] 

(2. 1. 2) 
~---k

2
-EB<O 

@~s<~ 

(2.1.3) 
k

2
-EB=O 

l]=m>Q] 

(2.2.1) 
/k -EB>O / 2 

---~ 
l]>m=Q] 

(2.2.2) 
k

2
-EB<O 

l]=Q] 

(2.2.3) 
k

2
-EB=O 

l]=m=Q] 

(2.2.2.1) 
EA-k

1
>0 

~>s=Q] 

(2.2.2.2) 
EA-k ~O 

1 
~=s=Q] 



information. H is defined as A-8 and EA, EB, EH 
are the respective means of A, 8, H. Reading back 
from any terminal, one sees the conclusions about 
the optimal choice (m, s, g) that are implied by cer­
tain parcels of information. For example, reading 
back from (1.1.2.2) one sees that if k3- k1 > 0, 
k3 - EH - k2 > 0, k2- EB < 0, and k3 - EA < 0; then ni 
= n, s = 0 and g < n. To determine g exactly one 
would have to know the decision-maker's utility 
function and subjective probability distribution of A, 
8, H more completely. 

(3.3) and (3.4) above are restated at positions (1) 
and (2), respectively. To consider the justification for 
conclusions at other positions, three propositions 
are useful. Let: 

(3.5) f(a) = E!J,(X +aY) 
where X, Y are random variables: a is a real varia­
ble; and 1/J is increasing and strictly concave. Sup­
pose f can be differentiated under the expectation 
and attains its unique maximum at a = &. Then: 

(i) (&- a)b f'(a) VaER 
(ii) f'(a) = EY-!J'(X+aY) = (EY) (E!J,'(X+aY)) 

+ Cov(Y,!J, '(X+aY)) 
= expectation term + covariance term. 

Note that since 1/, '>0, expectation term ~ EY. The 
third proposition will sometimes help determine the 
sign of the covariance term. 

(iii) Suppose Z, W, V are independent random 
variables and R = r(Z,W), Q = q(Z,V) where 
r and q are strictly monotonic in their first 
arguments. If second moments of R and 
1/,'(0) exist, then cov(R, 1/, ' (0)) is negative if 
r,q are of the same monotonicity (both 
increasing or both decreasing) and cov{R, 
1/,'(O)) is positive if r,q are of opposite 
monotonicity. 

Proofs: 
(i) may be seen from the graph of a strictly 

concave, non-monotonic function as in 
Figure 1. 

f(a) 

Figure 1. 

f'(a1)! (& - a 1)>0, f'(a2)-~&- a2)>0, f'(a3),;(&-a3)<0 
(ii) By definition the covariance of any two ran­

dom variables G, H with finite second 
moments is cov(G,H) = E[(G - EG) (H - EH)] 
= EGH - (EG) (EH). 

(iii) is proved in {7, page 385}. 
Recall, Section 2, page 3, that k3 = c the price at 

which a particular farmer can sell for r-delivery and 
k1 = ra + d is the opportunity cost of keeping a 
bushel in storage until r. Thus k3- k1 is the advan­
tage of concurrently selling forward and storing as 
opposed to selling now. k3- k1 will sometimes be 
called the return to forwarded storage. 

Suppose k3- k1 < 0. This places the decision­
maker at position (2) and justifies his setting g = 0. 
Expected utility becomes a function of the remain­
ing decision variables, m and s, and can be written: 

(3.6) µ(m,s) = l)(m,s,0) = E!J,[{A- k1)m + (k2 - Bls] 
0 ~ s, 0 ~ m ~ n 

It will again be convenient to make a change of vari­
able. Let v = m - s be the part of stored grain (possi­
bly negative) that is not hedged. Rewrite expected 
utility: 

(3.7) v{m,v) = µ(m,m - v) = E!J,[(H+k2- k1)m 
+ (B - k2lv] 

0 ~ m ~ n, v ~ m 
where H = A - 8 is the farmer's basis (see {3} for a 
general discussion of basis). The rationale for 
futures hedging is that A and B tend to fluctuate 
together (because, among other things, of the possi­
bility of arbitrage between cash and futures mar­
kets) so fluctuations in H tend to be smaller3 and H 
is more predictable. Someone who stores unhedged 
grain until r receives a return (A- k1) which depends 
on the random variable A, which is relatively unpre­
dictable. Someone who stores grain hedged by a 
short futures position receives a return (H + kck1 ) 

which depends on the random variable H and is 
more predictable. Hedgers in futures markets are 
thus said to be "gambling on the basis." 

B, the futures market quotation, is determined by 
national and international supply and demand. H, 
the basis, is determined in a particular locality by 
such factors as transporation and handling costs, 
quality premiums or discounts, and circumstances 
of local supply and demand. These seem sufficiently 
unconnected that one might consider treating H and 
B as statistically independent in a first approxima­
tion. This has been done in deriving the "conclusion 
tree." However, it is shown in Appendix B that a 
simple modification of the model which does not 
change any important formal features may be used 
to accommodate dependence. 

3. For example, for the data on pages 13, the sample variances ot H, A, Ii 
are respectively .01, .41 , .49 for corn and .04, 5.6, 6.4 for soybeans. 
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Observe that increasing m with v held constant 
in (3.7) means that m and s are increased together. 
The farmer is simultaneously putting a bushel in 
storage and increasing his short position on the 
futures market by a bushel. Accordingly, the 
coefficient of m, H + kc k1, is the return to a stored 
and hedged bushel. It is the sum of the return to 
storing, A- k,, and the return to futures hedging, 
kcB, H + k2- k1 will sometimes be called the return 
to futured storage. 

Temporarily suppose that v is known in (3.7). 
Then v(m,v) is a function of a single variable, and 
has the form of f(a) defined by (3.4), page 3 if we 
identify a with m, X with (8-k2)v and Y with 
(H + k2-k1) . Then: 

(3.7) Dmv(m,v) = E(H + kck1)lf., ' [(H + kck1)m 
+ (B - k2)v] 

= expectation term + covariance term 
expectation term ~ EV = EH + kck1 

covariance term = Cov(R,lf., '(O)) where 
R= H+ kck1 , Q = (H + kck,)m + (B - k2)v 

First note that if m = 0, R and Q are independent 
(since 8, H ind.); therefore, R and lf., '(Q) are indepen­
dent and covariance term = 0. If m > 0 both R and 
Q are increasing functions of H and, by (iii), page 5, 
covariance term < 0. 

Thus, if EH + kck, ~ 0, then Dm 11 ~ 0 for all 
admissible values of m (m must be between max 
{o,v} and n) and Dmv<O for m > 0. Expected utility is 
maximized by making m as small as admissible, 
i.e.: 

(3.8) EH+kc k1 ~ 0 ::;> m = max{o,v}. 
In terms of the original decision variables, m = v 

::;> s = 0, so (3.8) says that either m or s must be 
zero if EH + kck, ~ 0. This can be stated as: 

(3.9) EH + k2 - k, ~ o ::;> m • s= o. 
If EH + kck1 > 0, then Dmv(0,v)> 0 and there 

are positive values of m which make expected utility 
larger than at m = 0. We can thus say: 

(3.10) EH+k2 - k1> 0 ::;> m> 0. 
(3.9) and (3.10) furnish conclusions for positions (2.2) 
and (2.1) of the "conclusion tree." 

The decision-maker (dm) could continue to look 
at particular relations among k1, k2, and k3 and EH, 
EA, EB and draw qualitative conclusions about his -
optimal choice. The arguments for other conclu­
sions are similar to those involved for (3.9) and 
(3.10) and are sketched in Appendix A. 

One can visualize a decision-maker moving from 
left to right on the "conclusion tree," across the 
path that corresponds to his data and beliefs. He 
draws successive conclusions which, by the end of 
the path, represent the most that can be said about 
his optimal choices without using additional 
information. 

The conclusions at the various positions seem to 
the author to have plausible interpretations. For 
example, looking at k3-k, > 0 one knows selling 
forward is better than selling now so selling now 
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can be eliminated - everything is stored. What to 
do about hedging forward and/or futures? Note that 
k3 - EH - k2 is the expected advantage of forwarded 
storage (k3 - k1) over futured storage (EH + k2-k1). If 
there is a positive advantage one favors selling for­
ward and decides there will be no recourse to the 
futures market until and unless the whole supply is 
sold forward ((n-g) • s= 0). One then looks at 
expected return to futuring (k2- EB) to settle 
whether § > 0 or s = 0. Note that s > 0, g = n 
implies overhedging or speculation since s + g > n. 
However this only occurs if the decision-maker ex­
pects there will be a positive return to a short fu­
tures position between harvest and the seasonal 
peak, an unusual circumstance. 

If § = 0, position (1.1.2), dm looks at expected 
return to forwarding to decide whether to sell the 
entire supply forward, position (1.1.2.1 ), or to leave 
some unhedged as in position (1.1.2.2). Other paths 
can be comparably interpreted. 

The parcels of information used to construct the 
"conclusion tree" do not have to be examined in 
any particular order. There is, however, a considera­
ble simplification in comparing k3 with k, at the first 
step. Beyond this, some procedures would clearly 
involve unnecessary complications but, as far as the 
author can see, the exact order is partly arbitrary. 

To form a very rough and preliminary notion 
of which positions and paths on the "conclusion 
tree" might be empirically relevant, some price data 
for crop years 1963-76 were obtained from the 
Farmers' Elevator Company, Stewartville, Minne­
sota. These were compiled with Board of Trade fu­
tures quotations and used to estimate other vari­
ables of the model. Terminal positions correspond­
ing to the estimated data for each crop year were 
then obtained. 

The results are listed in Table 1 (corn) and 2 
(soybeans). 

Table 1 shows average price of corn at 
Stewartville (based on Wednesday closings) during 
the harvest month, November, and the month of the 
usual seasonal peak price, June, for crop years 
1963-76 (columns headed a and A). Also shown are 
the corresponding Board of Trade quotations for 
July corn at harvest and in June (columns headed b 
and 8). k1, the opportunity cost of holding corn from 
Novemberto June, is approximated as 1.05a + .07. 
This allows for seven months' interest at a 9 percent 
annual rate and 7 4 storage costs. 4 k2 is the value to 
the short seller of a bushel of July corn. It is the 
Board of Trade quotation less 1.54 allowance for 
interest on a 30' margin and .5' commission. 

In the absence of specific information on expec­
tations, the tabulated (realized) values of A, 8, H 
were used for EA, EB, EH in determining terminals. 
In effect, this would say the mean of the farmer's 
distribution is a perfect forecast - clearly false. 

4. The typical rate for commercial grain storage is 2'/bushellmonth. On 
farm should be substantially less. 



Table 1. Terminals corresponding to Stewartville data--corn. 
(prices in $/bushel) 

Crop 
year a b A B k, k, H H+ k,-k, k2- B A- k, Terminal k, k, - H- k2 k3- A Terminal* 

1963 1.01 1.27 1.13 1.23 1.13 1.25 - .10 .02 .02 0 2.1.1 1.18 .03 .05 1.1.1 
1964 1.09 1.29 1.23 1.32 1.21 1.27 - .09 - .03 - .05 - .02 2.2.2.1 1.26 .08 .03 1.1 .2.1 
1965 1.05 1.23 1.21 1.29 1.17 1.21 - .08 - .04 - .08 .04 2.2.2.1 1.22 .09 .01 1.1 .2.1 
1966 1.25 1.50 1.26 1.32 1.38 1.48 - .06 .04 .16 - .12 2.1.1 1.44 .02 .18 1.1.1 
1967 .98 1.23 1.07 1.14 1.10 1.21 - .07 .04 .07 - .03 2.1.1 1.14 0 .07 1.1.1 
1968 1.02 1.24 1.15 1.28 1.14 1.22 - .13 - .05 - .06 - .01 2.2.2.1 1.19 .10 .04 1.1.2.1 
1969 1.00 1.18 1.13 1.32 1.12 1.16 - .19 - .15 - .16 - .01 2.2.2.1 1.16 .19 .03 1.1.2.1 
1970 1.23 1.47 1.33 1.54 1.36 1.45 - .21 - .12 - .09 - .03 2.2.2.2 1.41 .17 .08 1.1.2.1 
1971 .94 1.15 1.06 1.21 1.06 1.13 - .15 - .08 - .08 0 2.2.2.2 1.10 .12 .04 1.1 .2.1 
1972 1.12 1.37 1.93 2.30 1.25 1.35 - .37 - .27 - .95 .68 2.2.2.1 1.30 .32 - .63 1.1.2.2 
1973 2.14 2.59 2.62 2.86 2.32 2.57 - .24 - .01 - .29 .30 2.1.2 2.41 .08 - .21 1.1.2.2 
1974 3.27 3.67 2.69 2.81 3.50 3.65 - .12 - .08 .84 - .81 2.1.1 3.64 .11 .95 1.1.1 
1975 2.34 2.69 2.66 2.95 2.53 2.67 - .29 - .15 - .28 .13 2.2.2.1 2.63 .25 - .03 1.1.2.2 
1976 2.11 2.62 2.06 2.35 2.29 2.60 - .29 - .02 .25 - .23 2.1.1 2.38 .07 .32 1.1 .1 

a: Average of Wednesday closing cash prices of corn at Stewartvi lle during November of crop year (1963 crop year is November, 1963, to October, 1964, etc.). 
b: Average of Wednesday closing quotations for July corn on Chicago Board of Trade during November of crop year. 
A : Average of Wednesday closing cash prices of corn at Stewartville during June of crop year. 
B: Average of Wednesday closing quotations for July corn on Chicago Board of Trade during June of crop year. 
k, - 1.05a + .07 
k,= b - .02 
H .,A - B 
k,• 1.04k, 

Table 2. Terminals corresponding to Stewartville data--soybeans. 
(prices in $/bushel) 

Crop 
year a b A B k, k2 H H+k2- k1 k2- B A- k, Terminal k, k3- H- k2 k3 - A Terminal* 

1963 2.60 2.89 2.34 2.50 2.80 2.86 - .16 - .10 .36 - .46 2.2.1 2.91 .21 .57 1.1.1 
1964 2.51 2.78 2.75 2.90 2.71 2.75 - .15 - .11 - .15 - .04 2.2.2.1 2.82 .22 .07 1.1.2.1 
1965 2.29 2.58 3.14 3.34 2.47 2.55 - .20 - .12 - .79 - .67 2.2.2.1 2.57 .22 - .57 1.1.2.2 
1966 2.75 3.04 2.70 2.85 2.96 3.01 - .15 - .10 .16 - .26 2.2.1 3.08 .22 .38 1.1 .1 
1967 2.43 2.75 2.53 2.68 2.62 2.72 - .15 - .05 .04 - .09 2.2.1 2.72 .15 .19 1.1.1 
1968 2.38 2.63 2.47 2.65 2.56 2.60 - .18 - .14 - .05 - .09 2.2.2.2 2.66 .24 .19 1.1.2.1 
1969 2.19 2.57 2.59 2.77 2.37 2.54 - .18 - .01 - .23 .22 2.2.2.1 2.46 .10 - .13 1.1 .2.2 
1970 2.72 3.11 2.97 3.19 2.93 3.08 - .22 - .07 - .11 .04 2.2.2.1 3.05 .19 .08 1.1.2.1 
1971 2.91 3.29 3.31 3.48 3.13 3.26 - .17 - .04 - .22 .18 2.2.2.1 3.26 .17 - .05 1.1.2.2 
1972 3.09 3.52 9.93 10.08 3.41 3.49 - .90 - .82 - 7.34 6.52 2.2.2.1 3.55 .96 - 6.38 1.1 .2.1 
1973 5.27 6.00 5.17 5.56 5.60 5.97 - .39 - .02 .41 - .43 2.2.1 5.82 .24 .65 1.1.2.1 
1974 8.01 8.93 4.90 5.10 8.48 8.90 - .20 .22 3.80 - 3.58 2.1.1 8.82 .12 3.92 1,_1.1 
1975 4.90 5.64 6.01 6.32 5.61 5.61 - .31 - .31 - .71 .40 2.2.2.1 5.83 .53 -.18 1.1.2.2 
1976 6.04 6.65 8.09 8.35 6.62 6.62 - .26 - .26 - 1.73 1.47 2.2.2.1 6.88 .52 - 1.21 1.1.2.2 

a: Average of Wednesday closing cash prices of soybeans at Stewartville during October of crop year (1963 crop year is October, 1963, to September, 1974, 
etc.). 

b: Average of Wednesday closing quotations for July soybeans on Chicago Board of Trade during October of crop year. 
A : Average of Wednesday closing cash prices of soybeans at Stewartville during June of crop year. 
B: Average of Wednesday closing quotations for July soybeans on Chicago Board of Trade during June of crop year. 
k,• 1.05a + .07 
k,• b - .03 
H = A - B 
k, ~ 1.04k, 
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However, it could still be true that frequencies of 
terminals indicated by this extreme assumption 
would crudely resemble frequencies based on 
actual expectations. 

For each crop year two terminals were deter­
mined - one based on the assumption that the 
farmer in question did not have a favorable oppor­
tunity to sell forward and the other (marked by an 
asterisk) assuming that there was a favorable 
opportunity. For present purposes, a favorable op­
portunity is taken to be opportunity cost plus 4 
percent, 1.04k1 in the present notation. This is just a 
guess at the price at which a buyer might typically 
be able to arrange a substantial volume. These 
amounts are shown in the column headed k3• 

Table 2 presents comparable data and terminals 
for soybeans based on Stewartville figures. Harvest 
is taken to be in October and the usual 50 4 margin 
requirement for soybeans makes k2 = b- .03. Other­
wise, the tabulation is similar. 

Taking the corn and soybean data together, the 
frequencies of various terminals are : 

2.2.2.1 - 14 
2.1.1 - 6 
2.2.1 - 4 
2.2.2.2 - 3 
2.1.2 - 1 

when a favorable forward sale is presumed not to 
exist and: 

1.1.2.1 - 10 
1.1.1 - 9 
1.1.2.2 - 9 

when a favorable forward sale does exist. 
This is, to be sure, a very qualified indication of 

possible empirical relevance. We need to carefully 
study expectations and expectation formation and 
we need to consult data for a variety of crops and 
locations. 

4. Exact Choices Under Alternative 
Assumptions 
If an investigator assumes an exact utility 

function and a specific distribution for unknown 
prices (in addition to data normally known at the 
time a decision is made), then corresponding opti­
mal choices can be exactly calculated. Even though 
we do not yet know much about empirical utilities 
and expectations, it seems desirable to acquire ex­
perience with such calculations. If highly implausi­
ble results are encountered, the assumptions are 
reexamined. Sometimes the nature of the implausi­
bilities furnish hints as to probable sources. We can 
begin to form some judgments as to how well parti­
cular families of utility functions and probabilities 
ma,1 permit us to approximate actual decision 
patterns. 

Results for several combinations of utility func­
tions and probability distributions are given in this 
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section. Three utility functions have been consid­
ered. One is a linear utility function which has been 
included for casual comparisons; results using this 
function will not be examined in detail. The others 
are chosen to illustrate constant absolute risk aver­
sion and decreasing absolute risk aversion. 

If 1/J(y) is a utility of gain function, then: 

(4.1) p(y)= - .!ldY_l 
1/J'(y) 

is called absolute risk aversion. Pratt { 10} showed 
that constant absolute risk aversion (CAR) implies a 
function of essentially (except for positive linear 
transformations) the form: 

(4.2) 1/J(y) =-e - >.y >. > O 
where p(y) = >.. He also showed that a sum of con­
stant absolute risk functions (denoted here as 
SCAR) has the property that absolute risk aversion 
decreases with y. Economists have generally con­
sidered decreasing absolute risk aversion a plausi­
ble hypothesis. 

The CAR used in Table 5 and 6 is: 

(4.3) 1/J(y) = - e - .00006x 

For this function: p(y) = .00006 -oo < y < oo. 

The SCAR employed is: 

(4.4) 1/J(y) =-e - .00001y _ _ 018e - .0002y 

It can readily be verified that p(y) is decreasing and: 
(4.5) lim p(y) = .00001 , lim p(y) = .0002, p(0) = .00006. 

y - 00 y - -00 

Some interesting properties of SCAR are 
examined in Appendix C. Iba chosen ieyels of risk 
aversion correspond roughly to levels indicated by 
recent responses of a panel of Minnesota farmers to 
hypothetical problems involving risk. 5 

Optimal choices were calculated for eight situa­
tions involving corn crops and eight situations 
involving soybean crops. The Stewartville data from 
Tables 1 and 2 of Section 3 were used as a guide in 
constructing situations. Assumed data for corn 
marketing situations are shown in Table 3. 
Variables are defined in Section 2, pages 2 and 3. 
Entries for situation I were obtained as follows: 

a = (average price of corn at Stewartville during 
November) x 1.77 

b = (average price in November of a Chicago 
corn futures contract maturing in July) x 
1.77 

EA = (average price of corn at Stewartville during 
June) x 1.77 

EB = (average June price in June of a Chicago 
corn futures contract maturing in July) x 
1.77 

EH = EA- EB 

5. The responses were highly variable and subject to some interpretation 
so this preliminary impression should not be taken very seriously. In­
terviews with the panel were supported by the Economics, Statistics, 
and Cooperatives Service. Analysis of the interviews will be prepared. 



k1 = 1.05a + 7 
k2 = b- .05 X 30- ½ 
k3 = 1.04k1 for 1-111, 1.08k1 for IV. 
The 1963-76 average prices were multiplied by 

1.77 to obtain numbers closer to recent levels. In 
using adjusted historical averages for EA, EG, EH in 
situation I we are supposing that a farmer's expec­
tations might sometimes reflect recent historical 
experience with regard to price relations and cur­
rent experience with regard to the general level. In 
situation 11, lower future prices are expected; EA 
and EB have been lowered 4 percent, other entries 
are unchanged. Situation Ill reflects 4 percent higher 
expected future prices than I and, in situation IV, 
current local price has been lowered 4 percent 
(which also lowers k1). The latter might, for in­
stance, represent a situation in which transportation 
shortages at harvest lower local price below its 
usual relation to the central market. 

As in Section 3, it seemed worthwhile to 
consider a farmer who has a favorable opportunity 
for forward sales and one who does not. Therefore, 
two versions of each of the four initial situations 
were explored. For the first version, it was assumed 
that ka < k1. For the second version, the listed value 
of ka was used. This is 4 percent above the original 
value of k1 and was judged to be a price at which a 
local buyer should be able to obtain a substantial 
supply. The second version (k3 > k1) of each situa­
tion is denoted by an asterisk in Table 5. 

Table 4 indicates four comparable situations 
for a soybean grower. Situation I is based on aver­
age 1963-76 prices increased by a factor of 2.15. Sit­
uation II is obtained from I by lowering EA, EB 4 
percent, situation Ill by raising EA, EB 4 percent, 
and situation IV by lowering a and k1 4 percent be­
low their levels in situation I. Optimal decisions for 
soybeans are listed in the lower half of Table 5. As 
with corn, an asterisk indicates a situation that in­
cludes a favorable opportunity to sell forward. 
. To compute a specific set of optimal decisions, it 
Is also necessary to assume a specific distribution 
to represent the decision-maker's subjective beliefs 
about probable values of the unknown prices A, 8. 
In the absence of good information on expectations, 
two conventional forms were tried - normal and 
uniform (the latter has density x2 ~ x1 in the range 
(x1, X2) and O elsewhere). In the univariate case, both 
are two parameter families so the distribution is 
completely specified if we have the mean and vari­
ance of the random variable. 

The means used in different calculations have 
already been listed in Tables 3 and 4. To obtain 
roughly corresponding variances, the Stewartville 
data were again consulted. It seems reasonable to 
suppose that known values of a and b are combined 
with other information to form expectations about A 
and B. This suggested the following procedure 
which the author recognizes as largely arbitrary and 
in need of revision after further study. For corn, the 
variance of residuals in the regression of B on a, b 

for 1963-76 is about .12. Allowing for other informa­
tion, this was rounded down to .08. The sample var­
iance of H was .0093 which was rounded to .01. 
Continuing to treat B, H as statistically independent6 

implies a variance of .009 for A and a covariance of 
.008 for A and B. The comparable figures for soy­
beans are Var 8 = .20, Var H = .04, Var A = .24, 
Cov AB = .20. All of the calculations reported in 
this paper involved the above variances and 
covariances. 

In Table 5, the total supply of grain (n) is taken 
to be 50,000 bushels. In more than half of the 64 
cases examined, at least one of the decision varia­
bles equals this upper limit. To provide some addi­
tional comparisons of the effects of varying the 
underlying assumptions, some calculations were 
made with n = 400,000. The results appear in Table 
6. Only the eight situations in which one or more 
decision variables are changed by the increased 
supply are shown.7 

Several comparisons of results in Tables 5 and 6 
are of interest. A number of patterns are expected 
and realized. Amount stored changes in the same 
direction as expected future prices and opposite to 
c~an_ges in current ~rices. Changing from normally 
distributed future prices to uniformly distributed 
~uture prices increases willingness to take changes, 
1.e., to hold unhedged inventories in the typical 
cases where hedging involves a loss of expected 
ret~rn and to overhedge more in the few cases (sit­
uations CII, CII*) when hedging increases expected 
return. 

This conservative implication of normality is not 
s_urpri~ing because the combination of a utility func­
tion (either CAR or SCAR) that is unbounded below 
and an unbounded probability distribution (normal) 
holds the possibility that extremely large losses 
which a farmer would regard as impossible (be­
cause he regards prices as nonnegative) will enter 
the calculations with sufficient weight to influence 
the calculated decision. 

The fact that changing from normal to uniform 
with other assumptions unchanged, changes the ' 
calculated value of the decision variable by more 
than 50 percent in 14 of the 44 cases in which 
comparisons can be made suggests that this is a 
nonnegligible consideration. It has sometimes been 
suggested that bias due to unboundedness of nor­
mal variables will be small if the coefficients of vari­
ation (ratios of means to standard deviations) are 
large. The coefficients of variation of A and 8 in the 
situations examined vary from 9 to 18, which would 
ordinarily be considered large. This problem should 
be explored further in other contexts, both theoreti­
cally and with more adequate data.8 

6. Note th~t when B. H are _assumed independent and uniformly distrib­
uted, A 1s not exactly uniform but has a density of the shape.=. . 

7. Of course, changes under linear utility change with n. 
8. qne could alternatively _bound the util ity function and this may some­

t1m~s seem more plausible. In the present context, price and return 
variables bounded from below are natural and SCAR utility fns have 
potentially usefu l properties (see Appendix CJ. 
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Table 3. Assumed situations-corn. Table 4. Assumed situations--soybeans. 
($/bushel) (¢/bushel) 

I II Ill IV I II Ill IV 
Adjusted Lower expected Higher expected Lower local Adjusted Lower expected Higher expected Lower current 

Variables averages prices prices pnces Variables averages prices prices price 

a 2.60 2.60 2.60 2.50 a 7.00 7.00 7.00 6.72 
b 3.10 3.10 3.10 3.10 b 7.88 7.88 7.88 7.88 
EA 2.83 2.72 2.94 2.83 EA 7.89 7.57 8.21 7.89 
EB 3.15 3.04 3.26 3.15 EB 8.34 8.02 8.66 8.34 
EH - .32 - .32 - .32 - .32 EH - .45 - .45 - .45 - .45 
k, 2.80 2.80 2.80 2.70 k, 7.42 7.42 7.42 7.13 
k, 3.08 3.08 3.08 3.08 k, 7.85 7.85 7.85 7.85 
kl (2.91) (2.91) (2.91) (2.91) k3 (7.72) (7.72) (7.72) (7.72) 

Table 5. Optimal decisions. 
(entries in 000 bushel; n:::; 50) 

Crop Linear Normally distributed prices Uniformly distributed prices 
and utility CAR SCAR CAR SCAR 

situation Terminal (m.s. Iii m 5 Ii m 5 Ii m 5 Ii Ill 5 Ii -- --
Cl 2.2.2.1 (n,0,0) 5.56 0 0 5.45 0 0 5.57 0 0 5.56 0 0 

II 2.2.1 (0,oo,0) 0 8.33 0 0 8.08 0 0 8.37 0 0 8.38 0 
Ill 2.2.2.1 (n,0,0) 25.9 0 0 21 .9 0 0 27.1 0 0 28.6 0 0 
IV 2.1.2 (n,0,0) 50.0 35.4 0 50.0 36.0 0 50.0 35.0 0 50.0 31.8 0 
I* 1.1.2.1 (n,0,0) same as linear 
II* 1.1 .1 (n,cx::,n) 50.0 8.33 50.0 50.0 14.0 0 50.0 8.37 50.0 50.0 15.3 50.0 
Ill* 1.1.2.2 (n,0,0) 50.0 0 44.4 50.0 0 40.1 50.0 0 44.4 50.0 0 39.6 
IV* 1.1 .2 (n,0,n) -------------------------------------------------------------- same as Ii near ------------------------ ------------------------

SI 2.2.2.1 (n,0,0) 32.6 0 0 23.6 0 0 41 .2 0 0 50.0 0 0 
II 2.2.2.1 (n,0,0) 10.4 0 0 9.43 0 0 10.6 0 0 10.9 0 0 
Ill 2.2.2.1 (n,0,0) 50.0 0 0 35.7 0 0 50.0 0 0 50.0 0 0 
IV 2.1.2 (n,0,0) 50.0 9.17 0 50.0 37.7 0 50.0 0 0 50.0 0 0 
I* 1.1.2.2 (n,0,0) 50.0 0 38.2 50.0 0 27.1 50.0 0 37.9 50.0 0 16.9 
II* 1.1 .2.1 (n,0,n) same as linear 
Ill* 1.1.2.2 (n,0,n) 50.0 0 16.0 50.0 0 14.3 50.0 0 5.88 50.0 0 0 
IV* 1.1.2.2 (n,0,n ) 50.0 0 38.2 50.0 0 17.8 50.0 0 37.9 50.0 0 0 

Table 6. Optimal decisions. 
(entries in 000 bushel; n=400) 

Crop Normally distributed prices Uniformly distributed prices 
and CAR SCAR CAR SCAR 

situation m 5 Ii m 5 Ii Ill 5 g Ill s g 
CIV 100.0 85.4 0 78.7 67.2 0 109.7 93.7 0 121 .6 103.9 0 

II* 400.0 8.33 400.0 400.0 47.9 400.0 400.0 8.37 400.0 400.0 49.9 400.0 
Ill* 400.0 0 394.4 400.0 0 366.7 400.0 0 394.4 400.0 0 366.7 

SIii 54.9 0 0 35.7 0 0 284.8 0 0 400.0 0 0 
IV 112.5 71 .7 0 72.3 46.0 0 400.0 228.2 0 400.0 97.4 0 
I* 400.0 0 388.2 400.0 0 334.6 400.0 0 387.9 400.0 0 327.4 
Ill* 400.0 0 366.0 400.0 0 322.6 400.0 0 355.9 400.0 0 135.3 
IV* 400.0 0 388.2 400.0 0 329.2 400.0 0 387.9 400.0 0 327.4 
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In forming impressions of changes in values of 
decision variables due to changes in utility functions 
and distribution functions, it should be recognized 
that, in the present context, most of the determina­
tions can be made independently of these consider­
ations. Of the 288 values of decision variables 
appearing in Tables 5 and 6, 194 are completely 
determined by the "conclusion tree." 

When the utility function is changed from CAR to 
SCAR one again gets a variety of small and large 
changes in values of decision variables with 
changes as large as 50 percent occurring in about 
one third of the cases not determined by the "con­
clusion tree." In this context, there is a suggestion 
that constant absolute risk aversion may not pro­
vide a satisfactory approximation. 

5. Some Comments 
As developed in Section 2, the model studied in 

this paper is too narrow to cover some important 
grain marketing decisions. There are some natural 
reinterpretations that can extend its relevance a lit­
tle, but it also needs substantial formal extensions. 
Hopefully the analysis so far will aid in their 
construction. 

An operating farmer has more options than 
appear in the model. It is not uncommon for some 
marketing decisions and contracts to be made 
during the growing period. Decisions may also be 
made after harvest. In particular, futures positions 
may be modified or closed at any time and 
uncommitted grain may be sold from storage. 
Various things happen to make harvest an 
inevitable time of decision - the grain must be 
physically handled, financial obligations sometimes 
mature, the size and quality of the farmer's crop 
becomes definite, estimates for the region and 
nation become more precise, crop information gets 
incorporated into quoted prices, etc. But decisions 
at other times are also important and a multi-period 
model is indicated to take them into account. 

Some flexibility can be achieved in the present 
model by relaxing the assumption that all contracts 
are closed at time r. This was used in including 
interest charges and in getting some data to make 
preliminary calculations. However, we could inter­
pret A and B as prices realized by the farmer when­
ever he sells grain (A) or repurchases futures (B) 
regardless of the timing. This would implicitly 
assume that he has a strategy for post-harvest deci­
sion and a subjective probability distribution of pos­
sible outcomes (effective prices to be realized) of 
applying the strategy. The model presented would 
not tell us what this post-harvest strategy should 
be, but would indicate how harvest decisions would 
fit in, given such a strategy. Final dispositions at 
some predetermined time would not be required. 

Interest calculations would become less straight­
forward and would, in principle, have to be treated 

as an additional uncertainty. However, within the 
marketing season, interest uncertainty may often be 
of sufficiently secondary importance that an esti­
mated interest charge treated as certain would not 
make the model seriously misleading. It is partly a 
question of purposes a model is to serve. The 
above treatment of interest might provide a crude 
first approximation, but allowance for uncertainty in 
the availability and cost of credit should certainly be 
part of any program to produce successively more 
comprehensive models. 

Another aspect of the farmer's situation that has 
been neglected so far is tax considerations. If we as­
sume that utility is a function of after-tax wealth and 
that tax liability is a smooth (differential) function of 
prospective gains and losses regardless of their 
nature, then we could either convert the utility func­
tion to a pre-tax basis or we could convert prospec­
tive gains and losses to an after-tax basis without 
changing basic assumptions. Alas, life is not this 
simple and taxes will have to be studied in some 
detail in the model improvement program. 

Further trials with different combinations of utili­
ty functions and subjective probability distributions 
are to be encouraged. SCAR utility functions have 
some interesting properties (see Appendix C). Inves­
tigations of nonnormal distributions should 
continue. The gamma distribution seems a likely 
candidate when boundedness from below, but not 
necessarily from above, is desired. In cases where 
boundedness on both sides is desired one could 
approximate the subjective density by a simple 
function or consider a Beta distribution. 

Such investigations should be accompanied by 
continuous empirical testing based on interviews, 
experiments, and analyses of actual decisions. 

One aspect of farmers' decisions that will have 
to be studied more intensively as empirical testing 
progresses is the relation between the farmer's 
prospect at the time he is observed (his general ex­
posure to financial contingencies) and the ventures, 
real or contrived, that are under consideration when 
he is observed. The convenient relation between 
utility of wealth and utility of gain when SCAR func­
tions are employed will be helpful if this type of 
function proves sufficiently flexible to represent 
actual behavior accurately.9 The present paper 
contains the implicit assumption that the ventures 
considered (ways of marketing the grain) are statis­
tically independent of the farmer's other prospects. 
This seems more likely to be true for a specialized 
grain farmer than for a grain-livestock farmer, but 
the matter should be carefully investigated in both 
cases. 

Finally, nonfinancial considerations should be 
studied to see to what extent and how they may 
influence even those decisions that are primarily 

9. A preliminary examination of this question will be undertaken using 
the panel data cited on page 8. 

11 



financial (see {5}, page 899). When the solutions of 
Section 4 were calculated, it was noted that there is 
a substantial region of near flatness of the expected 
utility function near the optimal choice. This would 
make it possible for a nonfinancial consideration to 
substantially change the optimum if combined with 
the utility function for gain. This is reminiscent of 
results in mathematical programming of farm deci­
sions where it frequently happens that, in the vicin­
ity of the optimum, a fairly substantial change in 
ome inputs affects net revenue modestly. 

Appendix A: Completion of the Conclusion 
Tree 

In Section 3, conclusions for positions (1 ), (2), 
(2.1 ), (2.2) of the "conclusion tree" on page 4 were 
proved. To continue, recall that if k3 < k,, then g = 0 
and expected utility may be written as on page 5. 

(3.5) µ,(m,s) = Et/J[(A- k,)m+(kcB)s] so, 
0,;;;; s, 0 ,;;;; m,;;;; n 
temporarily treating m as given, 

(1.1) DsJL= E(k2-B)t/J'[B(m-s)+Hm-k1 m+k2 s] 
= expectation + covariance 

expectation ~ kc EB and, by proposition 
(iii), page 5, 

covariance ~ (m - s) Thus: 
(1.2) (k2- EB)> 0 :::;> (D5 µ, >0 for s,;;;;m) :::;> s> m 

(kcEB)< 0 :::;> (D5 µ,<0 for s;;;;,:m) :::;> §,;;;;m 
and s<m for m > 0 

(k2-EB)=0 :::;> Ds µ, ~ (m - s) :::;> s=m 
(1.2) justifies the conclusions at positions (2.1.1 ), 

(2.1.2), (2.1.3), (2.2.1 ), (2.2.2), (2.2.3). 
Now suppose dm is at (2.2.2) where g = s = 0. 
(1.3) Dm µ,(m,O)=E(A-k,)t/l'[(A-k,)m] 

=expectation + covariance 
expectation ~ EA- k, 
covariance ~-m so 

(1.4) EA- k, > 0 :::;> m > 0 
EA- k, ,;;;;0 :::;> m = 0 

These cover (2.2.2.1) and (2.2.2.2). 
Let k3 > k, and write: 

11(n,s,g) = Et/I[ (A- k,)n +(k2- Bls+(k3- A)g] 
0,;;;; s, 0,;;;; g,;;;; n 

Let v = g + s, the total hedge, and let: 
{(v,g)= 11(n,v-g,g) = Et/J[(A 

- k1)n+(k2-Blv+(k3-H-k2)g] 
0,;;;; g,;;;; n, g,;;;; V 

Temporarily suppose v known: 
(1.5) D9 {=E(k3-H-k2)t/J'[B(n-v)+H(n-g)-k1n 

+k2v+(k3-k2lg] 
= expectation = covariance 

expectation ~ k3-EG-k2 
covariance ~ n-g so 

(1.6) k3- EH-k2 ;;;;,:0 :::;> g = min {n,v} 
k3-EH-k2 <0 :::;> n-g > 0 

These justify (1.1) and (1.2) when we note that g = 
v = s = 0. Temporarily setting g = g, 
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(1.7) D511(n,s,g)= E(kc B)I/J ' [B(n - s- g) + H(n - g) 
- kn+k2s+k3 g] 

= expectation + covariance 
expectation ~ kcEB 
covariance ~ n- s- g so 

(1.8) kcEB > 0 :::;> s > n - g 
kcEB < 0 :::;> s :::;> n- g 
kcEB = 0 :::;> s = n- g 

(1.8) accounts for (1.1.1), (1.1.2), (1.1.3), (1.2.1), 
(1.2.2) and (1.2.3). 
Now suppose dm is at (1.1.2). Observe thats = 0. 

(1.9) D911(n,o,g)= E(k3- A)t/J' [ A(n-g)-k,n +k3g] 
= expectation + covariance 

expectation ~ k3- EA 
covariance ~ n - g, therefore: 

(1.10) k3- EA;;;;,:0 :::;> g = n 
k3- EA< 0 = g n 
as in (1.1.2.1) and (1.1.2.2). 

One contingency that has not yet been cov-
ered is the remote possibility that k3 = k1, selling 
forward promises exactly the same return as selling 
now. In practice this might frequently be settled by 
some secondary consideration that did not enter 
our return function. dm might sell forward to main­
tain goodwill with the buyer hoping to be contacted 
early in years when forward opportunities are lim­
ited. Or, if he has any qualms at all about the secu­
rity of his own storage or about the forward buyer's 
eventual performance, he might prefer to sell cash. 
Such secondary considerations could, of course, be 
explicitly entered into an extended model, but it 
seems that the extensions discussed in Section 5 
are more important for the near future. Meanwhile, 
it is interesting to take a brief look at the situation 
created by k3 =k1 in the present framework. 

Write expected utility as: 
(1.11) 0(m,s,w) = Et/J[(k3 - k1)m + (kcB)s + 

(A- kr3lw] 
= Et/JL(k2-B)s + (A- k3)w] = Y(s,w) 

0 ,;;;; s0 ,;;;; w ,;;;; n 
Varying m while holding s and w constant does 

not affect the argument of t/J and, therefore, does 
not affect expected utility. Clearly, optimal choice is 
not generally unique if k3 = k1• Recall that w = m - g 
and 0 ,;;;; g ,;;;; m, so if w = n, then m = n, g = 0. If w 
= 0, then m = g = 0. However, if 0 < w < n, there 
is a range of variation for m, g (specifically w ,;;;; m 
,;;;; n with g = m - w) that corresponds to maximum 
expected utility. 

Setting m = n does not restrict the range of 
variation of s, w. Since, in this case, expected utility 
may be stated as a function of s, w; this means that 
no expected utility is lost if the decision-maker sets 
m = n and then proceeds as from position (1 ). Al­
ternatively he could set g = 0 and proceed as from 
position (2). Thus the "conclusion tree" is also rele­
vant to k3 = k1 in that the decision-maker can pro­
ceed from either ( 1) or (2) without loss of expected 
utility. 



Appendix B: Effects of Interdependence 
Between Price and Basis 

Recall that the version of basis relevant to this 
analysis is the difference between the price a farmer 
can realize in his local market and the contemporary 
quotation for maturing or soon-to-mature futures 
contracts. At the time storage and hedging deci­
sions are made these prices and, therefore, their 
difference, the basis, are random variables. 

Factors that finally determine a particular pro­
ducer's basis will vary from one farm situation to 
another, but cost of transportation to the relevant 
terminal market; quality of the farmer's grain; quali­
ty premiums and discounts in that particular year; 
and current circumstances of local demand and sup­
ply are likely to be dominant factors in many cases. 
These seem sufficiently independent of the general 
national and often international supply and demand 
forces determining the futures quotation that the 
statistical independence assumed so far may often 
be a good first approximation. 

However, it also seems plausible that some de­
pendence might occasionally exist-quality premi­
ums or discounts might well have some tendency to 
increase when price is higher, local demand may be 
to some extent associated with total world demand 
although the association may typically be weak. 

Pending careful empirical studies to determine 
the kind and importance of dependence, it seems 
useful to consider possible effects in a preliminary 
fashion. Recall that A is local cash price, B the con­
current futures quotation, and H = A-B, the basis. 
Instead of assuming H is independent of B, assume 
H = 5B + V with V independent of 8. 10 5 is then the 
regression coefficient of H on 8(5 = ~;~JI ). Then A 
=vB + V with v = (1 + 5) the regression coefficient 
of A on B. 

The observed fact that year to year fluctuations 
in a particular basis tend to be small relative to 
price fluctuations suggests I 5 I should be quite a lot 
smaller than one and this is reinforced if, as is pre­
sumed, H and B are not highly correlated. v is then 
close to one. The special case v = 1 corresponds to 
independence between B and H. Using the Stewart­
ville data from Tables 1 and 2 yields estimates of a 
= - .09 for corn and - .07 for soybeans. 

These revised assumptions require only modest 
revisions in the "conclusion tree." Recall (page 3): 

(2.2) 77(m,s,g)= EI/J[(A- k1)m + (k2-B)s 
+ (k3- A)g] 

0 :,;;; s, 0 :,;;; g :,;;; m :,;;; n. 
Rewrite expected utility: 

(11.1) 71(m,s,g) = El/,[(A- k1)m + (kcB)s 
+i_k3 - A)g] 

0 :,;;; s, 0 :,;;; g :,;;; m :,;;; n 
where : k2 = vk2, B = vB, s = v - ,s. 

10. If, as seems plausible, EV - 0 we have regression through the origin. 
For both corn and soybeans, regressions using the Stewartville data 
yielded negl igible constant terms. 

77 satisfies all the qualitative assumptions of 77 and 
the same restrictions apply to the new variables. 
Therefore~ all the conclusions stat~d .l9r_77 also 
apply for 77 with the substitution of k2, B, s, V for, re­
spectively, k2, B, s, H in both conditions and 
conclusions. 

For example, the following information and con­
clusions would apply to the indicated positions in a 
"conclusion tree" revised to take account of depen­
dence between B and H. 

(1.1) k3 -EV-vk2 ;;;. O ::;> (n-g) •s = 0. 
(1 .2) k3-EV-vk2 < 0 ::;> g < n 
(2.1) EV+ vk2-k 1 > O ::;> 111 > O 
(2.2) EV+ vkck 1 :,;;; O ::;> 111 •s = 0 
(1.2.1) vkc EB > 0 ::;> v- • s > (n - g) > 0 
(1.2.2) vk2 - EB < 0 ::;> v-• s + g < n. 

V might reasonably be called the adjusted basis. 
The relation between inferences that can be 

drawn under dependence and independence can be 
partly rationalized by noting that the unhedged 
storer is exposed to uncertainty represented by the 
random variable A. Forward selling (if he regards 
the buyer as completely reliable) lets him substitute 
a constant k3 for A. Futures hedging lets him substi­
tute a random variable (A- aB + ak2) for A where a 
is chosen by dm and represents the ratio of bushels 
sold short to bushels stored. The variance of the 
new random variable is minimized if: 

Cov AB 

a = V = Var A in which case A-vB + vk2 = V + vk2 
(see Heifner { 2}, page 28). 

Appendix C: Some Useful 
Properties of SCAR 

Flexibility and Differential Properties 

Sums of constant absolute risk aversion utility 
functions have some interesting properties which 
will prove useful if it is found that actual decision­
making can satisfactorily be represented by maxi­
mizing expectations of such functions. The chance 
that such representations can be found is enhanced 
by the fact that the system of SCAR functions is 
flexible. The number of free parameters available to 
approximate empirical utility functions can be 
increased indefinitely without changing basic 
properties of the function. Let: 

(C.1) cf>(x) =Ia;e-.\,x .\1 > 0, a1 > 0 i= 1 .. n 
1 

be such a function. The effective number of parame­
ters is 2n-1 since any a1 could be set equal to unity 
by multiplying cf> by -di- and -di- cf> would be essentially 
the same utility function. 

As n is increased, a number of desired proper­
ties - smoothness; positive, but decreasing slope; 
positive, but decreasing absolute risk aversion - re­
main. An investigator can use a function with as 
many terms as seem needed in his particular con-
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text. Thus it appears worthwhile to look at some 
other features of this family of functions and to ex­
periment with it in practice. 

Functions of Wealth and Gain 

Let cp(x) represent a decision-maker's utility of 
wealth function (not necessarily SCAR) and let the 
random variable X represent his current prospect. 
His utility of gain function is then: 

(C.2) tf,(y) = Ecp(X + y). 
If cf, and X were known and well behaved, one could 
typically infer tf,. Reasoning from tf, to cp is more 
troublesome, particularly if X is not completely 
known. One context in which the latter problem 
arises is in stud in utilities of real eo le b inter­
viewing or by confronting t em wit e p~rjmental 
c oices. ese pica y give direct evidence related 
fo if, while, for many purposes, cf, is needed (for ex­
ample, if X changes). 

If cf, is SCAR, as given by (C.1 ), things are sim­
pler. Then: 

(C.3) tf,(y)=-Efa1e - .\i(X+ y)=- f(Ee - .\IX)aIe - AiY 

n - ,\y n - ,\y 
=- I81a1e 1 =- IcIe 1 

I I 

which is again SCAR and is equal to cf, with new 
weights attached to the exponential components. To 
infer cf, from tf,, one needs the factors: 

(C.4) 01 = Ee- " 1X. 

It may sometimes be possible to approximate these 
even if X is not completely known. For example, if it 
is believed that X can be approximated by a ran­
dom variable with moment generating function m, 
then 01 should be approximately m( - .\1). 

Bounds on Risk Aversion 

n - ,\ X 
Proposition C.1. Let: cp(x)=- IaIe I a1> 0, .\1 > 0 

A." / ) 1 
i= 1 • • n. Define: r(x)=- 'Llx . 

cp '(x) 

Then: (a) min{.\I Ii = 1 ··n}< r(x) < max{.\I Ii = 1"n} 

(b) lim r(x) = min{.\I Ii= 1"n} 
x-oo 

(c) lim r(x) = max{.\I Ii = 1"n} 
x--oo 

Proof: 

~ ' 2 - .\;x 
..:.a;"-; e 

r(x)=-----

- .\1X 
where: w 1= a,.\;e > o 

Ia;.\;e - .\1x 
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n 
and: IwI= 1. This proves (a). 

W;= a·.\1e- .\1x=~(.\i-.\1)x , hence : 
WJ ai.\ie- .\ix ai.\i 

I. w I=oo if .\i>.\I Im - . 
x-oo Wj=0 if Ai>.\1 

Thus if: .\1• < " i for: j ~ i*, lim Wi = 0, lim w I• = 1 

and lim r(x) = .\1·· 

This proves (b) . (c) is similar. 
Proposition C.1 was stated in terms of the utility 

of wealth function cp(x), but clearly the mathematical 
result is independent of the interpretation. Thus, if 
absolute risk aversion for gain is defined by: 

p(y)=- !Jdy) 
tf, '(y) 

where: tf,(y) = Ecp(X +y)=- Ic1e- " IY, 
1 

the conclusions stated for r(x) also hold for cp(y). 
This justifies the assertion on page 8 that for the 
function 

tf,(y) = - e- .00001y _ _ 0183- .002y 

we have: .00001 ~ p(y) ~ - 0002. 

Bounds on Optimal Choice 
Proposition C.2. Suppose: 

n 
f(a) = I c1 f1 (a) where: c1 > 0 and f1 is twice dif-

i- 1 

ferentiable and strictly concave: i = 1 • • n. Let a1 be 
the unique maximizing argument of f 1 (assumed 
finite) and a be the unique maximizer off. Suppose 
a; f a1 for some i, j. Then: 

min{a; l i= 1 "n} < a < max{a; l i= 1 ··n} . 
Proof: 

n 
(*)Df(a) = lcIDf1(a) = 0 

1 

By (i), page 5, (aI - a) ! DfI (a). Since not all a1 = a, 
not all Df1(a) equal zero. For (*) to hold 3j, k E Dfi (a) 
> o, Df k (&l < o. By: Ol &i > &, cik < ci. 

When results from the "conclusion tree" are 
taken into account and restrictions are temporarily 
waived, all of the examples of Section 4 except 
those for situation 4 are of the form: 

(C.5) max f(a) = Etf,(X +aY) 
aeR 

= Ee- .00001 (X+aY) - .o,ae- .0002(X+aY) 

which satisfies the conditions of proposition C.2. 
Therefore, one can calculate a1, which maximizes 
-e--0000Hx .avJ and a2 which maximizes the second 
term and iterate for ci in the interval (&2, &,). Restric­
tions are then easily imposed•(see {4}, page 10). 
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