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Chapter 33 
 

Universities and Agricultural Biotechnology Patent Production 
 

Jeremy Foltz, Bradford Barham, and Kwansoo Kim1 
 
 

I.  Introduction 
 

In recent years new innovations in biotechnology2 have started to change the 
agricultural economy in ways similar to the growth of the semiconductor industry.  As 
Zilberman et al. (1997) suggest, the unique features of these innovations will reshape 
agriculture as profoundly as any other past paradigm change.  Such rapid changes in 
agriculture will require new types of research if society is to formulate appropriate 
policies to manage this new economy.  Many land grant institutions are in the process of 
investing heavily in research and education efforts in agricultural biotechnology (ag-
biotech) as part of an effort with state and local support to assist in developing a vibrant 
and proximate biotechnology sector. 
 

Like the nascent agricultural biotechnology industry, the literature in agricultural 
economics is mostly in a beginning stage characterized by thought pieces (Zilberman et 
al. 1997; Ollinger and Pope, 1995) and theoretical models (Just and Hueth, 1993; 
Moschini and Lapan 1997).  This study seeks to go beyond that work by providing an 
initial empirical examination of the importance of university research in the agricultural 
biotechnology industry.  One of the key differences in agricultural biotechnology from 
previous agricultural technology is that innovations have intellectual property rights that 
produce private value that can potentially accrue to the university.  We focus on 
university agricultural biotechnology patent production as a measure of such econom-
ically valuable research that can be appropriated by public and private actors. 
 

Using data for the last five years from patent databases, the Association of 
University Technology Managers (Massing, 1996), and supplemental sources, we esti-
mate econometric count data models of university-owned agricultural biotechnology 
patents on a series of explanatory variables.  This methodology builds on recent empirical 
work that explores the broader patterns of university patents and licenses (Jaffe, 1989; 
Audretsch and Feldman, 1996).  These studies have effectively demonstrated the impor-
tance of universities in overall rates of technical innovation.  This work extends that 
research to include agricultural biotechnology. 
 

The next section reviews the relevant literature on biotechnology, patent 
production, and agricultural biotechnology.  The second section develops a general model 
of patent production and describes the process of agricultural biotechnology patenting 
highlighting differences from other agricultural technologies and other types of 
biotechnology.  Section III provides a brief discussion of the data sources and data issues 
underlying empirical analyses of patent production.  This is followed by the estimation of 
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a count data econometric model of the probability of a university producing ag-biotech 
patents as a function of university and regional characteristics.  Among the issues to be 
addressed by the econometric models are (i) Do universities with more overall resources 
for research and development produce more ag-biotech patents?  (ii) Do universities with 
more technology transfer employees produce more ag-biotech patents?  (iii) What is the 
relationship between the emphasis of the university on agriculture and ag-biotech patent 
production? 
 

II.  Literature Review 
 

The economics of research and development has received an increase in interest 
in part because of the arrival of endogenous growth theory.  Recent thinking in the 
economic growth literature has pointed to the importance of R&D to overall economic 
growth (see for example: Aghion and Howitt, 1998).  Many studies (most recently Jones 
and Williams, 1998) have found that the social return to research and development 
exceeds the private return, implying under-investment by the private sector.  Whether in 
explicit response to this situation or not, the US has had a long-standing tradition of 
public investment in R&D, much of it channeled through the university system. 
 

Universities have over the years produced a great deal of commercially important 
R&D, from milking machines to nuclear resonance scanners.  Most studies have shown 
the value of this university research to local industries to be significant.  The classic work 
on university research, Jaffe (1989), finds an association between industry R&D and 
university research.  Jaffe also finds suggestive evidence that university research pro-
motes industry R&D rather than vice-versa.  More recently, Henderson, Jaffe and 
Trajtenberg (1998) investigate the effects of university research by measuring the citation 
of university patents by private firms in their own patents.  They find that recent rules 
making it possible for universities to patent products derived from federally funded 
research, the Bayh-Dole act of 1980, has increased the quantity and lowered the quality 
of university patents.3  They, however, find no evidence to suggest that the recent 
increase in university commercialization efforts has been accompanied by an increase in 
the generation of commercially important innovations by universities. 
 

Parallel to the literature on overall university research has been one focused 
specifically on the biotechnology industry.  The clustering of the biotech industry in 
proximity to major research universities led a number of researchers including Audretsch 
and Stephan (1996) to investigate the locational linkages between biotech companies and 
university scientists.  They find that geographic spillovers are most common when 
knowledge spillovers are informal.  In cases where knowledge spillovers take place in a 
formal setting geographic proximity is less important.  Zucker, Darby and Brewer (1998) 
believe that in the first 10-15 years of the biotech revolution biotech innovations were 
characterized by naturally excludable knowledge in the hands of only a few "star" 
scientists.  They find that the generation of biotech knowledge in a specific location was 
the principle determinant of the growth of the biotech industry in that area.  They find 
that research universities and their star scientists are central to the formation of an 
industrial sector based on scientific breakthroughs. 
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What is Different about Ag-Biotech? 
 

The literature on agricultural biotechnology has pointed out that differences in 
property rights and industry market structure imply that ag-biotech deviates from the 
standard models of innovation in agriculture.  In some quarters this has called into 
question the validity of public research in what is seen as a private domain.  Moschini 
and Lapan (1997) show that conventional measures of welfare will over estimate the 
impacts of agricultural R&D when intellectual property rights are established over those 
innovations.  Zilberman et al. (1997) see public research and extension as essential to 
assuring competition in the ag-biotech industry and access to genetic materials and 
techniques.  Also they forsee an increase in new commodities, branded agricultural 
products, and production contracting.  Hayenga (1998) sees the potential for too much 
market power in the seed and chemical industries by the five top ag-biotech companies 
who have been buying up smaller companies.  He, however, suggests that the pace of 
innovation may in the long-run favor the new companies with new technologies. 
 

While the agricultural biotechnology industry is still in its infancy, one can learn 
from its more mature cousin, pharmaceutical biotechnologies.  The literature on innova-
tion has demonstrated that a key variable that will determine the spread of innovation will 
be the degree to which there exist strong enforceable property rights.  von Hippel (1988) 
shows that relative to other industries, pharmaceuticals have very strong, enforceable 
patent rights.  While this probably also applies to pharmaceutical biotechnology, agricul-
tural biotechnology may have less enforceable property rights.  Recent court cases 
involving patents on biotech seed varieties have suggested that many of the patents are 
unenforceable.  Agricultural biotechnology may also be more easily "invented around" 
than the chemical compounds of the pharmaceutical industry. 
 

If intellectual property rights over agricultural biotechnology are indeed weaker, 
the value of the innovation will be closely tied to: (i) access to the techniques, (ii) first 
mover advantages, (iii) access to the personnel.  Also agricultural biotechnology may 
continually need to be reinvented, as insects and weeds develop resistance.  This implies 
that the social returns to continual research and innovation will keep accruing, but that 
the private value of single discoveries may be reduced.  This possibility for greater social 
than private benefits from agricultural biotechnology research provides another rationale 
why university research in this area may need to play a major role. 
 

 
III.  Agricultural Biotechnology Patent Production 

 
A General Model of Patent Production:  
 

Measuring the value of research output presents many problems because most of 
the effects are ill defined in monetary terms.  Clearly the value to society of your average 
research article in most university disciplines is hard to measure.  Typically patents are 
used as a proxy for the economic value of research even though most research is not 



 623 

patentable.  Arguably much university research is not patentable, but instead creates 
publicly appropriable knowledge. 
 

Even if research is patentable, not all such research is patented.  Let a university’s 
decision rule for patenting a piece of research be as follows:  an innovation will be 
patented if the value of research output as a patent is greater than the transaction cost of 
obtaining patent4.  Let the index function of patent production be: 
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where ph is an index variable denoting the existence of a patent on that research (indexed 
by h), V(rh , D) is a value function describing the economic value of  the individual piece 
of research, rh, with university level inputs D, and transaction costs associated with the 
patenting process, TC. 
 

The key to understanding the patenting process will be the inputs and parameters 
of the value function V(rh , D).  The first input into the value function will be research 
output, rh, which can be thought of as a classic production process using labor, capital, 
and structures (labs, etc.) in the following fashion: 
 
(2)    rh = f(L, K, T). 
 
Note that while the research and the patent are individualized, the inputs in its production 
are general to the whole university.  In this equation labor, L, will include the number of 
scientists, the quality of scientists, and the quality of the research neighborhood.  The 
research neighborhood accounts for knowledge spillovers and potential agglomeration 
effects.  Capital, K, includes research funds from federal, state, industry, and university 
sources.  Structure, T, includes research facilities, labs, libraries, etc. 
 

Other factors in the value function, D, include inputs that increase the value of 
research by making the commercialization process easier.  Among these will be the 
technology transfer infrastructure at the university, the research neighborhood, and the 
state economic structure.  Better technology transfer offices would likely be more able to 
create value out of research through their contacts.  Similarly a vibrant research 
neighborhood provides contacts and networks for turning ideas into commercial 
applications. 
 

Adding up all of the research at the university, and their associated patents, gives 
us a count of the total number of patents.  The equation describing the count of patents at 

an individual university (indexed by i) is as follows: ∑
=
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where H is the total number of research projects at the university.  This equation gives a 
count of the number of patents as a function of variables affecting research output, the 
value of patenting, and the transaction costs of patenting. 
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What Is Distinctive About Ag-biotech? 
 

Having developed a general theory of university research and patent production, 
we now turn to the distinctive aspects of agricultural biotechnology.  First, in contrast to 
much university research, most of the output of ag-biotech research has value as patents.  
In fact much of the driving force in ag-biotech is the creation and utilization of property 
rights by universities in order to shore-up ever shrinking agricultural research budgets.5  
This implies that in the case of ag-biotech, patents are the relevant unit of analysis for 
measuring research output. 
 

A number of unique features of ag-biotech stand out as opposed to pharmaceutical 
biotechnology.  First, because the technology is in its infancy one will see fewer patents 
and potentially more clustering of patents in a small number of places.  The second 
unique feature is the legacy of agricultural research at land grant universities in every US 
State.  These universities have received funding from the federal and state level for more 
than a century to promote the production of useful knowledge for the farmers of their 
respective states and regions.  Historically, the land grant mission has explicitly acknowl-
edged and encouraged geographically localized spillover effects.  Both state and federal 
governments have funded research infrastructure in agricultural colleges as well as 
outreach programs directly tied to the types of technologies produced at the university.  
Clearly ag-biotech research due to its appropriable property rights structure will be a 
different sort of technology with different diffusion patterns and clientele (life science 
businesses rather than farmers themselves).  But much of the infrastructure and tradition 
of agricultural colleges will be applicable.  Note that because of the potential synergy 
between ag-biotech and pharmaceutical biotech, one would also expect to see some 
universities with strong biological sciences producing ag-biotech patents, even though 
they might lack the infrastructure of an agricultural college. 
 
 

IV.  Data 
 

A.  Output Data 
 

Our data divides into research output (patents) and on the inputs to the research 
process.  With the research output we needed to develop a consistent definition of 
agricultural biotechnology which defines it separately from other types of agricultural 
inventions and from other non-agricultural biotechnology. 
 
 
Source 
 

The ag-biotech patent data comes from the complete U.S. patent office database.6  
In order to get a consistent measure of ag-biotech patents we designed a search strategy 
that gathers only biotechnology patents specifically related to agriculture.  Note that there 
may be a large number of biotechnology patents that are useful for the production of 
agricultural biotechnology but not specific to agriculture.  Thus, the measure we used will 
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capture primarily patents on final products related to agriculture and not any intermediate 
patents.  Table 1 lists the relevant patent classifications and definitions used to determine 
whether a patent was agricultural biotechnology.  All of the patents in classes 47, 71, 119, 
426 are agricultural but only a small number of those patents are biotechnology.  All 
patents in classes 435, 800, 930, and 935 are biotechnology, but only those in class 800 
are clearly agriculturally related.  We chose all the patents in class 800, except those on 
laboratory rats and mice.  Since a patent can be listed in more than one category, we then 
took patents in classes 435, 930, and 935 if they were also cross-listed in one of the 
agricultural product categories.  The remaining patents were primarily on agricultural 
final products, rather then intermediate inputs in the research process.  Note that plant 
patents are a specific separate category of patent without any of the cross listings 
necessary for determining whether they are biotechnology.  Since they also have different 
patenting requirements and less stringent property rights associated with them, plant 
patents are not included and remain an issue for future research. 
 
 
TABLE 1  Patent Class Definitions  
 

Class Number Definition 

47 Plant Husbandry 

71 Chemical Fertilizers 

119 Animal Husbandry 

426 Food or Edible Material: Processes, Compositions, and Products 

435 Chemistry: Molecular Biology and Microbiology 

800 Multicellular Living Organisms and Unmodified Parts Thereof 

930 Peptide or Protein Sequence 

935 Genetic Engineering: Recombinant DNA, Hybrid or fused cell 
technology, and related manipulations of nucleic acid 

 
 

Since most patents take 2-3 years before they are approved, we chose patents by 
application dates.  This gives the date closest to the actual date of the research discovery.  
We chose all patents with applications after Jan. 1, 1991 and through the end of 1998.  
This provided the best match for the other university expense data we were able to obtain. 
 

We used every university we included in the data available to us (n=142).  There 
were 53 universities identified as having ag-biotech patents.  Table 2 presents the top 10 
universities in producing agricultural biotechnology patents. With only a few exceptions 
they represent top state universities from major agricultural states. 



 626 

TABLE 2  Top 10 Universities Ranked by the Number of Patents 
 

University Number of Patents 

Iowa State Univ. 23 

Univ. of California-Davis 14 

Cornell Univ. 13 

Michigan State Univ. 12 

Louisiana State Univ. 10 

Univ. of Wisconsin-Madison 10 

Univ. of Pennsylvania 9 

North Carolina State Univ. 8 

Rutgers 7 

Texas A & M Univ. 7 

Univ. of California-Berkeley 7 

 
 
B.  Input Data Sources 
 

As described in the theory section, the inputs to the patent production process 
consist of variables determining research output:  labor (L), capital (K), and structures (T) 
and university input variables in the patent value function (D). 
 
 
Labor 
 

Labor inputs include the number and quality of scientists and the quality of the 
research neighborhood.  In the model we present in the next section, we employ several 
measures of the rank of university as proxies for the number and quality of scientists and 
the quality of the research neighborhood.  Using Gourman’s Guide (1993), we developed 
measures of the overall university graduate school ranking (URANK) and biology and 
related departments ranking (BIORANK). 
 
 
Capital  
 

Capital inputs include research funds from federal, state, industry, and university 
sources. In order to obtain this information, we use the data from the National Science 
Foundation, NSF, on research and development, R&D, funding at U.S. academic 
institutions.  In order to match the other data we have, we use an average of R&D 
expenditures for the years 1991-1997.  The variables are as follows: FED_STA denotes 
the sum of R&D expenditures from federal and state & local government sources; IND 
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denotes R&D given to universities from industry sources; and INS_OTH denotes the sum 
of own institutional and all other sources.  As expected, Table 3 shows that the majority 
of the R&D money comes from federal government followed by institution (and others) 
and industry. 
 
 
TABLE 3  Input Data 
 

Variable Mean Std. Dev. Minimum Maximum 

OTT 2.56 2.81 0 19.00 
TOTALPAT 11.12 12.75 0 100.25 
FED_STA 79.605 72.380 0.462 287.498 
INS_OTH 30.563 27.888 0 139.571 
IND 8.078 8.604 0 54.829 
AGD915 6.54 11.84 0 57.20 
AGRATIO 0.025 0.022 0 0.135 
EXPFUND 1116.46 1870.01 0 6688.92 
URANK 3.61 0.91 0 4.95 
INIPAT 8.6 11.96 0 92 
INIOTT 2.0 2.88 0 19 
AGRANK 1.03 1.65 0 4.91 
BIORANK 1.34 1.79 0 4.96 

 
Note:  Number of observations=142. 
 

The zeros account for 62.5%, 68.3%, 65.5%, 58.5% of AGD915, EXPFUND, 
AGRANK and BIORANK, respectively. FED_STA, INS_OTH, IND, and EXPFUND 
are measured in $1,000,000. 
 
 
Structure 
 

Research structures include, among others: laboratories, buildings, and experi-
mental farms.  Preliminary investigations of the data showed high correlations between 
available measures of structures for research and the people (faculty and students) who 
work in them or the research monies that pay for them.  Since we had higher quality 
measures of research funding and researchers themselves than the structures they worked 
in, we used these as proxies for the infrastructure.  A variable AGD915, the average 
agricultural science doctorate degrees awarded over 1991-1995 period, is included to 
reflect the importance of agricultural graduate programs in producing ag-biotech research 
output.  AGD915 had near perfect correlation (over 0.8) with other measures we 
developed on experiment station funding.  Agricultural degrees provided a more com-
plete and cleaner measure that included more universities and better described how 
research money in agriculture was spread to different campuses in each state. 
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Other Variables in the Value Function 
 

As mentioned in the theoretical model a number of variables will shift the value 
of all patents to a university.  We expect that better technology transfer infrastructure 
(reflected as a lager number of employees) would create more value out of research ideas 
by better knowledge of the patent process.  The average number of employees (measured 
in full-time equivalents) in technology transfer offices over the 1992-1996 period (OTT) 
is included as a measure of this technology transfer infrastructure (AUTM, 1992-1996).  
To capture the impact of state economic structure on patent values, we include a variable, 
AGRATIO, which measures the ratio of gross state product in agriculture (farms, 
forestry, and fisheries) to total state gross product7.  The average value of this ratio equals 
0.025 with the maximum value 0.135 in North Dakota and minimum of 0.006 in the 
misnamed "Garden State" of New Jersey. 

 
 

V.  Empirics 
 

The empirics undertaken below involve three steps.  The first is to estimate a 
reduced-form count data regression model on patent production including various factors 
that might influence the securing of ag-biotech patents by research universities.  Next, the 
patent data base is used to further explore the potential value of individual patents to the 
university and the local economy by tracking the number of citations of each patent, 
including all local, in-state, citations (excluding those made by the same university).  The 
third step is to identify whether there are some “star-scientists” who may be responsible 
for a large proportion of patents in some locales. 
 

Among these steps, only the econometric models need some further elaboration.  
Standard procedure with count data is to use a poisson regression framework (Hausman 
et al., 1984).  Our data exhibit two distinct problems that require some modification.  Our 
data exhibit overdispersion relative to the poison distribution—the sample variance of the 
patent variable is not equal to the sample mean.  This implies that the correct procedure 
estimates the model assuming a negative binomial distribution. 
 

The second econometric problem comes from the censoring of our dependent 
variable.  In contrast to most patent studies, we use all potential patent producers within  
a definable universe, research universities.  By using all universities in our data, we can 
determine the factors promoting ag-biotech patenting.  On the other hand, our ag-biotech 
count data feature the partial observability associated with zero outcomes since most 
universities without an explicit agricultural focus would not be expected to produce ag-
biotech patents.  Moreover, some universities with agricultural research capacity might 
not be able to produce patents due to various impediments including the transaction costs 
associated with the application process.  Thus our dependent variable, Pi, may equal zero 
for one of two reasons: 
 

Pi = 0, because there is no ag-biotech related research on campus, or no patent 
 office. 
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Pi = 0: because the ag-biotech research on campus did not yield a patent.  
 
In the former case the dependent variable will always be zero, in the latter case the 
dependent variable is zero because of factors we have specified as independent variables. 
 

Following Mullahey (1986), Hausman et al. (1984), and the discussion in Greene 
(1997) we specify a Zero-Inflated Negative Binomial (ZINB) regression model to 
analyze our university ag-biotech patent count data.  This specification allows for partial 
observability of zero outcomes as well as over-dispersion of the count data.  Let z denote 
a binary indicator of regime 1 (z = 0) or regime 2 (z = 1), and let P* denote the outcome 
of the generalized Poisson (negative binomial) process in regime 2.  Note that the 
observed number of patents, P, is z × P*.  This splitting model is extended to allow z to 
be explained by a set of covariates. A ZINB model then becomes 
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where F is a cumulative pdf assumed to have a logistic distribution8, µi is a generalized 
Poisson parameter formulated by the log-linear model (ln µi = ββ ′xi + ε i = ln λi + ln ui), ββ  
and γγ  are parameter vectors to be estimated, and w  and x are covariates.  We assume the 
exponential of the disturbance ε i (i.e., ui), which reflects cross-sectional heterogeneity, to 
have gamma distribution.9  Then the probability density function for the observed random 
variable (Pi) becomes 
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Therefore, the log-likelihood is simply  
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Our main model of interest estimates a ZINB model of the production of ag-
biotech patents.  We run two versions of this model: the first is a constrained model that 
ignores the agricultural college infrastructure variables, while the second includes two 
potentially relevant measures of agricultural college importance.  Before running these 
ag-biotech models we explore a benchmark model for comparison purposes that 
estimates a negative binomial model of all university patents. 
 

The benchmark model, with total university patents (from AUTM) as a dependent 
variable, has the following regressors:  (1) number of employees working in the office of 
technology transfer (OTT); (2) research money from government (FED_STA), industry 
(IND), and institutional and other sources (INS_OTH), and, (3) academic rank of the 
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university’s graduate school (URANK).  Respectively, these regressors are meant to 
represent the resource commitment of the university to pursuing patents from research, 
the capital resources available for the pursuit of research, and the quality of the faculty 
involved in research. 
 

Of the two ag-biotech patent models, the constrained model basically replicates 
the structure of the benchmark model with the addition of a variable AGRATIO to 
measure the relative importance of agriculture in the state economy and three variables to 
describe the censoring at zero.  In order to describe universities that would not be 
expected to have any ag-biotech patents, we use three variables: INIOTT, INIPAT, and 
LAND.  The first two are the number of technology transfer personnel and the total 
number of patents the university held at the beginning of the period our data cover.  The 
variable LAND is a dummy variable for land grant institutions. 
 

The second ag-biotech patent model adds two additional variables which may be 
more specific to the production of ag-biotech research:  (1) the total number of 
agricultural department Ph.Ds awarded at the university over the 1991-1995 period 
(AGD915); and (2) the ranking of the universities graduate biology programs 
(BIORANK).  Other variables, such as ranking of top agricultural degree programs, 
USDA funding, or number of experimental station scientists, which could also provide 
measures of the specific resources committed to agricultural research are omitted because 
of their very high correlation with the number of agricultural Ph.Ds awarded (they are 
also not as comprehensive in their coverage of universities across the sample as the 
measure we used). 
 
 

VI.  Results 
 

The benchmark negative binomial patent model results are reported in Table 4.  
The results of this model are consistent with our underlying theoretical model.  Two of 
the estimated coefficients, the number of office of technology transfer employees and 
university academic rank, have positive values that are statistically significant.  Thus, an 
increase in any of these variables is likely to increase the number of patents secured by a 
research university.  Interestingly, the coefficient of the square of the number of offices 
of technology transfer employees (OTT2) is negative and statistically significant.  This 
and the positive coefficient of OTT identify a quadratic relationship between patent 
production and the number of office of technology transfer employees, i.e., decreasing 
returns to scale in the technology transfer bureaucracy.  The coefficient on Federal 
funding is positive and statistically significant at a 10% confidence level.  The coeffi-
cients on research funds from both industry and institutional and other sources are not 
significant.  Having controlled for university quality and investments in technology 
transfer personnel, actual levels of funding are less important. 
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TABLE 4  The Benchmark Patent Model Dependent Variable:  All University 
Patents 
 

Parameters Coefficients Standard Errors 

Constant 1.07 0.309*** 

OTT 0.2924 0.0725*** 

OTT2 -0.0159435 .0039303*** 

FED_STA 0.00378 0.00202* 

INS_OTH 0.00366 0.0033 

IND 0.0182 0.0112 

URANK .3099 0.0928*** 

Ln Alpha 

Log likelihood 

-0.627 

-599.5722 

0.141*** 

 
Likelihood ratio test of epsilon (generalized poison parameter) = 0: 
χ2 (1) = 1492.29   Prob > χ2 = 0.0000 
 
 

The two ag-biotech patent regressions are reported in Table 5.  In both cases 
likelihood ratio tests of the zero inflated negative binomial model specification are 
significant at greater than a 1% level.  The specification is robust with respect to both the 
distributional assumptions (negative binomial rather than poison) and censoring at zero.  
Although the zero inflation specification is correct, only the initial number of office of 
technology transfer personnel is at all significant (10%).  The negative sign on its 
coefficient, though barely significant, is consistent with our operational hypothesis.  The 
insignificant coefficient on LAND confirms what University of Pennsylvania's presence 
in Table 2 suggests: that ag-biotech patenting is also done outside the land grant system. 
 

The ag-biotech estimations follow the same pattern as the benchmark patent 
model, although the agricultural variables suggest that, as hypothesized, ag-biotech 
patents are related to agricultural infrastructure.  In the constrained model, as in the 
benchmark model, the coefficients on technology transfer office employees (OTT and 
OTT2) are statistically significant (at a 10 and 5% level respectively) and have the 
expected signs.  Only one coefficient among R&D expenditure variables, institutional 
and other sources (INS_OTH), is statistically significant and positively related to ag-
biotech patent production.  The percent of agriculture in the state's economy (AGRATIO) 
is also positively related to ag-biotech patent production, although it is only significant at 
a 10% level.  Since the constrained estimation does not account for agricultural college 
infrastructure, AGRATIO becomes a proxy for having an agricultural research agenda. 
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TABLE 5  Simple Ag -Biotech Patent Regression Model  Zero-Inflated Negative 
Binomial Regression Dependent Variable:  Ag -Biotech Patents 
 

Parameters Coefficients Standard Errors 

Constant -1.874 1.053* 

OTT 0.317  .1666* 

OTT2 -0.0263 0.012** 

FED_STA 0.00019 0.00392 

INS_OTH 0.0133 0.00608** 

IND -0.0013 0.0212 

URANK 0.314 0.3007 

AGRATIO 13.81 7.13* 

Inflate Variables 

Constant 

 

1.184   

 

0.539** 

INIOTT -0.322  0.1697* 

INIPAT -0.0132  .0424 

LAND -15.98  775.86 

Log Likelihood 

-180.87 

Number of obs  =      142 

Non-zero obs     =       56 

 
Likelihood ratio test of inflate=0: χ2(4) =   26.01   Prob > χ2 = 0.0000 
Likelihood ratio test vs. poison: χ2(5) = 179.97   Prob > χ2 = 0.0000 
 
 
 

The unconstrained ag-biotech patent model in Table 6 explores the potential 
importance of university orientation to agriculture in predicting ag-biotech patent 
production.  The regression coefficient of the number of agricultural degrees issued in 
1991-1995 is positive and statistically significant.  This measure seems to capture the 
empirical regularity that most of the universities with larger numbers of ag-biotech 
patents are indeed ones with a strong agricultural emphasis.  Our measure of university 
quality, URANK, is significant and positively related to ag-biotech patent production.  
Counter to one of our working hypotheses, the negative and significant coefficient on 
BIORANK suggests that there is little or no synergy between strong biology programs 
and ag-biotech patent production.  Perhaps just as interesting is the fact that none of the 
research fund variables are statistically significant in the regression.  This suggests that 
having controlled for the financing of the agricultural college and university quality, 
overall financing levels are not as important. 
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TABLE 6  Full Ag -Biotech Patent Regression Model  Zero-Inflated Negative 
Binomial Regression Dependent Variable:  Ag -Biotech Patents 

 

Parameters Coefficients Standard Errors 

Constant -3.569  1.248*** 

OTT 0.4596  0.170*** 

OTT2 -0.030 0.0129** 

FED_STA 0.00000088 0.0000034 

INS_OTH 0.0000038 0.0000057 

IND -0.000012 0.000018 

AGRATIO 7.56 6.45 

AGD915 0.034 0.0098*** 

URANK 0.844 0.368** 

BIORANK -0.287 0.144** 

Inflate Variables 

Constant 

 

1.184 

 

0.539** 

INIOTT -0.3109 0.184* 

INIPAT -0.0248 0.0543 

LAND -15.61 1144.89 

Log Likelihood 

-172.27 

Number of obs    

Non-zero obs     

142 

  56 

 
Likelihood ratio test of inflate=0: χ2 (4) =  17.46   Prob > chi2 = 0.0016 
Likelihood ratio test vs. poison: χ2 (5) =  90.56   Prob > chi2 = 0.0000 
 
Note:  Number of observations=142.  The symbol *, ** and *** denote significance at 
10, 5, 1%, respectively. 
 
 

Another way of looking at the patent data is to identify the top 10 patent 
producers, i.e., the research scientists who have produced the most ag-biotech patents.  
Table 7 presents these results.  Iowa State is at the top, with one scientist who has 
produced 20 patents.  Overall, this table captures the potential importance of “star 
scientists” in the production of ag-biotech patents, and supports a fairly focused event 
analysis to understand what factors may contribute to their success and to explore 
whether this success translates into university and local gains. 



 634 

TABLE 7  Top 10 Patent Producers (Numbers for Scientists) 
 

Star No. of Patents 

Iowa State Univ. #1 20 

U. of Idaho #1 5 

UC-Davis #1 4 

Louisiana State U. #1  4 

Cal. Inst. of Technology #1 4 

North Carolina State U. #1 3 

New York U. #1 3 

U. of Pennsylvania #1 3 

U. of Wisconsin-Madison #1 3 

Louisiana State U. #2 3 

Rutgers U. #1 3 

Clemson U. #1 3 

 
 

VII.  Conclusions 
 

Agricultural biotechnology is still in its infancy as a technological revolution.  
This work has provided the starting point for future empirical research on the production 
of ag-biotech innovations in US universities.  The data used here are the first to measure 
comprehensively ag-biotech patent production at the university level.  We develop a 
consistent theoretical model and an econometric methodology for understanding the 
university patent production process.  In contrast to many patent studies, the zero-inflated 
negative binomial estimation procedure we employ can describe a specific type of patent 
production from a census of all universities. 
 

The empirical investigations have demonstrated the importance of the land grant 
system in ag-biotech innovation.  Ag-biotech patent production does seem to respond to 
the infrastructure of agricultural colleges as well as (in one of our regressions) the 
importance of agriculture in the local economy.  We also demonstrate the importance of 
having a technology transfer office to the production of patents in general as well as ag-
biotech patents.  We do however, find that there are decreasing returns to scale in the 
technology transfer bureaucracy. 
 

Along with agricultural college infrastructure, own institutional support proved to 
be potentially important.  If this own institutional funding comes from patent revenues, 
there is the potential for a virtuous cycle with better patent producing universities able to 
produce more patents.  Among the surprising results is that industry financing does not 
promote more privately capturable research (patents).  While the emerging debate on ag-



 635 

biotech has been preoccupied by a “commercial frenzy” invading the sanctity of 
universities, the data here provide little or no support for the effectiveness of this as a 
path to patent production.  Again, there may be too little time for such arrangements to 
show results in this data set in terms of patent production.  However, we think that 
industry brokered funding agreements may lead to company owned patents rather than to 
university owned ones that would show up in our data set.  Future research could delve in 
depth into the relationship between university/industry agreements using case studies. 
 

Much research remains into the production of ag-biotech patents.  Better data can 
help refine the empirical methods used here by disaggregating the years and improving 
the measurement of what constitutes agricultural biotechnology by including process 
patents.  Future research on ag-biotech licensing at the key universities identified here 
can shed some light on the issues of spillover effects and the different values created by 
individual ag-biotech patents.  Finally, the research presented here suggests the impor-
tance of star scientists.  Future research should develop the data to delve deeper into their 
importance. 
 
 

Endnotes 
 

 
1We wish to thank participants at the "Transitions in Agricultural Biotechnology" 

conference and the Northeast Ag. and Resource Economics Association meetings, 
William Lesser, and Boris Bravo-Ureta for helpful suggestions as well as Charles 
Goodwin for help in data access.  The authors are respectively Assistant Professor, Dept. 
of Ag. and Resource Economics, University of Connecticut; and Associate Professor and 
Post-Doctoral Researcher, Dept. of Ag. and Applied Economics, University of 
Wisconsin-Madison.  Correspondence to: Jeremy Foltz, Dept. of Ag. and Resource 
Economics, U-4021, 1376 Storrs Rd. Storrs CT, 06269. Email: Jeremy.Foltz@Uconn.edu 
 

2The authors define biotechnology as the application of the tools of molecular 
biology, primarily recombinant DNA and related techniques, to modify organisms in 
order to increase productivity, improve quality, or introduce novel characteristics. 
 

3They measure the quality of a patent by the number of references to that patent 
by other patents. 
 

4Note that we are abstracting from the process.  Universities in fact make 
applications for patents, but final decisions on them are made by government patent 
inspectors. 
 

5To date, the empirical evidence has shown that patents of all types are only a 
small source of revenue at most universities. 
 

6Since the US has the strongest rules on biotechnology patents, US patents 
represent the important patents relative to European or World patents.  A number of 
services abstract agricultural biotechnology patents, but proved difficult to use for total 
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measures of patent production because of often subjective search criteria used.  They also 
tended to have a large time lag for inclusion in the database. 
 

7Source: U.S. Bureau of Economic Analysis, Survey of Current Business, May 
1995. 
 

8This is sometimes specified as a normal distribution, leading to the equivalent of 
a "probit" model on the censoring rather than the "logit" style model specified here.  
Changing these distributional assumptions did not qualitatively change the results. 
 

9Overdispersion can be caused by the type of zero outcomes we correct for using 
the zero-inflated model.  However, correctly specifying the censoring problem under the 
assumption of a poisson distribution did not eliminate the overdispersion problem, 
suggesting that the ZINB model is the correct one. 
 

10The unconditional distribution f(Pi = j | xi) is the expected value (over ui) of f(Pi 
= j | xi, ui), 
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where g(ui) is assumed to have a gamma distribution. 
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