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The bio-economics of managing invasive plant externalities in forests with 

heterogeneous landowner preferences 

 
Abstract. Forest invasive plants can cause market (MES) and non-market ecosystem service 

(NMES) losses to private forest landowners. Because bio-invasions create spatial-dynamic 

ecological-economic linkages among landowners, bio-invasion control is a weaker-link public 

good and is likely to be underprovided. We hypothesize that heterogeneity in forest landowner 

preferences is a major determinant of bio-invasion spatial externalities. To test this hypothesis, 

we develop a spatial-dynamic model of bio-invasion and control with two agents that value 

differently the MES and NMES produced by their forestlands. The bio-invasion spreads within 

and across lands according to short, and long-distance dispersal mechanisms and landowners 

make control decisions that ignore the impacts on their neighbors. In the absence of long-

distance dispersal, they both control the bio-invasion regardless of their preferences. In the 

presence of long-distance dispersal and the case of heterogeneous preferences, a central planner 

controls the bio-invasion. In the case of decentralized management, however, the MES 

landowner implements bio-invasion control, but the NMES landowner does not, causing a 

reduction in the aggregate payoffs, compared to the centralized management case. We compare 

uniform and non-uniform payments for ecosystem services (PES) and find that a PES to the 

NMES landowner only is enough to mitigate the externality whereas a non-uniform PES is 

costlier and leads to a non-additional participation of the MES landowner.  

  

Keywords: spatial-dynamic modeling; externalities; forest ecosystem services; invasive plants. 

JEL D62, Q23, G57 
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I. INTRODUCTION  

 Effective control of biological invasions is critical for both the health of forest 

ecosystems and the welfare of human communities that benefit from them. The U.S. is 

experiencing an extensive forest invasive plant problem. Most forest invasion studies have 

considered the case of a central planner, which is relevant for public lands in the western U.S 

(e.g., Horie et al., 2013). However, more than half of U.S. forests are owned or managed by 

private parties. Also, forest landownership is expected to become increasingly fragmented: 70% 

of private forest landowners in the U.S. are above 70 years old (USFS 2015). Family landowners 

report a diverse set of ownership motivations and management objectives driven by both 

nonmarket ecosystem services (NMES) and market ecosystem services (MES) (Butler 2008). 

Invasive species management on private forests differs from that on public forests because of the 

strategic nature of decentralized management and the potential for spatial-dynamic externalities 

in invasion management among multiple, heterogeneous landowners (Fenichel, Richards, and 

Shanfelt 2014; Atallah, Gómez, and Conrad 2017). Many forest invasive plants are dispersed 

through short-distance (SDD) and long-distance dispersal (LDD) mechanisms, as opposed to a 

dispersal to the nearest neighboring spatial unit only. This dispersal pattern creates spatial 

linkages among private land parcels that go beyond the contiguous land parcel, a departure from 

a major assumption made in bioeconomic models of invasive species spread and control 

(Aadland et al., 2015; Epanchin-Niell and Wilen 2012, 2015). This ecological feature is crucial 

in modeling how externalities are generated on private lands and how private actions affect and 

are affected by the invasion risk over the entire landscape (Atallah, Gómez, and Conrad 2017). 

In this paper, we consider the case of glossy buckthorn in white pine forests.  Glossy 

buckthorn (Frangula alnus P. Mill.) is a shrub that is non-native and invasive in North America. 
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Buckthorn is one of around 20 non-native woody plants that threaten eastern US forests (Webster 

et al., 2006). It aggressively colonizes forest edges and its moderate shade tolerance (Sanford et 

al., 2003; Cunard and Lee 2009) allows colonization of forest understories where it can form a 

dense, persistent layer affecting NMES such as preventing recreation and changing fauna and 

flora habitats (Frappier et al., 2003; Fagan and Peart 2004; Cunard and Lee 2009; Lee and 

Thompson 2012; Koning and Singleton 2013). Through competition, buckthorn affects MES 

provision by delaying the regeneration and growth of economically important forest trees such as 

the eastern white pine (Fagan and Peart 2004; Frappier et al., 2004; Koning and Singleton 2013). 

Buckthorn recruitment and spread occur entirely from seed (Godwin 1943; Lee and Thompson 

2012), which are bird-dispersed (Godwin 1943; Catling and Porebski 1994). Its aggressive 

colonization of forest edges, moderate shade tolerance, and dispersal are traits shared with other 

forest invaders, such as Japanese barberry and Amur honeysuckle. It inhibits the growth and 

regeneration of native trees.  

Spatially-explicit bioeconomic models of invasion spread and control can inform 

effective prevention and control of forest invasive plants, the sustainability and resiliency of 

forest ecosystems, and the sustained provision of forest MES and NMES. To do so, such models 

need to represent how preferences over forest MES and NMES drive landowner decisions and 

how divergence in such preferences and management objectives can, under certain conditions, 

contribute to the generation of bio-invasion risk from the parcel level to the landscape level 

through. They can then be useful for policymakers and stakeholders to compare the effectiveness 

of current uniform technical and financial assistance programs (e.g., USDA NRCS) to 

alternative, non-uniform incentives that build on the knowledge about the private incentives of 
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different ownership types (as driven by preference heterogeneity), their strategic behavior, and 

their contribution the landscape-level bio-invasion risk. 

 The hypothesis of this research is the following: fragmenting private forest 

landownerships such as in the Northern U.S. can act as drivers of bio-invasions at the landscape 

level. That is, heterogeneity among landowners managing ecologically-connected, transboundary 

resources can have a detrimental effect on the aggregate landowner welfare (Dayton-Johnson and 

Bardhan, 2002; Baland et al., 2007) and can increase the wedge between centralized and 

decentralized management (Oates 1972; Besley and Coate 2003). To test this hypothesis, we 

develop a spatial-dynamic model of bio-invasion and control with two agents that value 

differently the MES and NMES produced by the forest. We parameterize the model to represent 

two white pine forest stands invaded by the glossy buckthorn. One stand is managed for 

household recreation (i.e., NMES) and the other for timber (i.e., MES). We use non-cooperative 

and cooperative game theory to find conditions that lead to an underprovision of bio-invasion 

control and estimate the social cost of the externality. Finally, we compare the effectiveness of 

uniform and non-uniform payments for ecosystem services in achieving the socially efficient 

level of bio-invasion control.  

 There are three major differences between most existing related models and those we 

propose. First, in previous literature, eradication is assumed to be ecologically feasible, and 

focus is put on economic optimality (Epanchin-Niell and Wilen 2015). However, in the case of 

invasive plant management, eradication is not necessarily ecologically possible mostly because 

of temporal lags in symptom expression, imperfect control strategies, or spatial-temporal scale 

mismatch between spread and control (Homans and Horie 2011; Aadland, Sims, and Finnoff 

2015). Incorrectly assuming ecological feasibility plausibly leads to an underestimation of 



6 
 

expected damages and overestimation of the effectiveness of private and public expenditures. 

Second, land manager preferences, management objectives, damages, costs, time preferences, 

and planning horizons have been assumed to be homogenous among landowners (e.g., Epanchin-

Niell and Wilen 2015). Assuming away landowner heterogeneity precludes the analysis of 

tradeoffs between centralized and decentralized management when spillovers are present (Belsey 

and Coate 2003). Preference heterogeneity and the extent of spillovers can determine the 

magnitude of the gap between centralized and decentralized management payoffs, in the case of 

public good provision (Oates 1972; Besley and Coate 2003). However, society’s preference over 

centralized versus decentralized management is theoretically ambiguous when both resource and 

preference heterogeneity are present and significant (Costello and Kaffine 2016). The models we 

propose here can help characterize how resource and preference heterogeneity parameters drive 

the divergence between centralized and decentralized solutions. Third, spillover effects have 

been studied in the context of local, deterministic dispersal (Epanchin-Niell and Wilen 2015) or 

among immediately adjacent neighbors who differ only by their location on the landscape (e.g., 

Rich et al., 2005a; 2005b). Little research has considered spillover effects that are generated by 

within-parcel decisions and that can affect both adjacent and distant parcels through SDD and 

LDD dispersal mechanisms (Atallah, Gómez, and Conrad 2017). Specifications of externalities 

that do not account for LDD might underestimate the role of private incentives and strategic 

decision making in decentralized management on the resultant landscape-level risk generation. 

  

II. METHODS  

We use classical non-cooperative (simultaneous and sequential moves) and cooperative (Nash 

bargaining) game theory with two neighboring forest landowners to estimate the social cost of 
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the externality under the different game settings. We model each forest stand as a cellular 

automaton that stochastically updates its invasion states (uninvaded, invaded at increasing levels) 

in discrete time steps based on the invasion state and distance to contiguous and noncontiguous 

cells to which it is ecologically connected through SDD (Atallah et al., 2015) and LDD 

mechanisms (Atallah, Gómez, and Conrad, 2017). The value of forestland located in a cell 

evolves over time and depends on the bio-invasion state of each cell. The model has two 

landowner types. Landowner A manages a forest stand for its NMES and perceives the negative 

impact of the invasive plant on the recreation value of the forest. Landowner B manages their 

private pine forest to produce timber and perceives the negative impact of the invasive plant on 

pine tree through a delayed regeneration and growth of young seedlings. Both managers choose a 

bio-invasion strategy to maximize the discounted expected utility from the MES and NMES 

provided by their trees, subject to the ecological invasion risk dynamics within and across their 

forestland (Kovacs et al., 2014). Landowners are heterogeneous in their preferences for MES vs. 

NMES, but they face the same costs of bio-invasion control. We use the Nash equilibrium 

solution concept to solve a simultaneous-move, non-cooperative game where the landowners do 

not cooperate and do not share any information about their strategies. We also use the subgame 

perfect Nash equilibrium concept to solve a sequential, non-cooperative game, where one player 

moves first (i.e., as determined by the bio-invasion path) and the other player observes the move 

and makes their choice accordingly (Tirole, 1988). In both simultaneous and sequential move 

cases, we consider situations where the bio-invasion starts in forestland A (i.e., A moves first) 

and forestland B (i.e., B moves first).  

Data collected over simulation runs are the expected utility realizations under each 

strategy combination. Outcome realizations for a given run within an experiment differ due to 
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the randomness of the bio-invasion process and its initial conditions. The model is written in 

Java using AnyLogic software. 

 

III. A MODEL OF EXTERNALITY PRODUCTION AND CONTROL 

Our model considers two agents whose utilities are spatially connected through a network, 

composed of the combination of two independently managed grids. The grids represent 

forestlands that are linked through the short- and long-distance dispersal of an invasive plant, 

glossy buckthorn. Landowner A’s recreation value is the product of their consumer surplus (CS) 

per recreation day and their average user days (UD) (Rosenberger et al. 2013). Both CS and UD 

are nonlinear functions of the longest connected sub-network composed of uninvaded forest 

stands, representing a forest recreating trail. The bio-invasion affects utility through its effect on 

the Landowner B’s net revenues which are impacted by a delayed growth of young trees in 

invaded stands (i.e., adult trees are not affected). Each landowner’s action to control the invasive 

plant determines their utility and the utility of the other landowner because they are connected 

through a biophysical network of trees and invasive plants; the actions of each of them within 

their parcels have spatial and dynamic consequences for the neighboring land parcel.  

Grid GA represents forestland A and is the set of I*J cells denoted by their row and column 

position (i, j). Each cell (i, j) represents a pine tree. Similarly, grid GB represents forestland B and 

consists of M*N cells denoted by their row and column position (m, n). Each pine tree is modeled 

as a cellular automaton that updates its diameter (i.e., timber yield) and infestation states in 

discrete time steps (t) based on its own current diameter and infestation state and the infestation 

state of its neighbors (i.e., SDD process) and non-neighboring pine trees (i.e., LDD process). 

Each tree’s infestation state transitions are governed by a discrete-time Markov chain model (i.e., 
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the probability distribution of the next state depends only on the current state and not on the 

sequence of events that preceded it). A tree in cell (i,j) or (m,n) and state Healthy (H) transitions 

to state Infested-undetectable (Iu) once seeds are dispersed to it, and they successfully germinate. 

This transition probability depends in a distance and density-dependent way on the number of 

infested pine trees on the landscape. Subsequently, the invasive plant reaches a size that makes it 

visually identifiable or detectable, at which point the tree transitions to state Infested-detectable 

(Ed) and a landowner can make a bio-invasion control decision. The transition to state Infested-

moderate (Im) and later to state Infested-high (Ih) occurs as the invasive plant grows, forms a 

clump, and produces berries that can then be dispersed to the landscape via the SDD and LDD 

processes.  

An externality emerges when the privately optimal management strategy in one forestland 

causes the bio-invasion to spread to the neighboring parcel (Figure 1) thus affecting the 

neighboring landowner’s utility. We next describe the managers’ private utility maximization 

problems.   

[Figure 1] 

Economic Model 

Each landowner’s objective is to maximize their utility by choosing an invasive plant control 

strategy, 𝒲. The optimal shading strategy 𝒲∗ translates into a set of cell-level control variables 

{𝑧𝑖,𝑗,𝑡}equal to 1 if control takes place and 0 otherwise. The objective of a landowner of type A is 

to choose the set of binary control variables 𝒲 that maximize the following expected discounted 

net recreation value, where E is an expectation operator and 𝜌 is a discount factor:  

𝑚𝑎𝑥
𝒲

E ∑ 𝜌𝑡
𝑡∈𝑇 {𝐶𝑆( ∑ 𝑥𝑖,𝑗,𝑡

𝐺𝐴
(𝑖,𝑗) ) ∗ 𝑈𝐷( ∑ 𝑥𝑖,𝑗,𝑡

𝐺𝐴
(𝑖,𝑗) ) − 𝑐 ∑ 𝑧𝑖,𝑗,𝑡

𝐺𝐴
(𝑖,𝑗) }                                 [1]      

subject to   
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 𝑥𝑖,𝑗,𝑡 −  𝑥𝑖+1,𝑗,𝑡 =  𝑥𝑖,𝑗,𝑡 −  𝑥𝑖,𝑗+1,𝑡 = 0 ∀ (𝑖, 𝑗)|𝑥𝑖,𝑗,𝑡 = 1                        [2] 

E(𝒔𝑖,𝑗,𝑡+1) = 𝐏T 𝒔𝑖,𝑗,𝑡                  [3] 

In Eq. (3),  𝐶𝑆( ∑ 𝑥𝑖,𝑗,𝑡
𝐺𝐴
(𝑖,𝑗) ) = 𝑎0 + 𝑎1 ∑ 𝑥𝑖,𝑗,𝑡

𝐺𝐴
(𝑖,𝑗) + 𝑎2 (∑ 𝑥𝑖,𝑗,𝑡

𝐺𝐴
(𝑖,𝑗) )

2

, 𝑎0 < 0, 𝑎1 > 0, 𝑎2 < 0  is 

the consumer surplus per recreation day, 𝑈𝐷( ∑ 𝑥𝑖,𝑗,𝑡
𝐺𝐴
(𝑖,𝑗) ) = 𝑏0 + 𝑏1 ∑ 𝑥𝑖,𝑗,𝑡

𝐺𝐴
(𝑖,𝑗) +

𝑏2 (∑ 𝑥𝑖,𝑗,𝑡
𝐺𝐴
(𝑖,𝑗) )

2

, 𝑏0 < 0, 𝑏1 > 0, 𝑏2 < 0 , is the average user days, and 𝑧𝑖,𝑗,𝑡 = 1 if control takes 

place in cell (𝑚, 𝑛) in period 𝑡 with unit cost 𝑐 and zero otherwise. Eq. (1) is a spatial 

connectivity constraint that ensures that the argument of the CS and UD functions is a trail 

uninterrupted by the bio-invasion. Equation (3) is the equation of motion, specified as a cell-level 

infection state transition equation where P is the infestation state transition matrix.  

 Landowner B’s utility is equal to the timber revenues, which are a linear function of the 

number of pine trees, their diameter, and timber values. The objective of a landowner of type B is 

as follows:  

 𝑚𝑎𝑥
𝒲

𝐸 ∑ 𝜌𝑡 ∑ (𝑟𝑑,𝑚,𝑛,𝑡 − 𝑧𝑚,𝑛,𝑡 𝑐)
𝐺𝐵
(𝑚,𝑛)

𝑇
𝑡                                               [4] 

subject to E(𝒔𝑚,𝑛,𝑡+1) = 𝐏T 𝒔𝑚,𝑛,𝑡.                [5] 

In Eq. (4), 𝑟𝑑,𝑚,𝑛,𝑡 is the revenue in cell (𝑚, 𝑛) at time t that depends on timber diameter 𝑑𝑚,𝑛,𝑡 

and   𝑟𝑑,𝑚,𝑛,𝑡 = 𝑝0 𝑑𝑚,𝑛,𝑡 𝑖𝑓 𝑑𝑚,𝑛,𝑡 ≤  𝜏0 for seedlings,  𝑟𝑑,𝑚,𝑛,𝑡 = 𝑝1 𝑑𝑚,𝑛,𝑡  𝑖𝑓 𝑑𝑚,𝑛,𝑡 ≥  𝜏1 (young 

trees), and  𝑟𝑑,𝑚,𝑛,𝑡 = 𝑝2 𝑑𝑚,𝑛,𝑡  𝑖𝑓 𝑑𝑚,𝑛,𝑡 ≥  𝜏2 (mature trees), where 𝜏0 , 𝜏1, 𝜏2 are timber 

diameter thresholds that command net prices 𝑝0, 𝑝1, 𝑝2 (i.e., prices net of production costs 

excluding bio-invasion control costs), where 𝑝0 <  𝑝1 < 𝑝2. The damage of the bio-invasion for 

GB occurs through a delay of the transition from diameter state 𝜏0 to diameter states 𝜏1and 𝜏2. As 

in Eq. (1), 𝑧𝑚,𝑛,𝑡 = 1 if control takes place in cell (𝑚, 𝑛) in period 𝑡 with unit cost 𝑐 and zero 

otherwise. 
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 More generally, a landowner’s utility function can be generalized as 𝑈𝑡 = 𝑈(𝜆, 𝑈𝑡
𝐴

, 𝑈𝑡
𝐵

), 

where 𝜆 varies from 0 to 1 as a landowner’s type corresponds to an exclusively timber-driven 

type (𝜆 = 0) to exclusively NMES-driven type (𝜆 = 1). 

Model of Spatial-Dynamic Externality Dispersal 

The invasive plant is primarily introduced to forestland through bird-dispersed seeds through a 

long-distance dispersal mechanism (LDD). All external grid boundaries are reflecting (i.e., when 

the bio-invasion reaches the boundary of a grid representing, say, a road, it might be bounced 

back inside it according to Eq. 3 and 5). In contrast, according to the LDD process, the bio-

invasion can move off one grid along the inter-grid boundary in search of a new host. According 

to the SDD, in each time step, a Healthy pine tree can receive invasive plant seeds at time t+1 

from any of its eight neighboring trees if they are in state Infested-moderate. Seeds successfully 

germinate if 𝑢𝑡 < 1 − 𝑒−𝛼 and do not germinate if  𝑢𝑡 ≥ 1 − 𝑒−𝛼, where 𝑢𝑡  is a random draw 

from 𝑈~ (0, 1). The LDD mechanism, in contrast, causes trees in state Healthy (H) to transition 

to state Infested-undetectable (Iu) with a distance and density-dependent probability 𝑎1 and then 

to state Infested-detectable (Ed) with probability 𝛼2. The transition to state Infested-moderate (Im) 

occurs with a probability 𝛼3 , and the transition to state Infested-high (Ih) with a probability 𝛼4. 

We define these probabilities and their associated parameters in Table 1. First, we focus on 

probability 𝛼1, which drives the distance and density-dependent specification of the externality. 

This probability depends on the number and location of trees in state 𝐼𝑚or 𝐼ℎ  within the same 

forest land parcel and in the neighboring parcel. The distance and density-dependence of this 

probability captures the impact of a landowner’s private bio-invasion control actions, within a 

grid, on the spatial damages borne by their neighbor at the border of and within the adjacent grid. 
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The transition matrix P in Eq. (8) governs the SDD and LDD mechanisms. It can be expressed as 

follows: 1

  P =  

(1 − 𝛼1) 𝛼1 0 0 0
0 1 − 𝛼2 𝛼2 0 0
0 0 1 − 𝛼3 𝛼3 0
0 0 0 1 − 𝛼4 𝛼4

0 0 0 0 1

             [6] 

In Eq. (6), limiting the notation to GA for brevity, 𝛼1 can be expressed as:  

 𝛼1 = Pr(𝑠𝑖,𝑗,𝑡+1 = 𝐼𝑢 | 𝑠𝑖,𝑗,𝑡  =  𝐻𝑒𝑎𝑙𝑡ℎ𝑦; 𝑠N𝑖,𝑗,𝑡
) = 1 − 𝑒−(𝑁𝛼+𝛾𝐴,𝐵,𝑡)      [7] 

Probability 𝛼1 depends on the state of the SDD neighborhood of cell (i,j) which is denoted by 

𝑁 𝑖,𝑗,𝑡
𝑆𝐷𝐷 and describes the number of cells in the immediate neighborhood (eight neighbors) that 

can contribute to the bio-invasion (i.e., in state 𝐼m or 𝐼h). Accordingly, 𝑁 𝑖,𝑗,𝑡
𝑆𝐷𝐷 = {0 … 8} and the 

first term of the exponential rate will have {0, … 8𝛼}, depending on the number of immediate 

neighbors that are in state 𝐼𝑚 or 𝐼ℎ. Rate 𝛾𝐴,𝐵,𝑡 is a power-law dispersal parameter specified by 

the spatial-dynamic, distance- and density-dependent dispersal function defined in Eq. (8a). In 

order to calculate the total number of infested pine trees in each period that constitute the LDD 

neighborhood 𝑁 𝑖,𝑗,𝑡
𝐿𝐷𝐷, we introduce indicator variables 𝑥  and 𝑦 equaling 1 if a pine tree in column 

𝑛 and row 𝑚 is in state Infested-moderate (𝐼𝑚) or Infested-high (𝐼ℎ) and 0 otherwise. If 𝑥 = 1, 

the corresponding forestland rows that have 𝑦 = 1 contain pine trees in state 𝐼𝑚or 𝐼ℎ that 

contribute to the long-distance dispersal from GA to GB. If 𝑥 = 0 for all columns 𝑛 (i.e., there are 

no cells in GA that have glossy buckthorn producing berries that can be dispersed), the 

denominator equals 0, 𝛾𝐴,𝐵,𝑡 is not defined, and no dispersal occurs from these columns. 

                                          𝛾A,B,𝑗,𝑡 = 𝑗− 𝛾 ∑ 𝑥 ∑ 𝑦((𝑥,𝑦)| 𝑠𝑚,𝑛,𝑡 = { 𝐼m,𝐼h})∗𝑥𝑀
𝑚

𝑁
𝑛

∑ 𝑥 𝑀(𝑁−𝑥+1)𝑁
𝑛

                                              [10a] 



13 
 

The transition rate  𝛾A,B,𝑗,𝑡 is inversely proportional to the distance from the shared boundary (i.e., 

distance from column j in GB to column 𝑁 in GA, regardless of its row position in column j).2

We choose a power-law specification because it allows the bio-invasion long-distance dispersal 

to have new foci emerging beyond the bio-invasion front, which is consistent with modeling bird 

flight and seed dispersal. Dynamic parameter 𝛾A,B,𝑗,𝑡 is also proportional to the total number of 

pine trees that are in state 𝐼mor 𝐼h in GA, weighted by their column position n (the numerator in 

Eq. 8a). Weighting by column positions n allows infested cells closer to the bordering column to 

contribute more to the externality than cells situated farther from the boundary (i.e., cell-level 

distance dependence). The denominator in Eq. (8b) allows the multiplier of the power-law 

expression to vary between 0 and 1 as the number of cells in state 𝐼mor 𝐼h in GA varies between 0 

and M*N (i.e., density dependence). 

Similarly, dispersal within GB and from GB to GA is given by: 

 𝛾B,A,𝑛,𝑡 = (𝑁 − 𝑛)− 𝛾  
∑ 𝑥 ∑ 𝑦((𝑥,𝑦)| 𝑠𝑖,𝑗,𝑡= { 𝐼m,𝐼h})∗𝑦

𝐽
𝑗

𝐼
𝑖

∑ 𝑦 𝐼(𝐽−𝑦+1)𝐽
𝑗

 , 𝛾 > 0, ∑ 𝑦 𝐼(𝐽 − 𝑦 + 1)𝐽
𝑗 > 0             [10b]                                       

This specification of dispersal is in contrast with fixed externality dispersal rates in the extant 

resource and environmental economics literature, and with assumptions that spatial 

considerations only matter in that they define the spatial limit to private actions, and that 

managers ignore how their management in one cell affects payoffs through multi-cell dispersal. 

Bio-invasion and economic parameters are presented in Table 1 and Figure 1. 

[Insert Table 1here] 

 

IV. COMPUTATIONAL EXPERIMENTS AND SOLUTION FRAMEWORKS 

Experiments, each consisting of a set of 100 simulations, differ based on the strategy pairs 

employed in both forestlands to control the invasive plant. Outcome realizations for a given run 
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within an experiment differ due to the random location of initial infestations on the grid where 

the infestation is initialized and stochastic dispersal within and between forestlands. Data 

collected over simulation runs are the discounted utility realizations under each strategy pair.  

Model Initialization 

Pine trees are initialized as Healthy and of similar age distribution in both parcels GA and GB, 

50% seedlings and 50% young trees. At the first timestep, 2% of each parcel are infested with the 

invasive plant’s seeds. That is, certain cells in each grid are chosen at random to transition from 

state Healthy to state Infested-undetectable. Subsequently, the invasive plant grows and 

transitions to Infested-detectable. At this point, a landowner can visually detect the presence of 

the invasive plant, and the plant produces seeds that can be spread to neighboring and non-

neighboring locations according to the Markov transition process given by Eq. (3) and Eq. (5). 

The dispersal occurs both within and between forestland parcels. We consider initial conditions 

where the bio-invasion starts in one forestland and moves to the other and a scenario where it 

starts simultaneously in both forestlands. 

Solution Frameworks and Game Theoretic Solution Concepts  

We first solve the central planner problem and find the cooperative solution (C). Second, we 

solve for the noncooperative solution (NC).  

Central Planner (CP)  

The social planner chooses the pair of bio-invasion management strategies (𝒲A , 𝒲B) that 

maximizes the total expected payoff 𝜋𝑇, defined as the sum of the discounted expected payoffs 

of GA (𝜋𝐴) and GB (𝜋𝐵). The following maximization problem is solved: 

  𝑚𝑎𝑥
(𝒲A ,𝒲B) 

 𝜋𝐴 + 𝜋𝐵,                          [11] 

subject to Eq. (3) and Eq. (5). 
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Noncooperative Disease Control, or Decentralized Management (DM) 

We use the Nash equilibrium solution concept to solve a simultaneous-move game where the 

landowners independently make decisions. We use the subgame perfect Nash equilibrium 

concept to solve a sequential game where one player moves first, and the other player makes 

their decision accordingly (Tirole, 1988).  

 The expected cooperative surplus is defined as the difference between the total expected 

central planner payoff and the total expected noncooperative payoff (𝜋T
NC = 𝜋A

NC + 𝜋B
NC). The 

expected cooperative surplus is also a measure of the Pareto-inefficiency caused by 

noncooperative bio-invasion control and an estimate of the social cost of the externality.  

 

V. RESULTS AND POLICY IMPLICATIONS 

In the absence of LDD, the DM and CP solutions are identical: Both landowners control the bio-

invasion, and the strategy pair solution is (control, control). This result is consistent with Oates’ 

Decentralization Theorem which states that, without spillovers, the decentralized provision of a 

public good will produce a level of welfare that is at least as high as a centralized provision 

(Oates 1972, 1999).  

[Table 2] 

In the presence of LDD and preference heterogeneity, the DM solution consists of GA not 

controlling and GB controlling the bio-invasion, i.e. strategy pair (no control, control), which 

produces lower aggregate payoffs than strategy pair (control, control) (Table 3a). The magnitude 

and resolution of the social externality depend on (1) the extent of preference heterogeneity, (2) 

the degree of spillovers (i.e., the externality parameters), (3) the prospects for coordination, (4) 

the strength of the strategic complementary of bio-invasion control, and (5) cost of control. 
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Below, we discuss how the social cost of the externality and the optimal strategy pair changes as 

we change these four factors. 

First, in the absence of preference heterogeneity, the CP and DM solutions are identical, and 

there is no bio-invasion externality: if both landowners are of type GA, the CP and DM solutions 

both consist of (no control, no control) (Table 3b). Similarly, if both landowners are of type GB, 

the CP and DM solution both consist of (control, control) (Table 3c). Second, if externality 

parameter γ is larger so that the spillover decays faster over space, the same results as in Table 2 

would be obtained, i.e., no externality. In the absence of LDD, GA finds it optimal to control the 

bio-invasion. Third, if the potential gains to cooperation are large enough, the landowners might 

reach a Pareto-efficient transfer payment agreement. For instance, the solution to a Nash 

bargaining game leads to (control, control) with a transfer payment of $20/acre from GA to GB, 

which leads to a Pareto efficient outcome (Table 3a, cooperative game).  

[Table 3] 

Fourth, given that bio-invasion control on one parcel is a strategic complement to control on the 

adjacent land in the presence of spillovers (Fenichel, Richards, and Shanafelt 2014; Atallah, 

Gómez, and Conrad, 2017), a first move by GB should increase the net value of control for GA 

and replicate the CP solution without bargaining. We conduct additional simulations where the 

bio-invasion onset and bio-invasion control are sequential in a Stackelberg-type leader-follower 

game. We find that a first-move by GB reduces the wedge between CP and DM payoffs (i.e., the 

difference between $19,325 and $18,929 in Table 4, or $396, compared to the difference 

between $12,864 and $12,402 in Table 3, or $462) but not enough to change the DM resulting 

strategy pairs: (no control, control) (Table 4). This result is in contrast with the strong 

complementarity is disease control in Atallah, Gómez, and Conrad, 2017), which causes a first 
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move by one of the players to reduce the cost of control to the other players enough to incentive 

them to control the disease, thus making the DM solution replicate the CP outcome.  

[Table 4] 

Fifth, an increase in the cost of control widens the wedge between CP and DM payoffs enough to 

make (no control, control) the optimal strategy pair (Table 5) and a decrease in the cost of 

control makes (control, control) the optimal strategy pair under both CP and DM settings, thus 

eliminating the externality (Table 6).  

[Table 5] 

[Table 6] 

Policy implications 

Both private bargaining and a uniform subsidy or payment for ecosystem services (PES) that 

reduce control cost by half lead to the optimal strategy pair (control, control) that mitigates the 

externality (Table 6). It is not immediately clear, however, which is more socially efficient and 

has higher prospects of implementation. Given the presence of conservation programs that 

provide PES for landowners to control invasive species (e.g., NRCS), among others, considering 

a reduction on the cost of control in our model is probably more relevant to the current policy 

context of controlling forest invasive species in the U.S. Since 2008, forest landowners in the 

U.S. have had access to technical and financial assistance to manage invasive species and pests 

through the Environmental Quality Incentives Program (EQIP), Wildlife Habitat Incentive 

Program (WHIP), Agricultural Management Assistance Program (AMA), and the Conservation 

Stewardship Program (CSP). Before then, landowners had access to the National Conservation 

Innovation Grants (CIG) (USDA NRCS 2017). A common feature among these programs is that 
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they provide uniform payments, regardless of landowner type, provided the landowner net 

revenues are below a million dollars a year.  

We consider a non-uniform PES scheme where only GA is eligible for the payment. We find 

that (control, control) is the optimal solution for both the CP and DM problems, suggesting that 

PES eligibility based on landowner preferences can lead to the CP solution under DM at lower 

public expenditures than a uniform PES. Despite their potential to promote the provision of 

ecosystem services, PES have a basic problem stemming from asymmetric information: 

landowners have private information about their costs and opportunity costs of controlling bio-

invasions. Only the landowner knows whether they would have undertaken bio-invasion control 

in the absence of a PES, that is, whether bio-invasion control would have been truly additional. 

However, where land ownership types and corresponding preferences are observable, as in the 

case of private forest landownership, a government might design non-uniform PES schemes 

based on heterogeneous resource preferences to avoid paying for non-additional practices such as 

bio-invasion control for type GB. We argue that the modeling framework provided here can 

produce results that reduce information asymmetry in the returns to bio-invasion control to 

ecologically connected landowners. Such results might then support designing PES eligibility to 

be based on landowner preferences with the objective of increasing the efficiency of public 

conservation expenditures.  

[Table 7] 

 

VI. NEXT STEPS 

The political economy literature on local public goods has theoretical results suggesting that 

without spillovers, CP solutions are superior and DM becomes preferred at a threshold level of 
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spillovers (Oates 1972; Besley and Coate 2003). This model can be used to identify threshold 

levels of the SDD and LDD parameters beyond which DM is welfare-improving. Spatial-

dynamic externalities in natural resources are multi-dimensional and simultaneously determined 

by a multitude of static and dynamic parameters such as the SDD and LDD parameters, size and 

age structure of the tree population and initial infestation levels. Rather than a comparative 

statics exercise, a multi-variate spillover threshold would need to be determined through multi-

way sensitivity analyses. 

Second, in this model, except for the sequential games, landowners are assumed to 

interact in one-shot noncooperative and cooperative games. A more realistic depiction of 

managers’ strategic interaction might involve reevaluating strategies and learning over time. 

Third, to expand the test of the hypothesis suggesting that heterogeneity among landowners has a 

detrimental effect on the aggregate landowner welfare (Dayton-Johnson and Bardhan, 2002; 

Baland et al. 2007), future steps would involve adding landowners with multiple ownership 

objectives and varying the relative weights landowners put on MES and NMES (parameter (𝜆, 

page 10). By doing so, the relationship between landowner preference heterogeneity and welfare 

can be characterized (a nonlinear relationship is proposed by the theoretical model of Dayton-

Johnson and Bardhan, 2002).  
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TABLES 

 

 

 

 

 

Table 1. Model parameters 

 

  

Parameter Description Value Unit 

Objective function parameters   

𝑎1, 𝑏1 Intercept of consumer surplus (CS) and user 

days (UD) functions  

-2.97 a 

9.32 a 

$/UD 

days/year 

𝑎2 Slope of CS and UD functions 0.24 unitless 

𝑎3 ,𝑏3  Quadratic parameter of CS and UD functions. -0.00017 a; 

- 0.0002 a 

unitless 

𝑝1 ,𝑝2 Timber prices for Young and Mature trees 0.11; 0.16 $/BF 

𝑑𝑚,𝑛,𝑡   Timber yields for Young and Mature trees 297; 594 BF/tree 

𝑐 Invasion treatment cost 2; 4; 6 $/tree 
ρ Discount factor 0.9959 year -1   

    

Spatial-dynamic externality parameters   

α Short distance H to Eu transition rate 8 year -1 

γ Long distance power-law parameter 3 unitless 

𝐿1 Inverse of transition rate from Infested-

undetectable to Infested-detectable 

1 year 

𝐿2 Inverse of transition rate from Infested-

detectable to Infested-moderate 

1 year 

𝐿3 Inverse of transition rate from Infested-

moderate to Infested-high 

2 years 

τ0, H Waiting period between Juvenile and Young if 

Healthy.  

15 years 

τ1, Im Waiting period between Juvenile and Young if 

Infested-moderate. 

20 years    

τ2, Ih Waiting period between Juvenile and Young if 

Infested-high. 

25 years 

𝐼 ∗ 𝐽 

𝑀 ∗ 𝑁 
Grid GA dimensions  

Grid GB dimensions 

49*16=784 

49*16=784 

rows x 

columns 
 

a Values from Rosenberger et al. (2013) 
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Table 2. Payoffs ($) if GA and GB are not ecologically connected (optimal 

strategies and corresponding payoffs in bold; standard deviations in 

parentheses) 

 

Strategies Payoffs ($) 

 GA GB GA+GB 

no control 2,217 (0)         - 4,755 (53)     -2,538 (53)  

control 3,323 (32)         12,007 (3,368)      15,330 (3,383) 

 

 

 

  



25 
 

 

 

Table 3. Payoffs ($) if GA and GB are ecologically connected, bio-invasion starts 

on both lands and control decisions are simultaneous. 

 

Strategies Payoffs 

(3a ) Preference heterogeneity  

GA GB GA GB GA+GB 

no invasion no invasion 4,445 18,852 23,297 

Noncooperative game    
no control no control 1,571 (4) -5,177 (43) -3,606 

no control control 1,694 (3) 10,708 (3,353) 12,402 

control no control -334 (18) -4,977 (0) -5,310 

control control 1,542 (28) 11,322 (3,370) 12,864 

Cooperative game    

control control 1,925 10,939 12,864 

     

(3b) Both GA (NMES) type   

no control no control 1,571 (4) 1,571 (4) 3,143 

no control control 1,694 (3) -334 (18) 1,361 

control no control -334 (18) 1,694 (3) 1,361 

control control 1,542 (28) 1,542 (28) 3,085 

     

(3c) Both GB (MES) type    

no control no control -5,177 (43) -5,177 (43)  (10,340) 

no control control -4,977 (0) 10,708 (3,353)  5,758  

control no control 10,708 (3,353) -4,977 (0)  5,758  

control control 11,322 (3,370) 11,322 (3,370)  22,643  

     

Note: DM optimal strategies and corresponding payoffs in bold; CP optimal 

strategies and corresponding payoffs in italics. 
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Table 4. Sequential game results: Payoffs ($) if GA and GB are ecologically connected, 

bio-invasion starts in either GA or GB and control is sequential.  

 

Strategies Payoffs ($) 

GA GB GA GB GA+GB 

no invasion no invasion 4,445 18,852 23,297 

     

GA starts     

No control No control 1,711 (5,063) (3,352) 

No control Control 1,888 16,895 18,783 

Control No control 225 (1,723) (1,498) 

Control Control 1,280 17,838 19,118 

     

GB starts     

No control No control 2,135 (4,885) (2,750) 

No control Control 2,663 16,266 18,929 

Control No control 807 (4,859) (4,052) 

Control Control 2,016 17,309 19,325 

     

Note: DM optimal strategies and corresponding payoffs in bold; CP optimal strategies 

and corresponding payoffs in italics. 
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Table 5. Payoffs ($) if GA and GB are ecologically connected; case of higher 

control costs (cA= cB= $6/shrub) 

 

Strategies Payoffs ($) 

GA GB GA GB GA+GB 

no invasion no invasion 4,445 18,852 23,297 

     

No control No control 1,566 -5,242 -3,676 

No control Control 1,689 15,352 17,041 

Control No control -2,317 -4,987 -7,304 

Control Control 273 16,257 16,530 

     

Note: DM optimal strategies and corresponding payoffs in bold; CP optimal 

strategies and corresponding payoffs in italics. 
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Table 6. Uniform PES (cA= cB= $2/shrub); Payoffs ($) if GA and GB are 

ecologically connected.  

 

Strategies Payoffs ($) 

GA GB GA GB GA+GB 

no invasion no invasion 4,445 18,852 23,297 

     

No control No control           1,566       (5,242)      (3,676) 

No control Control           1,689       17,685       19,374  

Control No control           1,709       (4,987)      (3,278) 

Control Control           2,906       17,987       20,893  

 

Note: decentralized optimal strategies and corresponding payoffs in bold; central 

planner optimal strategies and corresponding payoffs in italics. 
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Table 7. Non-uniform PES (cA=$2/ shrub; cB=$4/ shrub): Payoffs ($) if GA and GB are 

ecologically connected.  

 

Strategies Payoffs ($) 

GA GB GA GB GA+GB 

no invasion no invasion 4,445 18,852 23,297 

     

No control No control           1,566       (5,242)      (3,676) 

No control Control           1,689       16,518      18,207 

Control No control           1,709       (4,987)      (3,278) 

Control Control           2,906       17,122  20,028 

 

Note: decentralized optimal strategies and corresponding payoffs in bold; central planner optimal 

strategies and corresponding payoffs in italics. 
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FIGURES 

 

 

 

Fig. 1 Short-distance dispersal (𝛼) and long-distance dispersal from A to B (𝛾A,B,𝑡) and from B 

to A (𝛾B,A,𝑡). Shaded cells represent infested cells on the grid. 
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FOOTNOTES 

 

1 Each element in matrix P is a probability that a grid cell will be in one of the five states 

(𝐻𝑒𝑎𝑙𝑡ℎ𝑦, 𝐸u, 𝐸d, 𝐼m, 𝐼h) in period t+1, conditional on being in one of these states in period t 

2 This assumption implies that long-disease dispersal (LDD) does not capture whether Infested 

cells in a bordering column n are clustered or uniformly distributed over the column. This 

assumption might lead to an overestimation of LDD.   

                                                           


