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Abstract 

 

Lake Erie is one of the most valuable natural resources in the United States, providing billions of dollars 

in benefits each year to recreationalists, homeowners and local governments. The ecosystem services 

provided by Lake Erie, however, are currently under threat due to more intensive and frequent harmful 

algal blooms. This paper provides recreational damage estimates caused using spatially and temporally 

varying algae and annual fishing permit sales data collected between 2011 and 2014. Results indicate that 

annual fishing license sales drop between 5% and 11% when algal conditions surpass the World Health’s 

Organization’s moderate health risk advisory threshold of 20,000 cyanobacteria cells/mL. For Lake Erie 

adjacent counties experiencing a large, summer-long algal bloom, this would result in approximately 

3,600 fewer fishing licenses issued during that time and approximately $2,225,000 to $5,575,000 in lost 

fishing expenditures.  There appears to be no additional drop in fishing permit sales after algal conditions 

surpass this threshold however, suggesting that policies aimed at eliminating, rather than constraining, 

algal concentration levels are more beneficial to the Ohio angling industry. 
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Highlights 

• Estimate the effect of crossing WHO cyanobacteria threshold on fishing permit sales  

• 14% reduction in permit sales for near lake zip codes experiencing an algal bloom 

• Extent of HAB related losses limited to zip codes within 20 km of Lake Erie 

• $5,575,000 in lost fishing expenditures associated with a summer-long bloom  
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Reeling in the Damages: Harmful Algal Blooms’ Impact on Lake Erie’s Recreational 

Fishing Industry 
 

1.  Introduction 

Lake Erie provides $10.7 Billion in tourism benefits per year with a $2 Billion sports fishery (Great Lakes 

Commission 2014). However, this large flow of benefits is under threat from a variety of sources 

including: Zebra Mussels, Asian Carp invasion, and more recently, increasing annual blooms of harmful 

cyanobacteria. Harmful algal blooms (HABs) impair water quality and often lead to public health 

warnings to either avoid drinking, swimming and in severe cases any contact with the water. In addition, 

it is predicted that the incidence of these blooms is likely to increase in duration and extent as a result of 

climate change and increased nutrient runoff which provide the needed resources for the bacteria causing 

blooms (Robson and Hamilton 2003; Mooij et al. 2005). 

 Cyanobacteria, often referred to as blue-green algae, are the most common form of harmful algal 

blooms (HABs) associated with Lake Erie and freshwater lakes across the Midwest. These HABs can 

spread rapidly in the summer months in the presence of sunlight and warm, still waters, producing the 

harmful toxin microsystin (Carmichael 1992). One of the more damaging blooms in recent memory 

occurred in 2014 when 500,000 residents in Toledo, OH were warned to not drink their tap water due to 

the concentrations of such toxins, subsequently leading to at least 60 hospitalizations. These blooms can 

last three to four month in duration (such as in 2011) and often occur in the summer and autumn months, 

covering large areas of the lake. While blooms are often associated with drinking water and adverse 

health impacts, ingestion is not the only means through which individuals can be harmed by these toxins.  

In addition to drinking water concerns, state and local authorities are increasingly forced to issue 

recreational public health advisories, warning to avoid all contact with the water and providing a serious 

impediment to the success of local angling economies. In other cases, excess algal blooms prevent 

sunlight from reaching the bottom of the water column and over time can lead to aquatic life dependent 

on this sunlight to diminish, significantly impacting the ecosystem and harming the native gamefish 

populations. Whether through an explicit warning to stay away from the water or through the perceived 
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impact on the likely catch-rate, the presence of cyanobacteria are likely to have a significant negative 

impact on the angling industry.  

 This paper uses a unique dataset of all fishing license sales for Lake Erie bordering counties in 

Ohio to quantify the potential adverse effect on anglers when harmful algal blooms occur. We use 

monthly sales data on purchases of annual fishing licenses to estimate a negative binomial count data 

model of fishing license sales at the zip code level. To our knowledge, this is the first revealed preference 

analysis of the effects of HABs on recreational anglers in the Great Lakes. Following prior literature 

suggesting a limited spatial extent of algal impacts, we limit our focus to 8 counties that border Lake Erie 

(Jørgensen et al. 2013). Results from our preferred specification suggest a robust and sizeable decrease in 

license sales of approximately 11% for locations and months experiencing algal blooms. Back of the 

envelope cost analysis subsequently reveals a total decrease of economic activity associated with angling 

in the state of Ohio of roughly $2,225,000 to $5,575,000 when average algal conditions are above the 

WHO’s moderate advisory threshold for an entire summer. 

The remainder of the paper is structured as follows. The next section briefly reviews the literature 

on water quality and recreation behavior. This section is followed by a discussion of the fishing license 

and HAB data necessary for analysis before presenting a negative binomial estimator of fishing license 

counts in section four. Section five contains the main estimation results and section six concludes with a 

discussion of potential impacts to the angling industry due to increased algal bloom duration and 

frequency. 

 

2. Water Quality and Economic Behavior 

Linking water quality changes to residential and recreational decisions has long been a focus of 

applied researchers (Smyth et al. 2009; Vesterinen et al. 2010; Kosenius 2010). A number of ecological 

and behavioral factors are known to influence water quality conditions; however eutrophication is often 

given special consideration due to its strong ties with human behavior. A standardized measure of the 

eutrophication process has not been established within the literature leading many to use measures such as 
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suspended solids and dissolved nitrogen (Poor et al. 2007), lake depth (Bejranonda, et al. 1999), fecal 

coliform (Leggett and Bockstael 2000), and pH levels (Tuttle and Heintzelman 2015). Despite this wide 

range, causal relationships between water quality and economic variables of interest are generally robust. 

The prevalence of publicly available housing transactions data across the country coupled with 

the relative difficulty of obtaining revealed preference data on recreation, often through survey work, has 

led to an extensive literature examining water quality changes using hedonic property value models (see, 

e.g. Boyle et al. 1999; Walsh et al. 2011). In general these studies find a strong, positive relationship 

between water quality improvements and nearby property values across a wide range of data, research 

designs and empirical strategies used to reveal this relationship. While recreational studies generally find 

a similar positive impact of improved water quality, the effect can occur through various channels, 

including swimming, boating, and/or angling.  

Research most closely related to our study has considered the recreational impact of algal blooms 

in New Zealand using choice experiments. Anglers in New Zealand were estimated to have aggregate 

damages of 10.5 Million NZ$ caused by the spread of the invasive, nontoxic algae, Didymosphenia 

Geminate (Beville, et al. 2012). Additional studies focusing on the Black and Baltic Seas found a 

willingness to pay in Bulgaria of 0.27% of annual income to eliminate algal blooms in a nearby bay 

(Taylor and Longo 2010). A contingent valuation study of the Baltic Sea drainage basin estimated that a 

reduction in eutrophication through a 50% reduction in nutrient loading would be valued at $3.4 Billion 

USD per year across the basin, although this value takes into account much more than the recreational 

benefits accrued from this reduction (Gren et al. 1997). 

In a U.S. context, extensive survey work has been carried out to elicit respondents’ preferences 

for water quality. A study in Iowa found that, ceteris paribus, higher concentrations of cyanobacteria in a 

lake would decrease the likelihood of visitation (Egan et al. 2009). A recent survey of Ohio anglers found 

that 96% of respondents were aware of HABs and that half of the respondents had in some way altered 

their behavior in response to such blooms. Participants, for example, stated they often responded to HABs 
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by either choosing a new recreation location or completely forgoing angling activity (Sohngen et al. 

2015). 

Information collected from Great Lake recreators has also been utilized in travel cost models to 

estimate welfare gains/losses attributed to water quality changes (Yeh et al. 2006). A one day reduction in 

advisory days along the Lake Erie shoreline, for example, is predicted to generate $28 in benefits per 

visitor during the summer season (Murray et al. 2001). At a more aggregate level, a one day beach closure 

along the Michigan shoreline is expected to cost, across all beach goers, between $130,000 and $24 

Million depending on the location of the closure (Song et al. 2010). Welfare estimates across and within 

these studies vary significantly, however, due to the uncertainty surrounding the total affected population 

size. 

We build on the existing water quality recreation research in several ways. First, we use a more 

direct measure of water quality, the actual level of toxin in the water (Cyanobacteria cells/mL), which 

drives advisories and health warnings. Second, we exploit heterogeneity across both space and time in our 

Lake Erie study area to examine the role of increasing levels of water quality degradation.  Traditionally, 

the variation needed to examine this has resulted in researchers comparing across locations with 

potentially different unobservables, as one would expect when comparing outcomes across different 

lakes. The preferred specification within this study, however, is able to avoid a substantial source of 

potential bias by deriving damage estimates using temporal algal variation while absorbing time-constant 

unobservables through spatial controls. 

  

3. Data 

Annual fishing registration data for the 8 Ohio counties highlighted in Figure 1 was gathered from the 

Ohio Department of Natural Resources Fishing License and Permit Sales database (ODNR 2015). Zip 

codes have been overlaid as these provide the unit of count observation needed for our econometric 

specification. Annual license counts were assembled at the zip code by month unit between February 

2011 and December 2014 using mailing address and date of sale information collected from this 
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database.2 Having assembled and aggregated permit count data, additional spatial measures were attached 

to each observation using GIS shapefiles collected from the US Census, the USGS’s National 

Hydrography Dataset and the ODNR’s Office of Coastal Management. In particular, proximity to Lake 

Erie and distance to the closest public access point where either boating or fishing is allowed were 

measured using ArcGIS.  

In addition to license information, 10 day algal-composite data spanning 2009 - 2014 have been 

acquired from the National Oceanic and Atmospheric Administration (NOAA 2015) and Wynne and 

Stumpf (2015). Using remote sensing data, Wynne and Stumpf (2015) constructed 1100x1100 meter 

Cyanobacterial Index grid values for all of Lake Erie using remote sensing data. Lake Erie HAB raster 

images are available only for the summer and fall months (June – October) in part due to low or 

undetectable levels of algae present during much of the winter and spring. During the summer and fall 

months a significant degree of water quality heterogeneity exists within our sample. A snapshot of the 

spatial and temporal heterogeneity in HAB density is shown for two time periods (September 2011, 2012) 

in Figures 2 and 3.  

Mean algal readings over time are shown in Figure 4 with moderate and high algal advisory 

thresholds plotted as dashed lines. Two observations are evident from this figure. First, there is substantial 

inter-annual heterogeneity with significant numbers of algal readings both above and below each algal 

threshold. Second, algal levels quickly trend towards zero outside of the available HAB data. As such, it 

seems reasonable to expect that this variation, coupled with the spatial variation shown in Figures 2 and 3, 

is likely influencing fishing and recreation behavior along Lake Erie. To the extent that anglers are likely 

substituting across space from a poor water quality location to a better location suggests that any potential 

findings of reduced angling sales will likely be an underestimate of the true impact on recreation 

behavior. 

                                                           
2 Zip codes stretching across county boundaries were assigned to the county in which the majority of the 

population resided. 
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To form additional control variables, we assembled temporally and spatially varying climate 

variables for the Lake Erie region using spatially-detailed raster images. Monthly surface water 

temperatures were formed using data supplied by the Great Lakes Environmental Research Laboratory 

(GLERL). Similar to the algae composite data, the GLERL raster images aggregate water temperature 

into spatially fine units (approximately 1300 by 1300 meter squares) using remote sensing data (GLERL 

2016). Daily precipitation data was also obtained from the PRISM Climate Group which forms 

nationwide climate raster images using data collected from monitoring stations positioned across the 

entire United States (PRISM 2016).3 

Due to the continuous raster measures of algal and climate data, we explored a number of 

potential approaches to aggregate and attach this data to our zip code units of observation. The primary 

set of results discussed below are based on aggregating both the algal readings and the climate variables 

using the three closest locations for each zip code. Using these observations, we calculate the mean 

monthly Cyanobacteria Index value, Lake Erie surface water temperature and number of precipitation 

days4 for every month and zip code in our study area.5 Finally, we converted the mean Cyanobacterial 

index values into 0-1 indicator variables indicating whether or not algal conditions surpassed the World 

Health’s Organization’s (WHO) moderate health risk advisory threshold of 20,000 cells/mL and the high 

health risk advisory threshold of 100,000 cells/mL.6 The WHO advises local communities to begin 

posting on-site advisory signs as soon as water conditions surpass the 20,000 cells/mL threshold; under 

these conditions recreators have the potential to experience both short and long term, adverse health 

                                                           
3Unlike the algal data, both the precipitation and water temperature data were available year-round. 
4Precipitation days refers to the number of days in which there was a non-zero amount of precipitation 

recorded within the area. 
5Our results are robust to a number of spatial aggregations. Monthly maximum algal readings, algal 

readings taken at each zip code’s closest point of entry and larger/smaller spatial aggregates have all been 

tested. Quantitatively similar results are derived from each of these cases and match closely with 

estimates discussed in section 5. 
6The Ohio Department of Health sets their Recreational advisory threshold at 6 Microcystin µg/L (ODH 

2016). Although our algae variable is measured in Cyanobacteria cells/mL, a value of 20,000 

Cyanobacteria cells/mL corresponds to a value of 10 Microcystin µg/L (Chorus 1999), closely 

approximating the Ohio EPA’s recreational advisory threshold. 
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outcomes (i.e. skin irritation, stomach illness, etc.) when interacting with water. Furthermore, given our 

personal conversations with a HAB modeler at NOAA (Wynne 2016), we assumed all observations 

occurring between November – May were untreated and had algal conditions that were consistently below 

the recreational advisory thresholds. This appears to be a reasonable assumption to make given the 

aggregate, mean algal readings displayed on Figure 4, the strong, positive relationship observed between 

water temperature and algal growth (Carey et al. 2012; Kosten et al. 2012)7 and the tendency for Lake 

Erie to freeze during the winter months.  

A brief description of the variables used in this study is provided in Table 1 with an 

accompanying set of summary statistics displayed in Table 2. Overall there are a total of 6,862 month by 

zip code observations used within this study, each selling on average 80 permits a month. Substantial 

variation exists within this measure, with some zip codes having no permit sales while others have 

monthly sales nearing 1,500. Similar to permit sales, water conditions also vary significantly within our 

study period. The average algal concentration level (36,800 cells/ml) falls above the moderate health risk 

advisory threshold of 20,000 cells/ml and has a standard deviation more than three times as large 

(119,400 cells/mL). Converted to an advisory threshold indicator, we see that 11.6% of our sample 

experienced moderate, algal advisory conditions. A large portion of these treated observations faced even 

more severe conditions with 8.7% of the sample having mean readings above the 100,000 cells/mL 

threshold. Controls for water temperature, rain and proximity to Lake Erie are all as expected. 

Fishing licenses sold by month are plotted in Figure 5. The most common purchase month is May 

and there is a clear skewedness with more purchases occurring in the summer and fall months than in the 

winter months. Figure 6 shows the fishing permits sold by county with substantial variability across 

locations. As expected, the most populous county containing Cleveland, Cuyahoga County, is associated 

with the greatest number of permits sold. These differences suggest that in addition to algal and lake 

                                                           
7Cyanobacteria are better suited to grow when water temperatures are above 25 degrees Celsius. This is in 

part due to the advantage Cyanobacteria have over other phytoplankton when water columns become 

more stratified, which tends to occur more often when surface water temperatures are elevated (Paerl and 

Huisman 2008).  
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climate variables, it is likely important to control for time-constant differences across space, which we 

expand upon in the following econometrics section. Finally, we show the total number of permits sold by 

year in Figure 7. Compared to 2012 – 2014, approximately 8,000 fewer permits were sold in 2011. The 

largest HAB ever recorded on Lake Erie, caused by frequent and heavy spring precipitation events and 

record nutrients loads (Michalak et al. 2013), also occurred in 2011. This simple comparison is suggestive 

of the potential impact HABs have on the Lake Erie recreational fishing industry. 

 

4. Model of Fishing Permit Sales 

To model the discrete, non-negative distribution of our dependent variable, we assume our sample of 

annual fishing permit licenses are drawn from a Poisson distribution characterized by parameter 𝜆𝑖,𝑡: 

(1) 𝑃𝑒𝑟𝑚𝑖𝑡 𝐶𝑜𝑢𝑛𝑡𝑖,𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖,𝑡) 

where 

(2) 𝜆𝑖,𝑡 =  𝐸𝑥𝑝(𝑋𝑖,𝑡𝛽 + є𝑖,𝑡) 

and  

(3) 𝑒є𝑖,𝑡~𝐺𝑎𝑚𝑚𝑎(
1

𝛼
, 𝛼) 

The number of permits sold in location i, during time period t is given by the term 𝑃𝑒𝑟𝑚𝑖𝑡 𝐶𝑜𝑢𝑛𝑡𝑖,𝑡, 𝑋𝑖,𝑡 

is a vector of observable, temporally and spatially-varying determinants of 𝑃𝑒𝑟𝑚𝑖𝑡 𝐶𝑜𝑢𝑛𝑡𝑖,𝑡 , є𝑖,𝑡 is a 

gamma distributed error term with mean 1 and variance 𝛼 and 𝛽 is a vector of parameters to be 

estimated.8 Inclusion of both 𝑋𝑖,𝑡 and є𝑖,𝑡 within equation (2) transforms the standard Poisson model into 

a Negative Binomial model by allowing variation in 𝜆𝑖,𝑡 to be explained through both observed and 

unobserved sources of heterogeneity. Removal of the error term from equation (2) collapses the Negative 

Binomial model into a Possion model and forces the conditional variance of 𝑃𝑒𝑟𝑚𝑖𝑡 𝐶𝑜𝑢𝑛𝑡𝑖,𝑡 to be equal 

                                                           
8For interpretative purposes 𝛼 is often referred to as the dispersion parameter. Larger values of 𝛼 will 

result in larger gaps between the conditional mean and variance of 𝑃𝑒𝑟𝑚𝑖𝑡 𝐶𝑜𝑢𝑛𝑡𝑖,𝑡. 
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to its conditional mean; an unlikely assumption in most empirical settings. Given the distributional 

assumptions made in (3), however, the conditional variance of 𝑃𝑒𝑟𝑚𝑖𝑡 𝐶𝑜𝑢𝑛𝑡𝑖,𝑡  is less constrained and is 

allowed to exceed its conditional mean.9  

We include a number of covariates within the vector of observables 𝑋𝑖,𝑡 to estimate the impact higher 

concentrations of HABs have on fishing permit sales. The model and covariates are presented in the 

equation below: 

(4) 𝜆𝑖,𝑡 =  𝐸𝑥𝑝(𝛽0 + 𝛽1𝐴𝑑𝑣𝑖𝑠𝑜𝑟𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖,𝑡  + 𝛽2𝑊𝑎𝑡𝑒𝑟𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖,𝑡  +  𝛽3𝑅𝑎𝑖𝑛𝐷𝑎𝑦𝑠𝑖,𝑡 

+ 𝛿𝑡 + 𝜉𝑖 + є𝑖,𝑡) 

where 𝐴𝑑𝑣𝑖𝑠𝑜𝑟𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖,𝑡 is a time varying 0-1 indicator variable for whether or not algal conditions 

exceed the WHO’s 20,000 cells/mL moderate health risk advisory threshold, 𝑊𝑎𝑡𝑒𝑟𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖,𝑡 is a 

continuous measure of surface water temperature on Lake Erie while 𝑅𝑎𝑖𝑛𝐷𝑎𝑦𝑠𝑖,𝑡 measures the number 

of days where non-zero levels of precipitation were recorded. A set of spatial (𝜉𝑖) and temporal control 

variables (𝛿𝑡) were further included in (4) to control for observable and unobservable time-variant and 

period-specific factors that influence the number of fishing permits sold. Determinants such as proximity 

to Lake Erie, access to fishing hot spots, differences in seasonal demand and annual changes in fishing 

regulations are captured by these dummy variables. Given the potential concern of omitted variable bias 

inclusion of both temporal and spatial controls are an essential component of our analysis, absorbing 

potential drivers of license purchases that if left unaccounted for could bias our estimates for the key 

parameter of interest, 𝛽1. 

 

5. Results 

Results from three specifications of equation (4) are shown in Table 3. Each specification uses a different 

combination of spatial and temporal dummies to control for potential unobservables that could cofound 

                                                           
9Under this setting the distribution of 𝑃𝑒𝑟𝑚𝑖𝑡 𝐶𝑜𝑢𝑛𝑡𝑖,𝑡 would have a conditional mean of 𝜆𝑖,𝑡 and a 

conditional variance of 𝜆𝑖,𝑡(1 + 𝜆𝑖,𝑡𝛼) (Cameron and Trivedi (1986)). 
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our estimates. The first column includes month and zip code fixed effects. The second column includes 

zip code, year and month fixed effects, while the final column contains the most stringent set of controls 

with zip code and year by month dummy variables. Each specification includes spatial controls which 

account for time-constant zip code level unobservables, while the sequentially increasing number of 

temporal controls (moving from left to right in Table 3) help account for time-varying unobservables that 

are specific to a given month or year.10 Our preferred model in column 3 accounts for changes in seasonal 

fishing conditions both within and across years by including a dummy for every month during the study 

period.11  

 The results for our threshold indicator variable across each specification ranges from a decrease 

of slightly over 5% in annual permit purchases after surpassing this threshold to a decrease of 

approximately 10%.12 In all cases this coefficient is significant. Other control variables have the expected 

sign, even after controlling for temporal patterns across and within years using month by year fixed 

effects, with higher water temperatures associated with more permit activity and rainy days reducing 

permit activity. We assume that the remainder of the drivers of purchasing patterns are absorbed by the 

controls outlined above. 

 Table 4 provides additional robustness where we examine the impact of licenses purchases as 

distance to Lake Erie increases. We expect that households choosing to locate closer to Lake Erie may be 

more adversely affected from high algal concentrations than those further away for several reasons. First, 

urban sorting theory suggests households with the strongest preferences for angling are, ceteris paribus, 

more likely to locate closer to angling locations such as Lake Erie. Second, as households are located 

further from the lake, the extent of possible substitutes reachable at the same cost as traveling to Lake 

                                                           
10We also run a specification that includes month and zip code by year fixed effects. Unlike the 

specifications used in Table 3, this model accounts for unobservables that vary annually at the zip code 

level which would include things such as changes in income and new development while maintaining 

controls for monthly differences across time. Results from this specification are significant and 

qualitatively similar to those discuss in the paper. 
11A dummy variable is created for every month except February 2011, which is the omitted group. 
12Estimates discussed in the text are converted from a difference in the logs of expected counts to a 

percentage using the following equation: 𝑒𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 − 1. 
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Erie are likely to increase which would mitigate potential losses if Lake Erie water quality was poor. The 

results support this hypothesis. We find the greatest decrease in permit purchases for households less than 

10km from the lake which exceeds 14%, while for households located between 10km and 20km those 

reductions fall to approximately 9.6%, and finally permit purchase losses become statistically 

insignificant beyond 20km. This finding is similar to that in the hedonic housing literature finding that 

proximity households are most adversely affected by HABs (Wolf and Klaiber, 2017).  

 An additional set of results, displayed in Table 5, examine the impact of varying thresholds of 

algal blooms on permit purchasing behavior as well as different approaches to attach algal readings to zip 

codes. The first column aggregates algae at the nearest public access point for each zip code to determine 

if anglers are more concerned with water conditions at their point of entry or at the shoreline point closest 

to them. The second column uses the maximum algal reading within a given month rather than the mean 

reading. Fishermen may pay more attention to severe water conditions instead of average conditions, 

especially given the media coverage dedicated to large HABs (Wines 2014; Arenschield 2015; Devito 

2015). The final column includes an additional indicator variable for the high advisory threshold 

implemented by the WHO. Results from each of these specifications follow closely with our primary set 

of results presented in Table 3. In particular, the coefficients attached to the primary variable of interest, 

WHO’s 20,000 cells/mL advisory threshold, remain between 5% and 11% across all three columns, while 

the additional, threshold indicator variable in the third column is insignificant. Since the two dummy 

advisory thresholds are additive, results from the third specification indicate there is no additional 

reduction in permit sales after algae conditions surpass the 20,000 cells/mL threshold.  

 Our final set of results test our model’s functional form assumption. Columns 1 and 2 remove the 

assumption that permit counts are drawn from a Poisson distribution and instead are characterized by a 

normal or log normal distribution. Using a level-level functional form restriction, we find that surpassing 

a moderate advisory threshold reduces the average number of permits sold within a zip code by 7. This 
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compares well with the 8.213 permits lost per zip code predicted under our favored specification, while the 

log-level specification estimates much higher losses of around 14 permits per zip code.14 Finally we run a 

standard Poisson count data model, which assumes equidispersion of the dependent variable, and find 

similar results to those derived under a negative binomial setting.15 Given the likely unreasonable 

restriction that the mean and variance of our permit count data is equivalent, however, we continue to use 

the negative binomial model as our primary specification. 

 

6. Discussion 

Climate change and increased urbanization are expected to further impair water 

conditions on Lake Erie through higher summer temperatures and increased nutrient enrichment 

from runoff. As a consequence of these exacerbated conditions policymakers will continue to 

grapple with where and to what extent to target policies aimed at reducing blue-green algae’s 

harmful impacts. Before optimal management can occur, however, more information on the 

economic costs associated with blue-green algae is needed.  

The results from this paper help to fill in this gap. Similar to other valuation results 

discussed in the property hedonics literature (Wolf and Klaiber 2017), harmful algal blooms 

impact on fishing permit purchases appears to be highly non-linear. In particular we find no 

additional losses are incurred after algae conditions surpass the WHO’s moderate advisory 

threshold, suggesting there may be a disconnect between the increasing health risks associated 

with more frequent and intensive HABs and recreators’ perception of that risk. We further find 

                                                           
138.2 is the predicted average marginal effect from the negative binomial model.  
14After adjusting the coefficient using the method prescribed by Halvorsen and Palmquist (1980) and 

multiplying it by the average number of permits sold (79.64), we find a loss of approximately 14 permits 

per zip code. 
15We also ran a zero-inflated Poisson model. These results from this functional form specification are 

similar to those presented in the final two columns of Table 6. 
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these negative effects to be spatially limited; total monthly fishing permit sales are only affected 

by changes in Lake Erie water conditions if they occurred within a zip code located at most 20 

km away from the lake.  

Finally, using the coefficients recovered from our preferred model specification we 

predict the total reduction in permit sales caused by a hypothetical, summer-long, moderate 

WHO advisory. Total permit sales from each zip code are expected to drop, on average, by 8.22 

for every month of poor algae conditions. Aggregating this number across all the zip codes 

within our study (146) and across a 3-month period, similar in duration to the 2011 algal bloom, 

suggests a total loss of approximately 3,600 permits and a reduction in government revenue of 

$68,400.16 Lost private revenue is likely much higher. According to the U.S. Fish and Wildlife 

Service and the United States Census, Ohio anglers visiting the Great Lakes spend approximately 

$98 per trip and go fishing 6.3 days a year (2011). Results from a survey of Lake Erie anglers 

conducted in 2014, on the other hand, recover similar per trip expenditure estimates ($88 per 

trip) but find a larger number of trips are taken each year (17.6) (Sohngen et al. 2015). A 3,600 

reduction in annual fishing permits would therefore imply a total loss ranging between 

$2,224,800 and $5,575,680 in fishing expenditures.17 Given the expected increase in algal bloom 

frequency and duration over time, these findings present new information on the potential costs 

of algal blooms. As policymakers grapple with the appropriate response to algal blooms moving 

forward, estimates such as the ones developed here are timely and provide policy-relevant 

information that informs policymakers tasked with determining the extent and type of 

management strategies to employ.

                                                           
16Annual fishing permits cost $19 in Ohio. 
17This estimate is likely a lower bound given the likelihood that many anglers will continue to purchase 

permits under adverse conditions and substitute away from their preferred recreation locations. Our data 

on permit sales would not account for this welfare loss. 
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Figure 1: Concentration of Annual Fishing Permit Sales by Zip Code 
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Figure 2: County and Zip Codes bordering Lake Erie – September 2011 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

 

Figure 3: County and Zip Codes bordering Lake Erie – September 2012 
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Figure 4: Mean Algal Readings by Year 
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Figure 5: Fishing Permits Sold by Month 2011- 2014 
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Figure 6: Fishing Permits Sold by County 2011 - 2014 
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Figure 7: Total Fishing Permits Sold by Year 
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Table 1: Variable Descriptions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Description

Permit Count Number of annual, resident fishing licenses sold within a given zipcode and month

Algae Continuous measure of algae measured in 10,000s of Cyanobacteria cells/mL

Low Advisory Threshold Indicator variable for WHO's 20,000 - 100,000 Cyanobacteria cells/mL Advisory Threshold 

High Advisory Threshold
Indicator variable for WHO's 100,000 - 10,000,000 Cyanobacteria cells/mL Advisory Threshold

Water Temperature Monthly mean water temperature in degrees Celsius

Rain Days Number of rainy days within a given month

Distance to Lake Distance from zipcode centroid to Lake Erie in 1000s of meters

Distance to Ramp Distance from zipcode centroid to nearest public access point where boating or fishing is permitted in 1000s of meters
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Table 2: Summary Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(N= 6862)

Variable Name Mean Std Dev Min Max

Permit Count 79.64 127.30 0 1466.00

Algae (10,000 cells/mL) 3.68 11.94 0 175.80

Moderate Advisory Threshold 0.116 0.32 - -

High Advisory Threshold 0.087 0.28 - -

Water Temperature 12.52 8.41 0 26.91

Rain Days 14.18 3.96 4.33 26.00

Distance to Lake (1000s) 11.42 9.53 0.16 43.69

Distance to Ramp (1000s) 11.99 9.69 0.50 43.72

Sale Year 2013 1.11 2011 2014

Sale Month 6.62 3.39 1.00 12.00
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Table 3: Robustness to Temporal Fixed Effects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moderate Threshold (>20,000 cells/mL) -0.0590** -0.0532** -0.107***

(0.0242) (0.0243) (0.0229)

Water Temperature (Degrees Celsius) 0.0337*** 0.0493*** 0.0332***

(0.00461) (0.00522) (0.00690)

Rain Days 0.000469 -0.00236** -0.00594**

(0.000997) (0.00100) (0.00240)

Constant -2.584*** -2.553*** -2.574***

(0.111) (0.110) (0.106)

Observations 6,862 6862 6862

Month Fixed Effects Yes (11) Yes (11) No

Year Fixed Effects No Yes (3) No

Month By Year Fixed Effects No No Yes (46)

ZipCode Fixed Effects Yes (145) Yes (145) Yes (145)

(3)

Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. Standard 

Errors have been clustered at the zipcode level. All columns use a negative bionomial functional 

Variables (1) (2)
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Table 4: Spatial Heterogeneity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moderate Threshold (>20,000 cells/mL) -0.151*** -0.101** 0.0397

(0.0349) (0.0417) (0.0431)

Water Temperature (Degrees Celsius) 0.0321*** 0.0305*** 0.0163

(0.0115) (0.0107) (0.0183)

Rain Days -0.00676* 0.000471 -0.00220

(0.00393) (0.00332) (0.00575)

Constant -0.313** -3.729*** -2.401***

(0.142) (0.167) (0.314)

R-squared - - -

Observations 3,807 1,692 1,363

Month By Year Fixed Effects Yes (46) Yes (46) Yes (46)

ZipCode Fixed Effects Yes (80) Yes (35) Yes (28)

Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. 

Standard Errors have been clustered at the zipcode level. All columns use a negative 

bionomial functional form.

>20km
Variables

<10km 10km - 20 km



31 
 

 

Table 5: Spatial Aggregation and Advisory Thresholds 

 

 

  

Moderate Threshold (>20,000 cells/mL) -0.0850*** -0.0948*** -0.119***

(0.0227) (0.0231) (0.0307)

High Threshold (>100,000 cells/mL) - - 0.0184

- - (0.0274)

Water Temperature (Degrees Celsius) 0.0354*** 0.0370*** 0.0336***

(0.00676) (0.00666) (0.00685)

Rain Days -0.00770*** -0.00622*** -0.00594**

(0.00276) (0.00236) (0.00239)

Constant -2.553*** -2.604*** -2.577***

(0.108) (0.106) (0.107)

Observations 6,862 6,862 6,862

Month by Year Fixed Effects Yes (46) Yes (46) Yes (46)

ZipCode Fixed Effects Yes (145) Yes (145) Yes (145)

Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. Standard Errors have been 

clustered at the zipcode level. All columns use a negative bionomial functional form.

Various ThresholdsVariables Ramp Measure Max Measure
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Table 6: Specification Robustness 

 

Moderate Threshold (>20,000 cells/mL) -6.929** -0.197*** -0.137*** -0.107***

(3.314) (0.0480) (0.0176) (0.0229)

Water Temperature (Degrees Celsius) -1.444 0.0136 0.0183*** 0.0332***

(3.771) (0.0174) (0.00553) (0.00690)

Rain Days -1.361** -0.0152*** -0.000875 -0.00594**

(0.677) (0.00563) (0.00233) (0.00240)

Constant 28.99* 0.709*** -2.576*** -2.574***

(17.51) (0.159) (0.128) (0.106)

Observations 6,862 6,862 6,862 6,862

R-squared 0.653 0.926 - -

Month by Year Fixed Effects Yes (46) Yes (46) Yes (46) Yes (46)

ZipCode Fixed Effects Yes (145) Yes (145) Yes (145) Yes (145)

Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. Standard Errors have been clustered at the zipcode level. 

Level - Level 

Regression

Log - Level 

Regression
Poisson Regression

Negative Bionomial 

RegressionVariables


