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APPLICATION OF STOCHASTIC PROCESSES TO 
SUMMARIZE DYNAMIC PROGRAMMING SOLUTIONS 

Use of optimization techniques which accounts for both the stochastic 

and dynamic nature of agricultural problems is increasing. Dynamic 

programming (DP) is a commonly used technique in this setting. Although 

increasing, the use of DP is not widespread. Burt suggests two obstacles to 

the adoption of multi-period optimization techniques: 1) cursory treatment of 

this subject in graduate courses and 2) what Bellman termed the "curse of 

dimensionality." As noted by Taylor (1987), the solution to the first 

obstacle is obvious; however, the alleviation of the second obstacle is not as 

obvious. 

Taylor (1987; 1989) argues that the "curse" as defined by Bellman is 

fading or more correctly being replaced by several curses including a 

"decision rule curse." We agree with Taylor that the curse is changing. 

Bellman termed the phrase, curse of dimensionality, to refer to computer 

storage and speed limitations which limits the size of dynamic optimization 

models. Dramatic advances in computer computational power and refinements in 

. the DP technique have faded Bellman's original curse, such that models with a 

large number of total states can be solved (Taylor, 1987;,1989). Taylor 

(1987) defines the decision rule curse as "with a problem characterized by 

thousands or hundreds of states, the decision rule is such a large matrix that 

it is difficult for the researcher or decision maker to digest and fully 

understand" (p. 2). 

Several techniques either directly or indirectly have been suggested or 

are being used to overcome the decision rule curse. Usually only convergent 

decision rules are presented, eliminating the decision rules at all stages 

before the rule converges. Graphical techniques have been used to summarize 

large models (Taylor, 1987; Schnitkey, Taylor and Barry). Building an expert 

system to recall the appropriate decision based on user input could help 

decision makers use a large DP model (Taylor, 1989). Burt and Allison suggest 

using infinite net returns and/or expected long-run net returns as procedures 

to compare models. Schnitkey, Taylor, and Barry; and Mjelde, Taylor, and 

Cramer calculate the probability of being in various states given initial 

conditions. Although these techniques only indirectly address the decision 

rule curse, they are techniques which summarize large complex models. These 
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techniques rely on the use of stochastic processes. 

This paper is designed as a tutorial on the application of stochastic 

processes to summarize dynamic programming model's decision rules. As such, 

the paper contains basic background on stochastic processes and some 

extensions into areas that, to our knowledge, have not been previously 

addressed. Because the paper is a tutorial and readers will have varying 

backgrounds, the paper is divided into several almost self-contained sections. 

Readers with little background in Markov and stochastic processes should read 

all the sections. other readers could easily skip the Markov review and still 

understand the application of Markov principles to summarize dynamic 

programming decision rules. Markov processes are discussed first to provide 

necessary background material. Within the discussion, several examples are 

given to clarify the material. Application of Markov theory to post-dynamic 

programming computations is then discussed. The discussion is then expanded 

to include discrete stochastic processes with multiple transition matrices. 

To our knowledge, this is the first formal discussion of such stochastic 

processes. Examples of this type of processes are given. 

DISCRETE STOCHASTIC MARKOV PROCESSES 

Two basic concepts within a discrete stochastic Markov process involve 

1) the state of the system and 2) state transitions. The state of the system 

describes the condition of the process at a particular observation, usually 

defined as a stage. Normally, in agriculture, stages are defined as time 

periods. This definition is used throughout the remainder of this paper 

although it is not necessary. State transitions describe changes in the 

state of the system from one stage to the next. A stochastic process is a 

system in which the transitions can only be specified in terms of a 

probability distribution. 

Let Pij (i, j = 1, ••• , k and 0 S Pij S 1) represent the transition 

probabilities for a system with k possible states. The transition probability 

Pij is the probability of the system moving from state i at stage t to state j 

at stage t+1 • Furthermore, for any i = 1, . .. , k, the following condition 
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must hold, 

(1 ) 

This requirement states that if the system is in state i at stage t it must be 

in one of the k states at stage t+l. A transition probability matrix, P, is a 

k x k matrix of all the transition probabilities, Pij. A fundamental 

characteristic of Markov processes is that Pij is independent of the state of 

the system in stages one through t-l. 

To clarify transition probabilities and matrices, consider the following 

example concerning the water level of a lake. Water level in the lake can be 

described by 3 states: below normal, normal, and above normal. Further, the 

level of the lake next year depends on the current state of the lake (below, 

normal, or above) and stochastic weather conditions that will occur over the 

year. Let the lake level transition matrix be: 

. [ 
.5 .3 .2] 

P = [Pij ] .2 .6 .2 (2) 

.1 .5 .4 

In this matrix the rows represent the current state of the process, and 

the columns represent the state of the process at stage t-:l. Let the first 

row (column) represent below normal lake level, the second represent normal 

and the third represent above no~mal. With these definitions, elements in 

matrix P are interpreted as follows. If the lake is currently at a below 

normal level it has a 50% probability of being in the below normal level state 

next year, a 30% probability of being normal and 20% probability of being in 

state above normal. Similar interpretations are given to the other elements. 

This example (among others) will be used and expanded in the remainder of this 

paper. 

state Occupancy vectors - Limiting Probabilities 

Let 'Il'i(t) be defined as the probability that the system will occupy 

state i at stage t (after t transitions). It follows that 

k 

L "i(t) = 1 
i • 1 

for all t. (3) 

Equation (3) simply forces the system to occupy some state defined in the 

system at each stage or transition. Define 'Il'(t) with components 'Il';(t) to be a 

row vector of the state occupancy probabilities. To find the probability that 
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the system occupies some state at time t, simply post-multiply the state 

occupancy probability vector at time t-1 by the transition matrix, that is, 

n(t) .. n(t"';'l) P. (4) 

4 

In general, because of the recursive relationship present in equation (4), the 

vector If(t) can be-found by, 

r 

neil = nCO) P 
n (2) = n (1) P = n (0) PP = n (0) pa 
n (3) .. n (2) P = n (0) p 3 

n(t-) = n(t-1) P = nCO) pt 

where, (0) is the initiafstate occupancy vector. 

(5) 

Returning to our example, what is the probability of the lake. having an 

above normal water level after 2 years ff initially the lake is below normal. 

To find this probability, the following set of recursive calculations are 

necessary.: 

[. , .3 .2] 
n (1) = 1i: (0) P = [l. O. 0.] .2 .6 .2 [.5 .3 .2] 

.1 .5 .4 

and (6) 

[., .3 .2] 
n (2)= n (1) P = [.5 .3 .2] .2 .6 .2 [.33 .43 .24] . 

.1 .5 .4 

After two years the lake has a 24% probability of having an above normal water 

level given it initially had a below normal water level. Further, the lake 

has a 33% probability of being below normal and 43% chance of having a normal 

water level given that the lake was initially in the below normal state. The 

state occupancy vectors for 6 time periods given the three possible starting 

iake levels are given in Table 1. Notice that the state occupancy 

probabilities given in Table 1 are tending to the same vector irrespective of 

the initial lake level. The state occupancy probabilities; therefore, appear 

to be independent of starting state of the system given a large number of 

transitions. This property is exhibited by many Markov processes. 

A brief discussion of the properties of the transition matrix, P, 

necessary for this property to hold follows. Note, however, that state 

occupancy vectors which are independent of the initial conditions are known by 

several names including limiting probabilities (~oward), steady state 
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Table 1. state Occupancy Vectors at Different stages Given Various Starting 
Lake Levels.' 

~ stage (t) 

..2UL _ 0_ _ 1 _ _ 2 _ _ 3 _ _ 4 _ _ 5 _ _6 _ 

Lake Level Originally Below Normal 

7l"d t ) 1.0 .500 .330 .275 .258 .252 .251 

7l"2(t) 0.0 .300 .430 .477 .493 .498 .499 

7l"3 (t) 0.0 .200 .240 .248 .250 .250 .250 

Lake Level Originally Normal 

7l"d t ) 0.0 .200 .240 .248 .250 .250 .250 

7l"2 (t) 1.0 .600 .520 .504 .501 .500 .500 

7l"3 (t) 0.0 .200 .240 .248 .250 .250 .250 

Lake Level Originally Above Normal 

7l"dt) 0.0 .100 .190 .229 .243 .248 .249 

7l"2 (t) 0.0 .500 .530 .515 .506 .502 .501 

." 7l"3 (t) 1.0 .400 .280 .256 .251 .250 .250 

a) Probabilities rounded to 3 decimal places. 

j 
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probabilities (Rorres and Anton; Gillett), limiting vectors (Kemeny and 

Snell), and e~ilibrium probability vectors. Here limiting probabilities are 

used. 

Limiting prob~bility vectors by definition have the following property 

7t = 7t P. (7) 

The condition given in e~ation (7) simply states that the probability of 

being in a given state will not change with an additional transition. That 

is, the probabilities are stage or transition independent. Given conditions 

discussed below, the vector ~ will be uni~e. 

A sufficient condition for P to have a uni~e limiting probability 

6 

vector is that P be a regular matrix (Rorres and Anton). A regular transition 

matrix has the property that some.integer power of the matrix has all positive 

entries. This condition implies that the process can go from any state to any 

other state, but not necessarily in one transition. If P is a regular matrix 

then as t goes to positive infinity (t -+ CD) the following condition holds 

ql q2 qk 

% q2 qk 

pC _ Q = (8) 

% % qk 

where, q; are positive numbers such that ql + Cb + ••• + ~ = 1. See Kemeny and 

Snell for a proof of this proposition. From the condition in e~ation (8), it 

can be seen that given any probability vector x (where 1: Xi = 1) that 

q=xQ (9) 

where q is a row vector.with elements ql' Cb, ••• ,~. E~ation (9) can easily 

be shown, 

(10) 

= [qlx l + %x2+ ••• + %Xlc q2x l + q2x 2 + ••• + Q2x lc 

qk?'l + QJc'C2 + •.. + QJc'Clc] 
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Equation (10) results because for any probability vector, the sum of the 

elements must equal one. No matter what initial probability vector; 

therefore, is used, the probability of being in each state will be the same 

provided enough transitions have occurred. That is, provided t is 

sufficientlylarg~. Equation (10) also shows that the limiting probability 

vector, rr, will be equal to the vector q. 

Several methods exist to calculate the limiting probability vector. One 

method makes use of equations (3) and (7). These two equations give k + 1 

equations in k unknowns. To find a unique solution, one equation given by 

equation (7) is replaced with equation (3) and the resulting system of k 

equations is solved. To clarify this method, return to the lake level 

example. Applying equation (7) to the example gives 

(lla) 

(llb) 

(llc) 

Equation (13) for this example gives 

~~ + ~2 + ~3 = 1. (12) 

Equation (12) is then supstituted for anyone of the equations in (11) usually 

equation (llc) and the resulting system of 3 linear equations and 3 unknowns 

is solved. The solution is independent of the equation being substituted. 

Using this method, the limiting probability vector is 

~ = [.25 .50 .25]. (13) 

As expected, the limiting probabilities given in equation (13) are similar to 

these given in the sixth column of Table 1. 

Several limitations of the above method of solving a system of linear 

equations are apparent. Using this method, only information about the 

limiting probabilities is gained. No information about transitions from 

initial conditions to the limiting probabilities is gained. Another 

limitation is potential problems associated with trying to solve a system of k 

linear equations as k increases. 

To overcome these limitations, the use of the recursive relationship in 
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equation (5) can be used. Probability vector rr(t) can be calculated either by 

rr(t) = rr(t-1) P or rr(t) rr(O) pt. Gillett presents a FORTRAN program to 

calculate powers of the P matrix. Appendix A presents a FORTRAN program to 

calculate rr(t) = rr(t-1) P. In both methods a tolerance limit is used to check 

for convergence. Convergence check for the powers method is to check 

t t-l ' , k Pij - Pij ~ tol. for all~, J = 1,2, "" (14a) 

or 

Pi~ - Pi~ ~ tol for all i, j, n = 1, 2, , .. , k (14b) 

where tol is the tolerance limit. For the method of calculating rr(t) at each 

stage the check is 

~i(t) - ~i(t-1) ~ tol for all i = 1,2, ... , k. (15) 

The method of calculating state occupancy vectors appears to be the more 

efficient method. Consider for example, a system with 100 states, therefore; 

a P matrix of 100 x 100. The powers method requires 10,000 elements be 

calculated at each stage with each element requiring 100 multiplications and 

additions. These 10,000 elements need to be checked for convergence. For the 

state occupancy vector only 100 elements need to be calculated and checked for 

convergence. Each element still requires 100 multiplications and additions. 

The method which converges faster depends on the number of stages each method 

need for convergence. Our limited experience is that both methods converge in 

approximately the same number of iterations giving the state occupancy vector 

method an advantage, because of its property of requiring less elements to be 

calculated. 

The condition that the probability matrix, P, be regular is more 

restrictive than necessary for a system to converge to a unique limiting 

probability vector (Kemeny and Snell). Three properties of Markov transition 

matrices need to be ~ntroduced to fully understand less restrictive conditions 

on the P matrix. These are transient sets, ergodic sets, and absorbing 

states. The elements of a transient set are called transient states, 

likewise, the elements of ergodic set are called ergodic states. Furthermore, 

there must be at least one ergodic set for every Markov process (Howard). A 

process, however, does not necessarily have to contain a transient set or an 

absorbing state. These properties classify states within a Markov process. 
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Classification of states within a Markov process is based on whether it 

is possible to go from a given state to another given state. This movement 

does not necessarily have to occur in one transition. A transient set has the 

following characteristics: the system can move between the states in the 

transient set or the system can leave the transient set and enter another set. 

Once a process has left a transient set anq entered an ergodic set it can 

never return to the transient set. An ergodic set has the characteristic that 

once a process enters the ergodic set it can never leave this set, but the 

process can move between states within the set. An absorbing state is a 

special case of an ergodic set in which only one state exists within the 

ergodic set. Once a process has entered an absorbing state, it can not leave 

that state, thus state i is absorbing if and only if Pu = 1 (Kemeny and 

Snell) • 

To clarify these definitions, consider the following transition matrix, 

.8 .2 0 0 0 

.5 .5 0 0 0 

A .25 .25 .25 .25 0 (16) 

0 0 .25 .5 .25 
0 0 0 0 1 

Within transition matrix A ther.e are 2 ergodic sets· and 1 transient set. 

Further, one of the ergodic sets is an absorbing state. States 1 and 2 

comprise 1 ergodic set. If the process enters either state 1 or 2, it can 

never leave this set of states. States 3 and 4 are transient states. If the 

process is in state 3 or 4 it can enter any of the 4 remaining states, but not 

necessarily with 1 transition. State 5 is an absorbing ergodic state, that 

is, if the process enters state 5 it can never leave this state. 

The question is why are these concepts important 'in terms of Markov 

processes, in general, and DP, in particular? Table 2 lists the state 

occupancy vectors at stage 6 .for probability matrix A given different initial 

probability vectors (calculated using '1l'(t) = '1l'(t-l) A). It is obvious from 

the probabiliti~s in Table 2 that the initial state is important in 

determining the probability of being in each of the 5 states. If the process 

started in state 5, it remains in this state no matter how many transitions 

occur. Further, if the process started in either state 1 or 2 it remained in 

this ergodic set. Finally, starting in states 3 or4 leads to a probability 



., of being in each state, although it differs depending on where the process 

started. But, as t ~ 00 the probability of being in either state 3 or 4 

approaches zero. Probability transition matrix A shows by example, that a 

matrix with 2 ergodic sets will not satiafy equation (7). This could be 

extended to any transition matrix with greater than 2 ergodic sets. Such 

matrices; therefore, do not have unique limiting pror~bility vectors. The 

system does not lose complete memory of its initial state. 
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Now consider the following transition probability matrix that has only 1 

ergodic set, 

_ [.33 .33 .341 
B- 0 .2 .8. 

o .7 .3 

(17) 

In matrix B, state 1 is a transient state and states 2 and 3 define an ergodic 

set. Table 3 lists the state occupancy vectors for different time periods 

given 3 possible initial states for matrix B. The state occupancy vectors 

appear to be tending toward a unique vector regardless of the initial 

conditions. In fact, matrix B has the following limiting probability vector, 

1t = [0 .467 .533 ] . (18) 

A matrix with 1 ergodic set and 1 transient set, will possess a unique 

limiting probability vector. 

As a last example, consider the following ergodic matrix 

c=[~ ~]. (19) 

This is the simplest example of what is referred to as a cyclic Markov 

process. In matrix C, if the process is in state 1, it will be in state 2 and 

if the process starts in state 2, it will be in state 1 in the next stage. 

For a given starting point the process; therefore, moves through t,he states in 

a definite order. At any given stage and a given initial condition the state 

of the process will be known; therefore, it does not have a unique limiting 

probability vector. The concept of limiting probabilities in a theoretical 

sense are not relevant because the state of the process will be known. In a 

practical sense, this concept, however, may be useful (Howard). 
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Table 2. 

Initial 
state 

1 

2 

3 

4 

5 

state Occupancy Vectors at stage 6 for Probability Transition 
Matrix A Given Different Initial States". 

Probability of Being in a Given state 

_1_._ _2_ _3_ _4_ __5_ 

.714 .286 0 0 0 

.714 .286 0 0 0 

.542 .226. .021 .035 .175 

·.239 .110 .035 .057 .559 

0 0 0 0 1 

a) Rounded to 3 decimal places • 

11 
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Using the method of solving a k system of linear equations gives a 

limiting probability vector with elements .5 and .5. This result is 

intuitively appealing given the cyclic nature of matrix C, that i\s, 50% of the 

time the process is in state 1 and 50% of the time it is in state 2. 

How do'the above examples relate back to the original question; are 

there less restrictive conditions than regularity ,that can be placed on ~he 

transition probability matrix and still have a unique limiting probability 

vector? As can be seen from the above examples, the answer is yes. Kemeny 

and Snell (p.37) subdivide Markov processes into the following 

classifications: 

I. Processes without, transient sets. 

a. Ergodic set is regular. 

b. Ergodic set is cyclical. 

II. Processes with transient sets 

a. All ergodic sets contain a single absorbing state. 

b. All ergodic sets are regular, containing more than one 

state. 

c. All ergodic sets are cyclical. 

d. Both cyclic and regular ergodic sets exist. 

Within this classification, the major difference is the existence of transient 

sets. In category I if more than one ergodic set'is present, each can be 

considered as a separate process because no communication between the sets 

occur (Kemeny and Snell), whereas, category II, if more than 1 ergodic set 

exists, transition from the transient set(s) to the ergodic sets occurs. By 

example, it was shown that, in general, if the process contains more than one 

ergodic set, the process will not posseSs a unique limiting probability 

vector. It was also shown, by example, that in theory acyclic p~ocess will 

not possess a unique limiting probability vector. But in practice, it may be 

possible to treat such a process'as if the process possessed such a vector 

(Howard). With the example's, all Markov processes, except la, IIa with single 

absorbing state, and lIb containing only a single regular ergodic set, were 

eliminated from having a unique limiting probability 'vector. Further, IIa is 

not very exciting, as the process will become trapped in the absorbing state, 

that is, i~s limiting probability equals one for the absorbing state. The 

" . ,";..' .--:. ~ . 
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Table 3. state Occupancy Vectors at Different stages Given Different 
Starting States'. 

Stage (t) 

---1llL _0 _ _ 1_ _ 2_ _3 _ _ 4 _ _ 5_ _6 _ 

Process Initially in state 1 

7rdt) 1 .33 .109 .036 .012 .004 .001 

7r2 (t) 0 .33 .413 .453 .460 .466 .4.66 

7r3 (t ) 0 .34 .478 .511 .528 .531 .533 

Process Initially in State 2 

7rdt) 0 0 0 0 0 0 0 

7r2 (t ) 1 .2 .6 .4 .5 .45 .475 

7r3 (t ) 0 .8 .4 .6 .5 .55 .525 

Process Initially in State 3 

7rdt) 0 0 0 0 0 0 0 

7r2 (t ) 0 .7 .35 .525 .438 .481 .459 

7r3 (t ) 1 .3 .65 .475 .563 .519 .541 

a) Rounded to 3 decimal places. 
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remainder of the discussion in this paper will concentrate on regular ergodic 

sets. For a discussion of cyclic ergodic sets, see Kemeny and Snell. Much of 

the discussion presented here applies to cyclical systems. Throughout the 

remainder of this paper, ergodic will be used to represent regular ergodic. 

A Markov transition matrix which contains a single ergodic set is defined as 

an ergodic Markov process. The necessary condition for a Markov process to 

possess a unique limiting probability vector; therefore, is that the process 

must be an ergodic process. This condition encompasses both transition 

matrices which are regular and matrices that contain transient .sets and a 

single ergodic set. A regular transition matrix is a special case of ergodic 

chain, namely that no transient states exist in the matrix. The limiting 

probability vector in the latter case will contain zero's in the transient 

states and positive components for the states contained in the ergodic set. 

See Kemeny and Snell for mathematical proofs of the above conditions for 

,existence of unique limiting probability vectors. 

DETERMINATION OF SETS WITHIN. A TRANSITION MATRIX 

Obviously, classification of sets within a transition matrix is 

necessary to understand how a discrete stochastic Markov process behaves over 

time. set identification methods should be computer adaptable to facilitate 

examination of medium to large matrices encountered in applied problems. 

Previously defined methods for determining sets within a transition matrix are 

reviewed in the section. A row-by-row examination method is proposed as an 

alternative to the previous methods. Each method has advantages and 

disadvantages, such that no method can be singled out as the one best method. 

These advantages and disadvantages are discussed. 

Previously Defined Methods 

Previously defined methods for determining sets within a mat'rix can be 

divided into four categories: 1) visual inspection methods, 2)Z

transformation method, 3) power-multiplication method, and·4) limiting 

probability vector method. Each method is discussed. 

Visual inspection m~thods: Visual inspection relies o.n visual 

examination of the matrix to determine which states are assessable from other 

states. Up to this point, this paper has relied on visual inspection for set 

classification. Use of this method is appropriate only for small matrices. 



Because of this drawback, this method is usually only appropriate for 

illustrative purposes and not for applied problems. 

z-transformation method: Howard proposes the z-transformation method 

for determining state occupancy probability vectors (pp 10 - 16). The z

transformations allows for the construction of the following equation: 
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(20) 

where Jl gives the probability matrix at time t, Hand K are k by k matrices 

of constants, and c is a constant real number (-1 < c < 1). state probability 

vectors for each of the k possible initial states are given by the respective 

row of the J1matrix. Any Jl matrix is calculated by setting t to the 

appropriate number and performing the calculation on the right-hand-side of 

equation (20). 

Determining H, J and c is appealing because state probability vectors 

for all states and all t are given by equation (20). Limiting probability 

vectors for all states and all t are given by the H matrix •. Unfortunately, 

determining the Hand K matrices and the c constant requires use of z

transformations. These methods are difficult to numerically implement. As 

such, the z-transformation method is not discussed further. 

Power-multiplication method: The power-multiplication method determines 

the converged transition probability matrix. Use of the method requires 

repeated post-multiplication of matrices in the following manner (Clark and 

Disney) : 

(21) 

For a given transition matrix, the first multiplication yields p2 = P * p. 

The p2 then is used to determine p4 = p2 * p2. This process is repeated until 

convergence occurs. Convergence can be checked using equation (14). Use of 

equation (21) instead of calculating pI = pI-I P results in faster c~nvergence. 

The converged matrix contains all limiting probability vectors which are given 

by rows in the matrix. 

sets contained within the transition matrix can be determined by 

applying the following three steps to matrix pI: 

1. Determine which rows have identical elements. Allor a 

portion of the states represented by the rows with similar 



2. 

elements constitutes an ergodic set. Some of the states 

represented may be members of a transient sets. 
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Determine the ergodic set for all rows with similar 

elements. All membe~s of an ergodic set must have positive 

. limiting probabilities. Suppose, for example, that rows 1, 

2, and 3 are identical and states 1 and 2 have positive 

probabilities. In this case, the ergodic set consists of 

states land 2. 

, 3. Determine transient states for all rows with similar 

elements. Members of transient sets will have zero 

.probability.. In the above example, state 3 represents a 

transient set. 

The above process is illustrated using the following transition matrix: 

.5 .5 0 0 0 

.5 .5 0 0 0 

F= 0 .2 .8 0 0 (22) 

0 0 0 .5 .5 
0 0 0 .5 .5 

Using the power-multiplication methods, matrix F has the following converged 

probability matrix: 

.5 .5 0 0 0 

.5 .5 0 0 0 

.5 .5 0 0 0 (23) 

0 0 0 .5 .5 
0 0 0 .5 .5 

This converged matrix has two sets of rows with identical elements: 1) states 

1, 2, and 3, and 2) states 3 and 4. For states 1, 2, and 3, step (2) reveals 

that the ergodic set consists of states 1 and 2. Both of these states have 

positive limiting state occupancy probabilities. Step 3 indicate~ that state 

3 is a transient state that communicates with the ergodic set consisting of 

states 1 and 2. Repeating steps 1, 2,. and 3 for the second set of ~ows with 

identical elements reveals that states 4 and 5 constitu.te an ergodic set. 

The power-multiplication method is adaptable to numeric methods. Its 

major advantage is that all limiting probability vectors are found and all 

ergodic states are identified. 

The method has three disadvantages. First, extensive resources are 
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required for large matrices. In most cases, two matrices, the matrix to be 

post-multiplied and the resulting matrix, must be in random access memory 

(RAM). For a 1000 by 1000 transition matrix, memory requirements for these 

matrices equal 7,812.5 K of RAM, presuming that each element requires 4 bits 

of storage. Memory requirements could be reduced by one-half by storing the 

resulting matrix in external storage. Preforming these storage operations 
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will dramatically increase input-output operations, thereby increasing 

computing time. Also, accuracy may be reduced during the storage operations. 

Second, convergence may require extensive post-multiplications. This 

could require extensive computer resources. Moreover, convergence will not 

occur when the matrix includes cyclical components. 

Third, the method may not identify all transient sets. As an example, 

examine the following matrix: 

.5 .5 0 0 

o .5 .5 0 
G= o .5 .5 0 

o 0 .5 .5 

(24) 

This matrix contains three sets: (1) an ergodic set consisting of states 2 

and 3, (2) a transient set consisting of state 1, and (3) 'a transient set 

consisting of state 4. Matrix G's converged probability matrix is: 

0 .5 .5 0 

0 .5 .5 0 

0 .5 .5 0 
(25) 

0 .5 .5 0 

The power-multiplication method will identify only one transient set 

consisting of states 1 and 4. Only transient states and not transient sets; 

therefore, are identified. 

Limiting probability vector method: This method finds a limiting 

probability vector for a given initial state by using equation (5) '. For a 

given limiting vector, all states with positive probability will constitute an 

ergodic set. States with zero limiting probability vectors are either 

transient states or constitute another ergodic set. To classify the states 

with zero limiting probabilities, calculation of a new limiting probability 

vector must occur using a different initial state. The new initial state is a 

state that had a limiting probability of zero. States with a positive 

probability are eliminated because they have been classified. A transient 



state is identified when the state is used as the initial state and its 

limiting probability equal zero. This process is repeated until all states 

are either identified as either part of an ergodic set or are identified as 

transient states. 

18 

The limiting probability vector method is a special case of the 

power-mu-l-tipljr:ation method. Operations are performed for a single state 

rather than on the whole matrix. The method may be preferred because memory 

requirements are reduced. Under the power method, two k by k matrices must be 

stored in RAM. Under the limiting vector method, only one transition matrix 

and two 1 by k vectors need to be stored. The method still suffers from the 

later two disadvantages identified under the power-multiplication method. 

Row-by-Row Examination 

Of the above methods, the power-multiplication and limiting probability 

vector methods are numerically applicable. Both methods have two 

disadvantages: convergence may require extensive calculations, and the 

methods do not necessarily identify transient sets. To overcome these two 

disadvantages, the following row-by-row examination method is proposed. The 

row-by-row method is similar to Heyman and Sobel's discussion on communicating 

states (p. 230-235). A computer program using the row-by-row method is 

contained in Appendix B. This method required a finite number of iterations, 

thus avoiding convergence difficulties. It also identifies all transient and 

ergodic sets. The method requires three steps: (1) determining communication 

between states, (2) determining sets within the matrix, and (3) determining 

ergodic and transient sets. 

Determining communication between states: This step determines states 

obtainable from other states by creating a matrix that containing only l's and 

O's. A 1 in the ith row and jth column indicates movement from s~ate i to 

state j is possible but not necessarily in one transition. A zero indicates 

movement from state i to state j is not possible. Construction of this matrix 

requires an initial conditioning operation. This initial operation replaces 

all positive entries in a transition matrix with a 1. Suppose that you have 



the following transition matrix: 

.5 .5 0 0 0 

.5 .5 0 0 0 

0 .2 .8 0 0 

0 0 0 .5 .5 

0 0 0 .5 .5 

After completing the in'tial conditioning operation, the matrix becomes: 

1 1 0 0 0 

1 1 0 0 0 

0 1 1 0 0 

0 0 0 1 1 

0 0 0 1 1 

the l's in the matrix indicate that you can move directly from state i to 

state j. 
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(26) 

(27) 

After the conditioning operation, an iteration is required for each 

state (row). Each iteration has two steps. First, the current state is 

examined to determine if transition is possible to any state examined during 

previous iterations, hereafter referred to as previously considered state(s). 

If transition is possible, the current state's row may require updating. This 

updating replaces any 0 element in the current row with a'l if the 

corresponding element in the previously considered row equals 1. Second, 

previously considered states are examined again. This examination determines 

if transition is possible from the previously considered state to the current 

state. If possible, as indicated by the appropriate element equalling 1, the 

row corresponding to the previously considered row may require updating. This 

updating will replace any 0 element in the previously considered row with a 1 

if the corresponding element in the current row equals 1. 

For clarification, consider determining communication between states for 

the matrix given in equation (27). The first iteration examines state 1. No 

previously considered states, however, exist· causing the iteration to end. 

The second iteration examines state 2. The first step examines the element in 

the first column of the second row. The element equals 1 indicating the 

updating of row 2 may be required. The elements of row 1 and 2 are identical; 

therefore, updating is not required. The second step requires examination of 

the first element in the first row. This element equals 1 indicating that row 

2 may have to be updated. Rows 1 and 2, however, are identical such that 
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updating does not change row 1. 

The third iteration examines row 3. The first step requires examination 

of the first and second elements of row 3. The first element is zero such 

that no updating occurs. The second element equals 1 such that updating of 

row 3 may be warranted. This updating will replace all zero elements in row 3 

with l's if the corresponding elerent in tow 2 equals 1. After updating, row 

3 appears as: 

[11100]. (28) 

This row indicates that the first three states are obtainable from the third 

matrix appears as: 

1 1 0 0 0 

1 1 0 0 0 

1 1 1 0 0 

0 0 0 1 1 

0 0 0 1 1 

Each row in the matrix indicates all possible states obtainable from the 

respective states. 

(29) 

Determining sets within the matrix: states contained within a given set 

have identical rows. In the above example, there are three sets; the first 

set contains states 1 and 2, the second set contains state 3, and the third 

set contains states 4 and 5. 

Determining ergodic and transient sets: Ergodic sets are absorbing. In 

a matrix, absorption will be indicated by having no communication with another 

set. In other words, an ergodic set will have zeros in columns whose states 

are in other sets. Transient sets, on the other hand, communicate with other 

sets. This communication is indicated by a 1 for states that are part of 

another set. In the example, two sets are ergodic: the set containing states 

1 and 2 and the set containing states 4 and 5. The matrix contains one 

transient set, state 3. 

Finally, an examination of all columns needs to be completed. If a 



column contains all zeros, the respective state is part of a transient set. 

The state should be identified as a separate transient set if it has not 

already been identified as part of a transient· set. 
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The row-by-row examination method possesses several advantages over the 

previously defined methods. First, the method identifies all transient and 

ergodic sets. Second, as noted earlier, thp method avoids convergence 

difficulties associated with the other methods. Finally, the method works 

with integer and not real numbers, thereby decreasing computer storage 

requirements. The main disadvantage of the row by row examination method is 

that the limiting probabilities are not determined. Limiting probabilities 

must be determined outside of the method. As with the power-multiplication 

and limiting probability methods, computer storage and time requirements 

associated with the row-by-row examinations may be large. 

Comparison of Methods 

The power-multiplication, limiting probability vector, and row-by-row 

examination methods all are numerically implementable. The first two methods 

suffer from convergence and transient set identification problems. If these 

issues are not of concern, as is likely for most transition matrices, the 

power-multiplication and limiting probability vector methods can accomplish 

ergodic set identification. In terms of computational time, the power

multiplication and row-by-row examination methods are more efficient than the 

limiting vector method. In some cases, the power-multiplication method is 

more efficient than the row-by-row examination method. Efficiency is matrix 

specific. The row-by-row method advantages over the power-multiplication 

method include lower RAM requirements, no convergence problems, and no 

transient set identification problems. The power-multiplication method's 

advantage over the row-by-row method is that limiting probability vectors for 

all states are identified once convergence is obtained. 

APPLICATION OF MARKOV PROCESSES TO DYNAMIC PROGRAMMING SOLUTIONS 

The preceding discussion provides the basics necessary to apply Markov 

processes to post-dynamic programming calculations to help in overcoming the 

decision rule and acceptance curse. Usually, limiting probabilities are used 

in procedures to compare decision rules obtained from DP models to decision 

rules obtained elsewhere (Burt and Allison). Further, state occupancy vectors 
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are used to obtain the probability of being in various states given an initial 

state (Schnitkey, Taylor, and Barry). Probabilities of being in various 

states, not conditional on the initial state have also been reported (Mjelde, 

Taylor, and Cramer). The objective of these procedures has been to reduce a 

complicated model or decision rule into a number or set of numbers which 

provide meaningful information. These procedures alo~g with examination of 

the decision rules helps a decision maker ascertain the relevancy a model or 

models. 

In applied DP models, the models are usually sufficiently large that the 

method of solving linear equations to obtain limiting probability vectors is 

not practical. The recursive relationship in equation (5); therefore, is 

normally employed. To use equation (5), a probability matrix, P, must be 

specified. For equation (7) to hold, matrix P must represent an ergodic 

process. Specification of P in applied DP problems usually is accomplished in 

the following manner. Matrix P normally represents the probability of going 

from state i to state j, given the decision maker is following an optimal 

convergent decision rule. Convergent decision rules have the property that 

for a given state the optimal decision remains constant between stages. This 

does not mean the process remains in the same state, but just if 

the process is in a given state the decision is independent of the stage. 

Most applied DP model's decision rules converge given enough stages. 

Convergence; therefore, is not a restrictive condition. Once P is defined, 

the application of equation (5) and possibly equation (7) is straight forward. 

Reporting state occupancy vectors at various stages, given initial 

conditions, can help summarize a DP model. This procedure is most useful when 

the Markov process possesses at least one of the following three conditions: 

1) the process contains an absorbing state,. 2) the process contains more than 

one ergodic set, or 3) the initial state of the process is known. Calculating 

the limiting probability vector for the first condition, as seen earlier, is 

not very exciting. All the probability will be in the absorbing state. A 

process possessing condition 2 will not have a unique limiting probability 

vector. Under condition 3 the decision maker knows where he/she currently is 

and is concerned with where the process will be after several transitions. 

Reporting state occupancy vectors requires the simple application of equation 
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(5). Still in large OP models with hundreds or thousands of states, reporting 

of state occupancy vectors may be as difficult as reporting the decision 

rules, because there is a probability associated with each state. 

Because of the problem associated with reporting state occupancy 

vectors, limiting probability vectors can be calculated and used to obtain 

expected long run net returns. Application of this procedure t~ OP models 

requires that net returns associated with each state be based on convergent 

decision rules, because the transition matrix, P, is based on the convergent 

rules. These net returns, better known as immediate stage net returns, are 

only one component of Bellman's recursive equation. The sum of the 

multiplication of the limiting probability for each state by its associated 

net return gives expected long run yearly net returns, that is, 

E(NR) = 1tR (30) 

where E(NR) is expected long run net returns, rr represents the limiting 

probability vector, and R is a vector of net returns associated with each 

state. 

Returning to the lake level example, what is the expected long run net 

returns associated with the lake under the following scenario? Assume that 

the owners of the property rights to the water in the lake sell the water. If 
-

the level of the lake is below normal, no water can be sold, but the owners 

still must pay for upkeep on the dam; therefore, they experience a loss of $25 

thousand. For normal and above normal levels, net returns (water sold minus 

dam upkeep costs) are $10 and $15 thousand. Expected long run net returns are 

then (using equations (13 and 30»: 

E(NR) = 1tR 

.25 .50 .25 ] [ -25'J 10. 
15. 

(31) 

$2.50. 

Equation (31) shows that the expected long run yearly net returns to the 

owners of the lake's water is $2.5 thousand per year. 

Use of limiting probabilities has reduced the problem to a single 

expected net return. It is obvious, that such a procedure allows for a more 

succinct reporting of a OP model solution, but caution must be used because 

much information is not reported using this procedure. Calculation of 
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expected long run net returns can also be used to compare decision rules. To 

compare decision rules, a different transition matrix P is specified for each 

alternative decision rule. Usually, one matrix is specified as discussed 

above using the DP convergent decision rule. Other transition matrices are 

specified based on-the transitions associated with the decision rule to be 

compared to the DP rule. Then using the above procedure, expected long r'~n 

yearly net returns are calculated for each decision rule. Comparison of the 

expected net returns allows statements to be made about how one decision rule 

dominates another in terms of expected yearly returns. Note also that 

expected net returns are not the only item that could be calculated. Expected 

yearly yields is an example of other factors that could be calculated. 

Detailed Example - Comparison of Decision Rules 

As a more complicated example, consider the planting problem addressed 

by Burt and Allison. They consider the problem of either planting wheat or 

leaving land to fallow (land which is not planted in hopes of increasing its 

soil moisture content) for a dry-land farming operation. They developed a 

simple DP model which included five soil moisture levels. Transitions for the 

soil moisture state variable are stochastic, and the distribution is affected 

by the plant/no plant decision. The convergent DP solution was to fallow in 

the lowest moisture state and plant- in the remaining states. Burt and Allison 

compare their DP decision rule to a decision rule of continuous cropping of 

wheat and a rule which consists of alternating wheat and fallow. Using the 

information in Table 4, the expected long run yearly net returns (LRYNR) for 

each of the three decision rules are calculated below. 

The first step in calculating LRYNR is to develop a transition matrix 

and an immediate net return vector. For the convergent DP decision rule the 

transition matrix is 

0 1/20 5/20 7/20 7/20 
9/23 7/23 7/23 0 0 

P(DP) = 9/23 7/237/23 0 0 (32) 

9/23 7/23 7/23 0 0 

9/23 7/23 7/23 0 0 

This matrix is obtained from Table 4 using .the convergent decision rule of 

fallowing in the lowest soil moisture state and planting in the remaining 



25 

Table 4. Burt and Allison's Wheat Cropping Decision Problem, Transition 
Probabilities and Expected Returns. 

State Next Period 

Current Expected 
State" Decisionb _ 1_ _ 2 _ _3 _ _4_ __ 5_ Net Returnse 

1 F 0 1/20 5/20 7/20 7/20 -2.33 
W 9/23 7/23 7/23 0 0 4.52 

2 F 0 0 1/20 5/20 14/20 -2.33 
W 9/23 7/23 7/23 0 0 32.07 

3 F 0 0 0 1/20 19/20 -2.33 
W 9/23 7/23 7/23 0 0 36.26 

4 F 0 0 0 0 1 -2.33 
W 9/23 7/23 7/23 0 0 36.78 

5 F 0 0 0 0 1 -2.33 
W 9/23 7/23 7/23 0 0 47.63 

Source: Burt and Allison p. 130. 

a) Soil moisture state, state 1 is the lowest soil moisture and state 5 is the 
highest soil moisture. 

b) F is used to denote the fallow decision and W denotes plant wheat decision. 

c) Expected immediate net return in dollars per acre given current soil 
moisture state and decision undertaken. 
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states. Expected immediate net returns vector for the DP decision rule is 

R(DP) 

""2.33 
32.07 
36.26 
36.78 
47.63 

(33) 

Applying equations (3) and (7) to the probability matrix given by equation 

(32) and solving resulting the system of linear equations gives a limiting 

probability vector of 

7t(DP) = [.281 .233 .289 .096 .101]. 

Expected LRYNR for the convergent DP decision rule 

E(NRDP) = 7t (DP) R (DP) 

=$25.63. 

is: 

continuous wheat transition probability matrix is: 

9/23 7/23 7/23 0 0 
9/23 7/23 7/23 0 0 

peW) = 9/23 7/23 7/23 0 0 
9/23 7/23 7/23 0 0 
9/23 7/23 7/23 0 0 

(34) 

(35) 

(36) 

It can easiiy be seen that the limiting probability vector for the continuous 

wheat deciaion rule is 

7t (W) = [ 9/23 7/23 7/23 0 0]. 

The expected LRYNR for continuous wheat is then: 

E(NRW) = 1t (W) R(W) 

4.52 
32.07 

== 7t(W) 36.26 
36.78 
47.63 

= $22.56 .. 

(37) 

.<38) 

Calculation of the expected LRYNR for the decision rule of alternating 

wheat and fallow is not as straight forward as for the other two decision 

rules. A single transition matrix cannot be specified because the matrix is 

dependent on the decision. But modifying equation (5) gives 

7t (BF) = 7t (BW) peW) I and 

7t (BW) = 7t (BF) P(F) 
(39) 

where 7l'(BW)is the state occupancy vector before wheat is planted (after a year 
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of fallow), rr(BF) is the state occupancy vector before fallow (after wheat has 

been planted and harvested), P(F) is the probability transition matrix given 

the producer fallowed, and P(W) is the probability transition matrix given the 

producer planted wheat. In equation (39), P(F) can be obtained from the 

information in Table 4. Given the information in Table 4, rr(BF) is 

independent of the soil moisture state before wheat was planted. This can 

easily be shown by specifying matrix P(W), which can be specified from the 

information in Table 4 as, 

9/23 7/23 7/23 0 0 
9/23 7/23 7/23 0 0 

p(W) 9/23 7/23 7/23 0 0 (40) 

9/23 7/23 7/23 0 0 
9/23 7/23 7/23 0 0 

With P(W) specified as in equation (40), any rr(BW) will result in the same 

rr(BF), specifically, 

1t (BF) = [9/23 7/23 7/23 0 0]. ( 41) 

Burt and Allison base this assumption on the argument that " •.. at some time 

during the season of wheat growth, essentially all of the moisture in the root 

zone will be exhausted, making soil moisture at planting time have a 

negligible effect on soil moisture the following year at planting time" 

(p. 130). With this assumption, rr(BW) is calculated as 

0 1/20 5/20 7/20 7/20 
0 0 1/20 5/20 14/20 

1t (BW) [ 9/23 7/23 7/23 0 o ] 0 0 0 1/20 19/20 
0 0 0 0 1 (42) 
0 0 0 0 1 

[ 0 .020 .113 .228 .639 ] . 



Expected LRYNR is then calculated as 

E(NRFW) = .5{1t(BW) R(W) + 1t(BF) R(F)} 

4.52 

32.07 

.5 { [0 .020 .113 .228 .639] 36.26 

+ [9/23 7/23 7/23 0 0] 

.5(43.56 - 2.33) 

$20.62 

36.78 

47.63 

-2.33 

-2.33 

-2.33 

-2.33 

-2.33 
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(43) 

where R(F) is the cost of fallowing. The value in equation (43) is divided by 

one-half because the decision maker plants or fallows every other year. 

Calculated expected LRYNRs indicate that the optimal DP decision rule is 

approximately $3.00 better than the continuous wheat decision rule and 

approximately $5.00 better than alternating wheat and fallow. 

Practical Aspects 

As noted earlier, most applied DP models contain hundreds or thousands 

of states. Application of the methodology described in this paper changes 

little as the size of the transition matrix increases. But, some practical 

issues should be discussed. One of the most important issues is determining 

the classification of the stochastic process given by the convergent DP 

solution. That is, does the transition matrix have an absorbing state, a 

single ergodic set or does it contain several ergodic sets? With hundreds of 

states, it is no longer possible to visibly examine a matrix and determine how 

many ergodic sets are prese"nt. As previously illustrated by several examples, 

determining the classification of the transition matrix is important in 

determining if the matrix has a unique limiting probability vector. In 

practice; therefore, it is suggested that one of the previously described 

methodologies is used to determine the number of ergodic and transient sets. 

If more than one ergodic set exists in the matrix, it is suggested that 

limiting probabilities for initial conditions that encompass each ergodic set 

and all transient states be calculated. Expected long run net returns can 

then be presented for a set of initial conditions. It should be noted that 



29 

any initial state within an ergodic set gives a unique probability vector for 

that ergodic set. Only one initial condition; therefore, needs to be 

specified for each ergodic set. This condition, in general, is not true for. 

transient sets. Limiting probabilities for each transient state need to be 

calculated. 

Our experiences using equations (S) and (lS) have been that in general 

convergences of the limiting probabilities occurs fairly rapidly. Obviously, 

the speed at which convergence occurs depends on the convergent tolerance. 

Tolerances of 0.001 and 0.0001 have been used successfully with the FORTRAN 

program given in Appendix A. Further,a convergence tolerance of 0.000001 has 

been successfully tested on several matrices. One exception to rapid 

convergence is the 3 x3 transition matrix example given in Gillett. This 

matrix required over 40 iterations to converge. This illustrates convergence 

is matrix specific. 

Two other points need to be mentioned. First, be innovative when 

applying the principles discussed here. Burt and Allison's decision rule of 

planting wheat and fallowing illustrate an innovative use of Markov 

principles. Finally, when calculating limiting probabilities it is suggested 

that, as a check, the sum of the state occupancy probabilities be calculated 

to determine if .they sum to one. This procedure has been found to be a useful 

check of the state occupancy calculation program and a check of the transfer 

of the transition probability matrix from the DP program to the state 

occupancy program. 

PROCESSES WITH MULTIPLE TRANSITION MATRICES 

What if in Burt and Allison's problem under the wheat/fallow decision 

rule n(BF) was not independent of the soil moisture before planting? Could 

limiting probabilities and the Markov principles still be applied? Further, 

DP models are starting to define more than one stage per year. Mjelde, 

Garoian, and Conner's hay inventory model, for example, defines months as the 

stages. Usually, in this type of models the transition matrix varies by 

months within a year, but are identical between years. To clarify, the 

transition matrix from one month to another, for example, January to February 

is the same for each year, but the transition matrix varies between months 

within a year (Jan. to Feb. differs from Feb. to March, etc.). If the 
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transition matrices did not vary, then the principles discussed earlier would 

apply. 

The following discussion illustrates how a process with multiple 

transition matrices can be analyzed using the principles previously discussed. 

It will be proved that under certain conditions unique limiting probability 

vectors exist. Equation (5) again provides the basis for the discussion. 

Applying equation (5) to a discrete stochastic process with two transition 

matrices (e.g. six month periods within a year) gives 

1t2 (0) = 1t1 (0) Pl 

·1t1 (1) 

1t2 (1) 

1t1 (2) 

1t2 (0) P2 

1tl (1) Pl 

1t2(1) P2 

1t1 (t) = 1t2 (t-1) P2 

1t2 (t) = 1t1 (t) Pl 

(44) 

where, 1t1(t) is the state occupancy vector at time period 1 within transition 

time (year) t, 1t2 (t) is t,he state occupancy vector at time period 2 within 

year t, P1 and P2 are the transition probability matrices at the two time 

periods within the year, and 1t1(0) is the initial state occupancy vector. 

Expanding the lake level example to include two transitions in each year 

is informative. In this scenario the managers of the lake are concerned with 

the level of the lake at two time periods during the year. These two periods, 

for example, may be after two rainy seasons of the year. Define the two time 

periods to be January and July. Let the following matrix, P1, represent the 

transition from January to July 

[.5.3.2] 
Pl = .2 .6 .2 . 

. 1 .5 .4 

(45) 

without loss of any generality, P1, can be the same matrix as used earlier. 

Let the transitions in lake levels from July to January, a dryer period, be 

[
.7.2.1] 

P2 = .4 .5 .1 . 
. 3 .4 .3 

(46) 

Applying equation (44) to the expanded lake level example gives the state 
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occupancy vectors listed in Table 5 for various initial lake levels. The 

state occupancy vectors are tending towards the same vector for January and 

for July, but these v~ctors differ between January and July. Calculating the 

state occupancy vector gives January's limiting probability vector as [.476 

.379 .146], and July's as [.328 .443 .229]. 

As noted earlier, ~he type of stochastic process addressed in the 

expanded lake level example has not been formally addressed to our knowledge. 

It will be shown that, in general, a problem with m different transition 

matrices that repeat will have m unique limiting probability vectors if the 

vectors exist. The next section proves that unique limiting probability 

vectors exist under certain conditions. This type of stochastic process will 

be referred to as a discrete stochastic process with multiple transition 

matrices (DSPMTM). 

Existence pf Unique Limiting Probability Vectors 

The proof that unique probability vectors exist.in DSPMTM relies on the 

theorem that a transition matrix that contains a single ergodic set (including 

regular matrices) has a unique limiting probability vector. As stated 

earlier, a proof of the uniqueness with a single ergodic transition matrix can 

be found in Kemeny and Snell or Howard. Several examples which rely on this 

theorem were presented earlier. The proof that unique limiting probability 

vectors exist will be developed for a process with two transition matrices. 

This will then be generalized to the case with m transition matrices. 

Theorem 1: If [Pl P2] is a single set regular ergodic matrix, unique 

limiting probability vectors exist for rrl and rr2. 

Proof: Rewriting equation (44) gives 
n2(0) = n1(0) PI 

n1 (1) = n2 (0) P2 = n1 (0) PI P2 

n2 (1) = n1 (1) PI n1 (0) PI P2 PI 

nl(2) = n2 (1) P2 n1(0) PI P2 PI P2 = n1(0) 

n2(2) = n1(2) PI = n1(0) [PIP2]2 PI 

n1(t) = n2(t~1) P2 = n1(0) [PI P2P 

n2(t) = n1(t) PI = n1(0) [PI P2]t Pl. 

[PI P2]2 

(47) 
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Table 5. State Occupancy Vectors for January and July for the Lake Level 
Example". 

Year 

0 1 2 3 4 

"i Jan. July Jan. July Jan. July Jan. July Jan. July 

Lake Level Initial Below Normal 

71"1 1 .500 .530 .345 .481 .330 .476 .328 .476 .328 

71"2 0 .300 .330 .427 .374 .441 .378 .443 .379 .443 

71"3 0 .200 .140 .228 .146 .229 .146 .229 .146 .229 

Lake Level Initial Normal 

71"1 0 .200 .440 .318 .473 .327 .475 .328 .476 .328 

71"2 1 .600 .420 .454 .382 .444 .379 .443 .379 .443 

71"3 0 .200 .142 .228 .146 .229 .149 .229 .146 .229 

Lake Level Initial Above Normal 

71"1 0 .100 .390 .299 .466 .325 • 475 .328 . .475 .328 

.;, 
71"2 0 .500 .430 .467 .387 .445 .380 .443 .379 .443 

71"3 1 .400 .180 .236 .147 .229 .146 .229 .146 .229 

a) Rounded to 3 decimal places. 



To prove that limiting probability vectors exist, first consider the 

calculation of rrI(t), 

1t (t) = 1tl (0) [Pi P2]C. 
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(48) 

resulting from the multiplication of Pl and P2 is a transition matrix that is 

either regular or has a single regular ergodic set, rrl has a unique limiting 

probability vector as t goes to positive inf;.nity. For now assume the matrix 

[PI P2] is a transition matrix with a single regular ergodic set, then rrl has 

a unique limiting probability vector such that for a sufficiently large t the 

following condition holds 

1tl(t) = 1tl(t-l). (49) 

It, therefore, is shown for certain set of conditions a unique limiting 

probability vector for rrl exists. Using this result, now consider rr2. For a 

unique limiting probability vector to exist for rr2 the following condition 

must hold for a sufficiently large t 

1t2 (t) = 1t2 (t-l). 

The left and right side components of equation (50) can be calculated as 

1t2(t-l) =1tl(t-l) Pi, and 

1t2 (t) = 1tl (t) Pl. 

(50) 

(5la) 

(51b) 

For a sufficiently large t, equation (49) holds. Combining equation (49) and 

(SIb) gives 

1t2(t) =1tl(t) Pi 1t1(t-l) Pi, (52) 

but equation (5Ia) states 

1t2 (t-l) 1tl(t-l) Pi, (53) 

therefore, 

1t2 (t) = 1t2 (t-l) (54) 

which is a necessary condition for a unique limiting probability vector to 

exist. Further, if rrI is unique then rr2 will be unique because equation (53) 

reduces to a unique vector (rrI) post-multiplied by a given matrix (PI)i 

therefore, rr2 must be unique. 

The proof to this point has relied on the assumption that [PI P2] was a 

transition matrix with a single ergodic set. Each component of this 

assumption is now examined. Both Pl and P2 must be transition matrices for 

the process to be a DSPMTM. It, therefore, must be shown that the 

multiplication of two transition matrices results in a transition matrix. 
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Recall that, in a transition matrix, all elements within the matrix must be 

equal to or greater than zero and less than or equal to one. Further, the 

rows must sum to one. If P1 and P2 have m rows and columns the n, r element 

is given by 

m 

[Pl P2J nx E 
~zl 

(55) 

where the subscripts denote row and column for an individual element in each 

matrix. The sum of the elements in the nth row is 

m m 

L E Plni P21x " 
r-l ~.1 

(56) 

For the matrix [P1 P2] to be a transition matrix, the sum given in equation 

(56) must be equal to one for each row. Equation (56) can be rewritten as 

(57) 

The two individual sums in equation (57) represent the sum of each row in the 

respective transition matrix, which by definition must sum to one. Equation 

(57); therefore, equals one. Next, it must be shown that every element in the 

matrix [P1 P2] satisfies the condition 0 ~ [P1 P2]m ~ 1 for all n, r = 1, 2, 

••. , m. The first part of this condition (0 ~ [P1 P2]m) follows from 

multiplying and adding non-negative numbers. All elements in P1 and P2 are 

non-negative; therefore, multiplying elements and adding the resultant product 

must give a non-neg.ative number. The second part of the condition ([P1 P21 m 

~ 1) holds because it has been shown elements in [P1 P2] are non-negative and 

the rows must sum to one; therefore, no element can be larger than one. The 

multiplication of two transition matrices; therefore, results in a transition 

matrix. 

The proof then rests on the assumption that the matrix resuiting from 

post-multiplying P1 by P2 has a single ergodic set. Unfortunately, the only 

way to determine if [P1 P2] contains a single ergodic set is to examine the 

matrices involved. The assumption that [P1 P2] contains a single ergodic set 

is similar to the assumption necessary for a Markov process with a single 

transition matrix, P. That is, the transition matrix, P, must contain only a 

single ergodic set for unique limiting probabilities to exist. As was the 

case with the single transition matrix, the existence of a single ergodic set 



is process specific. This assumption is no more limiting in the two 

transition matrix 9ase than in the one transition matrix case, in fact maybe 

less limiting. 
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Examples of transition matrices with differing ergodic sets and number 

of ergodic sets may help in clarifying the following two points. First, the 

existence of a single ergodic set is process specific. Second, the assumption 

of a single ergodic set in the two transition matrix process may be less 

limiting than in the one transition matrix case. Examples of multiplying 

various transition matrices are given in Table 6. Following Kemeny and Snell, 

an ergodic set can be represented by an absorbing state to simplify the 

matrix. This follows from the definition of an ergodic set, that is, once a 

process enters an ergodic set, it can never leave that set. Seven examples of 

different PI and P2 matrices are given in Table 6 each with different ergodic 

sets. 

In example 1, both transition matrices, PI and P2, are regular, and the 

resulting [PI P2] matrix is regular. This result can be explained intuitively 

using the definition of regular. Recall, a regular process is one in which 

the process can go from any given state to any other state. In a two 

transition matrix process, if the process can go from any state to any other 

state at both time period 1 and at time period 2, it follows that the overall 

process can move from a given state to any other state. In example 2, both 

matrices have a single ergodic set and this set is identical in each 

transition matrix. The overall process is represented by a single ergodic 

matrix. Matrices PI and P2 in example 2 both have state 1 representing the 

ergodic set. Once the process enters state 1, it can not leave this state at 

either time period. The overall process; therefore, has state 1 as the 

ergodic set. 

Examples 3 through 6 are variations of the following scheme. PI has at 

least one ergodic set (represented by an absorbing state) which is a transient 

set in P2 and at least one ergodic set in P2 is a transient set in Pl. In 

these examples, a matrix with a single ergodic set (recall a regular matrix 

has a single ergodic set) results from the multiplication of PI and P2. 

Although, a set of states is ergodic at time period 1, the transient nature of 

these states in P2 allows the process to move out of the time period 1 ergodic 



... 

set at time period 2. This combination of transient and ergodic sets allows 

the process to move between the states. This is shown dramatically in 

examples 3 and 6 in which multiplying Pl by P2 results in a regular matrix • 
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In examples 4 and 5,_ a transient and ergodic set result from multiplying Pl by 

P2. This result follows from the discussion of example 2. 

In examples 1 through 6, the process will have unique limiting 

probability vectors at each time period, whereas example 7 shows that a unique 

limiting vector does not always exist. The examples show that the 

classification of the matrix resulting from multiplying Pl by P2 will be 

process specific. Some of the individual transition matrices do not have 

unique limi.ting probability vectors, if the individual transition matrices 

were considered separately (see example 6). A formal examination of the Pl 

and P2 matrices is given next. Necessary and sufficient conditions on the Pl 

or P2 matrices fOl;: the existence of unique limiting probability vectors are 

identified. 

Necessary and Sufficient Conditions on Pl and P2 

The proof of the existence of unique limiting probability vectors relies 

on the assumption that -[Pl P2] has a single ergodic set. -A sufficient 

condition for [Pl P2] to c.ontain a single ergodic set is that either Pl or P2 

contains a single ergodic set. This condition is given in the following 

theorem and proof. 

Theorem 2: If eitherPl or P2 is sirigle set ergodic, then [Pl P2] is 

single set el;:godic. 

Proof by contradiction: Suppose that [Pl P2] is not single set ergodic. 

This would imply that [Pl P2] can be partitioned in the foilowing manner after 

suitable row operations. 

a1 0 0 0 0 

0 az q 0 0 

0 0 a3 0 0 (58) 

0 0 0 0 am 

where· a j are submatrices representing different ergodic sets. . It is not 

possible tc) partition one or bothPl and P2 as above because one or both are 

single set ergodic. Moreover, post-multiplication of a single set ergodic. 

matrix by another matrix will not result in a matrix partitionable as above. 
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Table 6. Examples of Multiplying Different Transition Matrices. 

[P1] [P21 [PI P2] 

Example 1 - Both Matrices Re9ular 

.2 a .8 .4 .5 .1 .48 •. 10 .42 

.1 .2 .7 .1 .6 .3 = .41 .17 .42 

.7 .3 a .5 a .5. .31 .53 .16 

Example 2 - Both Matrices with One Ergodic set - similar 

] 1 a a 1 a a l' a a 
.2 .2 .6 .4 .5 .1 = .28 .16 .56 
.1 .1 .8 a .1 .9 .14 .13 .73 

Example 3 - Both Matrices with One Ergodic Set - Differ 

a .2 .8 1 a a .50 .40 •. 10 
• 5 .2 .3 . .5 .4 .1 = .75 .20 .05 
a .0 1 .5 .4 .1 .50 .40 .10 

Example 4 - One Matrix with One Ergodic Set Other Matrix Two Ergodic Sets 

1 a a .5 • :t .3 .50 .20 .30 
.5 .3 .2 a 1 a = .25 .40 .35 
a a 1 a a .1 a a 1 

Example 5 - Both Matrices with Two Ergodic Sets 

1 a a .5 .3 .2 .50 .• 30 .20 
.5 .3 .2 a 1 a = .25 .45 .30 
a a 1 a a 1 a a 1 

Example 6 - Both Matrices with Two Ergodic Sets 

.1 a a a .5 .2 .2 .1 .50 .20 .20 .10 
.2 .2 .2 .4 a 1 a a = .18 .28 .44 .10 
~1 .5 .2 .2 a a 1 a .09 .54 .32 .05 
a a a 1 .2 .1 .5 .2 .20 .10 .50 .20 

Example 7 - Both !olatrices with Two Ergodic Sets 

1 a a 1 a a 1 a a 
.5 .3 .2 .2 .3 .5 = .56 • 09 . .35 
a a 1 a a 1 a a 1 
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One can always move to another state in an ergodic set. If one set is not 

single set ergodic, the size of the ergodic set may be reduced. The single 

set ergodic matrix, however, will allow movement into that set. A 

contradiction; therefore, has been reached and the [Pl P2] must be single set 

ergodic. 

The above sufficient condition, however, is not a necessary condition. 

As illustrated in the above examples, both the PI and P2 matrices can include 

many ergodic sets and the [PI P2] matrix may contain only one ergodic set. In 

these. cases, a necessary condition for the [PI P2] matrix to eontain only one 

set is that the ergodic sets in one period's matrix be overlapped by a set 

(either transient or ergodic) in the other period's matrix. To illustrate, 

suppose PI has an ergodic set consisting of states 1 and 2 and another ergodic 

set containing states 3 and 4.. The matrix [PI P2] will be single set ergodic 

only if P2 contains a set (transient or ergodic) .that has ata minimum state 1 

or 2 and state 3 or 4. 

Unique limiting probability vectors; therefore, may exist even if all 

the individual transition matrices contain more than one ergodic set. This 

illustrates the need to consider the [PI P2] matrix and not the PI and P2 

matrices individually. It also explains why the assumption of [PI P2] 

containing a single. ergodic set is necessary. Determining the status of the 

[PI P2l matrix can be accomplished using the same methods applicable to all 

transition matrices. These methods for examining matrices were presented 

earlier. 

The status of sets in the [PI P2] matrix also holds implications for the 

status of the [P2 PI] matrix. If the 7Tl vector is unique, then the 7T2 vector 

is also unique, thereby implying that the [P2 PI] matrix i.s single set 

ergodic. This implication occurs because a necessary condition fdr unique 

limiting probability vectors is that the transition matrix contain only one 

ergodic set. Conversely, if 7TI is not unique, which results because [PI P2] 

is not single set ergodic, then 7T2 also is not unique (if 7T2 is unique then 7TI 

. would also be unique by. modification of the previous proof). This implies 

that the [PI P2] matrix contains more than one ergodic set. Either [PI P2] 

and [P2 PI]; therefore, are both single set ergodic or they both contain more 

.. than one ergodic set. This allows examination of only one of the 



post-multiplied matrices when determining the status of all the 'possible 

combinations of post-multiplied individual transition matrices~ 

Generalization to m Transition Matrices 
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The preceding discussion and proof has centered on a OSPMTM with two 

different transition matrices that repeat. It will be shown here that the 

above proof can be generalized to a process with m transition matrices that 

repeat. Examples of. processes with more than·two transition matrices would be 

seasonal or monthly models. 

Theorem 3: If[P1 P2 ••• Pm] is a'single set regular ergodic matrix, 

then m unique limiting probability vectors exist. 

Proof: Rewriting equation (47) to represent m transition matrices 

instead of two results in 

nt( t) = nm( t-l) Pm = n1 (0) [ PIP2 Pm] t. (59a) 

and for n '" 1 

.nri(t) = nn~l(t) Pn-l = nl(O) [PI P2 .• . Pm]t PI, P2 .•. Pn-l (59b) 

where n= 1, 2, ••• ,: m and the remaining variabl,es are as defined in equation 

(47) with appropriate modification for multiple transition matrices. From 

equation (59) it can be seen that the argument presented in the two transition 

matrix process applies with the following modifica't;:ion that [P1 P2 ••• Pm] 

containe aeingle regl,l1ar ergodic set. If [P1 P2 ••• Pm] contains a single 

regular ergodic set then 

[ PIP2 Pm ] t = [ PI P2 ••• Pm J t-l, (60) 

provided tis sufficiently large. From equation (60) and the multip~ication 

of constants ,argumlimt presented earlier, it follows that 

ttn (t) = nn (t-:-l), for all n, (61) 

again provided t is sufficiently large. A process with in transition matrices; 

therefore, has m unique limiting probability vectors given the condition of 

[Pl P2 ••• Pm] being a matrix containing it single ergodic set. 

Be ita process with one transitio'n matrix or m transitic;:m matrices, the 

relevant consideration is the entire process. This is shown in the necessary 

assumption for the existence of unique limiting probapilities, namely that [P1 

P2 ••• Pm} contains a, single ergodic set. Another way of intel;'preting the 

necessary assumption for the previous theorems is that [P1 P2 ••• Pm] gives a 

Markov process transition matrix covering the entire time period for the 
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original DSPMTM process. 

Practical Aspects Concerning Use of m Transition Matrices 

Most of the previous discussion on the use of limiting probabilities and 

practical aspects of calculating these probabilities given for Markov 

processes holds wh~n the stochastic process has m transition matrices. 

Determining the number of ergodic and transients sets, for example is 

necessary when m transition matrices exist. All m state occupancy vectors 

must be compared using equation (15) as a check for convergence. The FORTRAN 

program given in Appendix A has been successfully.used to calculate limiting 

probability vectors for problems with 4 transition matrices. 

After calculating the limiting probability vectors, these vectors can be 

used, as before, to calculate expected long run net returns (yields, etc.). 

In general, expected longrun net returns are calculated by 

m 
E(NR) = ~ 

f,:{ 
1ti Ri (62) 

where 1I"i represents the limiting probability vector at time period i of the 

transition period and Ri is a vector of net returns associated with time 

period L From equation (62), it can easily be seen that'expected yearly net 

returns can be calculated for each period and for the entire process. 

Lake Level Example 

What is the expected yearly net ,returns associated with the expanded 

lake level example given that January's and July's net returns are given by 

NR(Jan) = [ -~~.] and 
15. 

1
-35 ,] 

NR (July) = 25.·? 

28. 

(63) 

Using equation (62) expected net returns can be .' calculated by 

E(NR) = 1t(Jan) NR(Jan) + 1t(July) NR(July). (64) 

Limiting probability vectors for January and July were calculated using the 

FORTRAN program given in Appendix A. Using these limiting probabilities, 



equation (64) can be rewritten as 

E(NR) [.476.379 .146,] [-~~:l 
' 15. 
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+ [.328 .443 .2291 [-~:: 1 
' 28. 

(65) 

"':5.91 + 6.00 

0.09 

The owners of the water rights can expect to lose $5.91 thousand from January 

to July and gain $6.00 thousand from July to January. For the entire year the 

owners will gain $0.09 thousand from owning the water property rights. 

This breakdown of net returns by time period is an example of the type 

of information that can be calculated with a process containing m transition 

matrices. As was the case in,a one transition matrix process, calculation of 

limiting probabilities allows for a more succinct presentation of DF models 

and/or compar'ison of decision rules. 

CONCLUDING REMARKS 

This paper addressed several of the obstacles to the 'adoption of 

stochastic dynamic programming namely cursory treatment of the subject and the 

decision and acceptance r~le curses. Basic principles of Markov processes 

were introduced and illustrated. These principles were then used in 

conjunction with dynamic programming models to provide a technique which 

allows a more succinct-reporting of results. Although much of the discussion 

synthesizes previous literature, one area of the discussion has not previously 

appeared in the literature. This is discrete stochastic processes with 

multiple transition matrices. 

Appendices A and B contain FORTRAN programs to determine limiting 

probabilities and determining ergodic and transient 'sets within a 'transition 

matrix. These programs have been successfully ueed on an 968 x 968 transition 

matrix (Mjelde et al.). Further, the programs _have been tested on three 

different FORTRAN compilers, Ryan McFarland and Microsoft FORTRAN on IBM 

microcomputers, and FORTRAN Compiler for HP-UNIX operating system for a 

Hewlett Packard minicomputer. This paper is not-intended as software 

documentation, but the programs are presented to aid in the use and 

development of dynamic programming models. 
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APPENDIX A 

FORTRAN Program to Calculate Limiting Probability Vectors Using the equation 
7T(t) = 7T(t-l)P. 

'. 
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To run the program the following data must be in a control file called 

"PCONV". The program re'l-ds the numeric data in free format and the 
\ 

Alphanumeric data in character *8 format. 

Control file---PCONV---Data Order and Description 

Numeric (data type is indicated in. parentheses) 

iter - number of iter~tions (integer). 

nstate - number of states (integer). 

tol - convergence tolerance (real). 

toll - tolerance used to check if rows sum to one (real). 
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itol - number of iteration before the program starts to check for 
convergence (real). 

initial - state the system initial occupies (integer). 

nmatrix - number of transition matrices (integer). 

nfile - number of unique data files that contain the transition 
matrices, must be either one or equal to nmatrix 
(integer) • 

nret - number of unique data files that contain net return data, 
must equal either one or nmatrix (integer). 

switch equals zero when the transition matrix data are found in 
one file, anything else the transition data are found in 
nmatrix files (integer). 

switch2 - equals zero when nets returns data are found in one file, 
anything else the net returns are found in nmatrix files 
(integer) • 

switch3 - equals zero print state occupancy vectors if convergence 
is reached equals anything else vectors will not be 
printed if convergence is reach. If convergence is not 
reached vectors will be printed regardless of the value 
for switch3 (integer). 

switch4 - equals zero program will calculate long run returns, 
equals anything else returns will not be calculated 
(integer) • 

Alphanumeric - one filename per line 

output - name of output file 

transition - list all files which contain transition matrix data must 
be listed in order of occurrence. 

return - list all files which contain net returns data. Must be in 
order of occurrence. A file name must be given even if 
expected net returns are not going to be calculated. The 
file will not be opened or read if switch4 does not equal 
zero. 

Both the transition matrix data and the net returns data are read in 

free format. The transition data is read one row at a time, that is, the 
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probability of going from the current state to all states in the next period 

is read before going to the next current state. That is, using the notation 

in this paper, Pij's, for a given i and all j are read then i is varied. 

Returns are read by state (1 to n) again in order of occurrence. 

When using the program, the dimension statements in the main program and 

the two subroutines need to be changed to ycnr problem's dimensions. The 

first component in arrays ret and pi needs to be set equal to the number of 

states in your problem or larger, whereas, the first two components of array 

prob needs to be set to the number of states or larger. 

Example. Transition data are in two files (TRAN.ONE and TRAN.TWO), returns 

are in one file (RET), and the system has three states. The 

listing of each file along with the generated output is given. 

PCONV 

100 3 .0001 .0001 2 1 2 2 1 1- a a a 
OUTPUT 
TRAN.ONE 
TRAN.TWO 
RET 

TRAN.ONE 

.2 .3 .5 

.5 .3 .2 
a .8 .2 

TRAN.TWO 

.3 .3 .4 

.4 .4 .2 

.5 .1 .4 

RET 

10. ll. 12. 
12. 5. 2. 



OUTPUT 

initial state = 1 

convergence reached 

state occupancy vectors are 

.4100575149 .2808485925 .3090940714 

.2224358022 .4545471072 .3230172694 

number of iterations 
convergent tolerance 

6 
.0001000000 

expected returns for period 1 

expected returns for period 2 

total expected returns = 

$ 

$ 

16.4870 
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10.899038 

5.588000 



******************************************************************* 
* con v 
* * program to calculate convergent probabilities and long run 
* probabilities by multiplication of state occupancy vector and 
* the transition probability matrix 
* 
* 
* 
* 
* 
* 

department of agricultural economics 
texas a&m university 

september 1990 

***************************-************************************** 
* Variable Definitions: 
* prob(i,j,l) - matrices of transition probabilities -- i is the 
* current state, j is the state you are going to and I is the 
* matrix number 
* pi(i,I,2) - vector of state occupancy probabilities -- i is the 
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* state, I is the matrix number, and 2is used to check for convergence 
* ret(i,l) - vector of immediate returns -- i is for the state and 
* I is the matrix number 
* iter - the number of iterations 
* nstate - number of states in the system 
* tol - user specified convergence tolerance 
* toll - tolerance used to check if initial vectors sum to one 
* itol - number of iteration to start checking for convergence 
* initial - number of the, initial state the system occupies 
* nmatrix - number of unique transition matrices 
* nfile - number of files the transition matrices are to be read from 
* nret - number of'files the returns are to be read from 
* switch - equals zero transition matrices are in one file 
* equals anything else transition matrices are located in 
* nmatrix files in this case nmatrix=nfile 
* switch2 - equals zero returns are found in one file 
* equals anything else returns are fourid in nret files 
* nret=nmatrix 
* switch3 - equals zero print state occupancy vectors only if 
* convergence is reached if not reached vectors will be printed 
* - equals anything else don't print vectors again with 
* convergence being reached 
* switch4 - equals zero calculate long run returns 
* - equals anything else don't calculate returns 
* output - alphanumeric character delineating the user specified 
* output file 
* matfile - alphanumeric vector of transition files 
* retfile - alphamumeric vector of return files 
* returns -calculated long run expected returns 
* nn,kn,i,j,~,l,ll,kp - counters within the program 
* temp, tl, tempI, testl - temporary variables wi thin the program 
*********************************************************************** 

integer switch,switch2,switch3,switch4 ' 
real prob(96S,96S,2),pi(96S,2,2) 
real ret(96S,2) 
character*S output,matfile(2),retfile(2) 
common /blkl/ prob 
common /blk2/ matfile 
common /blk3/ pi,ret 

30 format(aS) 
35 format(lx,lO(f12.10,lx)) 
70 format(lx/lx,'convergence not reached given your tolerance'/ 

&lx, 'and number of iterations') 
71 format (lx, 'convergence reached' I) 
72 format (/lx, 'state occupancy vectors are'/) 
75 format(/lx,'number of iterations = ',i5/ 

&lx,'convergent tolerance = ',f12.l0/) 
so format (/lx, 'sum of state occupancy vector for period', 



& i3,' = ',f12.6) 
81 format(/1x,'convergened probabilites do not sum to one'l 

& lx, 'at matrix = ',i3,3x,'sum equals = " f10.8) 
82 format (f1X, 'initial state = ',i6/) 
90 format(/1x,'expected returns for period',i3,' = $ ',f12.6) 

1012 format (/1x, 'total expected returns = " f13.4) 
101 format(lx, 'probability in transition matrix does not sum to one',1 

& lx, 'matrix = ',i3,2x,'state = ',i3,2x,'sum = ',f10.8) 
******************************************************************** 
* read in parmeters 
******************************************************************** 

open(unit=9,file='pconv',status='unknown') 
read(9,*) iter,nstate,tol,toll,itol,initial,nmatrix,nfile,nret, 

& switch,switch2,switch3,switch4 
read(9,30) output 
read(9,30) (matfile(l), I = 1,nfile) 
read(9,30) (retfile(l), I = 1,nret) 
close (9) 
open(unit=10,file=output,status='unknown') 

******************************************************************** 
* read in the probability matrix of size nstate by nstate 
******************************************************************* 

if(switch .eg. 0) then 
call read1(nmatrix,nstate) 

else 
call read2(nmatrix,nstate) 

endif 
*********************************************************************** 
* check to see if probabilities sum to one 
*********************************************************************** 

do 501 I = 1,nmatrix 
do 500 i = 1,nstate 
t1= 0.0 
do 525 j=l,nstate 
t1=prob(i,j,l) + t1 

525 continue 
*********************************************************************** 
* if pij's don't sum to one within specified tolerance output caution 
*********************************************************************** 

if(abs(1.0-t1) .gt. toll) write(10,101) l,i,t1 
500 continue 
501 continue 

************************************************************************* 
* initialize state occupancy vector to be zero except initial state 
************************************************************************* 

do 675 i=l,nstate 
pi(i,l,l) = O. 

675 continue 
pi(initial,l,l) = 1.0 
nn = 2 
write(10,82) initial 

*********************************************************************** 
* multiply pi times prob 
* transpose the pi vector subscript to allow for comparison 
*********************************************************************** 

do 700 k = 1,iter 
if(nn.eg.2) then 
nn = 1 
else 
nn = 2 
endif 
kn=nn 

******************************************************************* 
* multiplication 
******************************************************************** 

do 701 I = 1,nmatrix 
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do 725 j = 1,nstate 
temp1 = 0.0 
do 750 i = 1,nstate 
temp1 = temp1 + pi(i,l,nn)*prob(i,j,l) 

750 continue 
11 = 1 + 1 
if(1 .eg. nmatrix) then 

11 = 1 
kn = 1 
if(nn .eg. 1) kn=2 

endif 
pi(j,ll,kn) = temp1 

725 continue 
701 continue 

*********************************************************************** 
* test for tolerance of convergance 
* only test past iterations greater than itol 
*********************************************************************** 

if«k .gt. itol) • and. (k .gt.1» then 
do 826 1 = 1,nmatrix 
do 825 i = 1,nstate 
test1 = abs(pi(i,l,nn)-pi(i,l,kn» 
if(test1 .gt. tol) go to 1000 

825 continue 
826 continue 

go to 1100 
1000 continue 

endif 
700 continue 

******************************************************************** 
* convergence not reached given the number of iterations 
******************************************************************** 

write(10,70) 
kp=k-1 
write(10,75) kp,tol 

*********************************************************************** 
* write pi to file #10 
*********************************************************************** 

write(10,72) 
do 851 1 = 1,nmatrix 
write(10,35) (pi(i,l,nn),i=l,nstate) 

851 continue 
*********************************************************************** 
* test to see if state occupancy vectors sum to one 
*********************************************************************** 

do 853 1 = 1,nmatrix 
test1 = 0.0 
do 850 i= 1,nstate 
test1 = test1 + pi(i,l,nn) 

850 continue 
write(10,80) l,test1 

853 continue 
go to 1200. 

******************************************************************** 
* convergance reached given a tolerance of tol 
* write the convergent probabilities for both vectors 
******************************************************************** 
1100 continue 

write(10,71) 
*********************************************************************** 
* write pi to file #10 
*********************************************************************** 

if(switch4 .eg. 0) then 
write(10,72) 
do 1101 1 = 1,nmatrix 
write(10,35) (pi(i,l,nn),i=l,nstate) 
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1101 continue 50 
endif 
write(10,75) k,tol 

*********************************************************************** 
* test to see if state occupancy vectors sum to one 
*********************************************************************** 

do 876 I =l,nmatrix 
test1 = 0.0 
do 875 i= 1,nstate 
test1 = test1 + pi(i,l,nn) 

875 continue -
if(abs(LO-test1) .gt. toll) write (10, 81) l,tes~l 

876 continue 
******************************************************************** 
* calculate expected long run yearly returns 
* read in returns and multiply by state occupancy vector 
******************************************************************** 

if (switch4. eq. 0) then 
if(switch2 .eq. 0) then 

*********************************************************************** 
* all returns are in one file 
~********************************************************************** 

open(unit=14,file=retfile(1),status='unknown') 
do 877 I = 1,nmatrix 
read(14,*) (ret(i,I),i=l,nstate) 

877 continue 
close(14) 
else 

*********************************************************************** 
* returns are in seperate files 
*********************************************************************** 

do 878 I = 1,nret 
open(unit=14,file=retfile(I),status='unknown') 
read(14,*) (ret(i,l),i = 1,nstate) 
close(14) -

878 continue 
endif 
returns = 0.0 
do 901 I = 1,nmatrix 
temp = O. 
do 900 i = 1,nstate 
temp = temp + (ret(i,l) * pi(i,l,nn» 

900 continue 
returns = returns + temp 
write(10,90) 1,temp 

901 continue 
write (10, 1012) returns 
endif 

1200 close(10) 
stop 
end 

*********************************************************************** 
* all probabilities are in one file 
*********************************************************************** 

subroutine read1(nmatrix,nstate) 
real prob(968,968,2) 
character*8 matfile(2) 
common /blkl/ prob 
common /blk2/ matfile 
open(unit=16,file=matfile(1),status='unknown') 
do 11 1 = 1,nmatrix 
do 10 i = 1,nstate 
read(16,*) (prob(i,j,I),j=1,nstate) 

10 continue 
11 continue 

close (16) 
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end 

*******************************.*************************************** 
* probabilities are in seperate files . 
*********************************************************************** 

subroutine read2(nmatrix,nstate) 
real prob(968,968,2) 
character*8 matfile(2) 
common /blkl/ prob 
common /blk2/ matfile 
do 11 1 = l,nmatrix 
open(unit=16,file=matfile(1),status='unknown') 
do 10 i = l,nstate 
read(16,*) (prob(i,j,l),j=l,nstate) 

10 continue 
close (16) 

11 continue 
return 
end 
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APPENDIX B 

FORTRAN Program to Determine Ergodic and Transient Sets. 
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To run the program the following data must be in a control file called 

"PARAM". The program reads the numeric data in free format and the 

Alphanumeric data in character *8 format. 

Control file---PARAM---data order and description 

Numeric (data type is indicated in parentheses) 

n - number of states (INTEGER) 

tol - tolerance level for binary conversion (REAL) 

switch1 - (INTEGER) 
o when binary matrix is to be outputted. 
1 (or nonzero) when binary matrix is not to be outputted. 

switch2 - (INTEGER) 

switch3 

nmatrix 

o when transformed matrix is to be outputted. 
1 (or nonzero) when transformed matrix is not to be 
outputted. 

- (INTEGER) 
o when transition matrices are found in one file. 
1 (or nonzero) when transition matrices are found in more 
than one file. 

- number of transition matrices to be inputted and 
multiplied (INTEGER). 

Alphanumeric - one filename per line 

output 1 - name of output file 

matfile(l) - name of first transition matrix file. This will be the 
only transition matrix file if nmatrix = 1. 

matfile(2) - name of second transition matrix file. This will be the 
last transition matrix file if nmatrix = 2. 

matfile(nmatrix) - name of last transition matrix file. 

The transition matrix data are read in free format. The data are read 

in one row at a time, that is, the probability of going from the current state 

to all states in the next period are read before going to the next current 

state. That is, using the "notation in the paper, Pij'S, for a given i and all 

j are read then i is varied. Returns are read by state (1 to n) again in 

order of occurrence. 

This program is able to input a single transition matrix from a single 

input file. Two different ways can be used to input more than one transition 

matrix. The first is to place all the transition matrices in a single file 

with no special recognition of the separate matrices (such as a blank line or 

a title, i.e. transition matrix #2). In this case switch3 would be set to 0 

in the parameter filePARAM. The second method involves placing each and 
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every transition matrix in a separate file. In this case, switch3 would be 

set to 1 (or any other nonzero integer), the number of files would be 

indicated, as well as, the name of each individual file. In either of the two 

cases it is important that all. matrices have the same number of states. 

When uSing the program, the dimension statements in the main program and 

the two subrout i.nes need to be changed to your problem' s dimensions. The 

arrays aa, a, b, d, c, e, and f all need to be dimensioned at the number of 

states in your problem or larger. 

Example: This example uses the same data files as the previous example. 
n = 3 
tol = .0001 
switch1 = 1 
switch2 = 1 
switch3 1 
output 1 ERG. OUT 
nmatrix = 2 

The listing of each file along with the generated output is given below. 

PARAM 

3 • 0001 
ERG. OUT 
2 
TRAN.ONE 
TRAN.TWO 

TRAN.ONE 

.2 

.5 
a 

TRAN.TWO 

.3 

.4 

.5 

ERG. OUT 

.3 

.3 

.8 

.3 

.4 

.1 

number of 
the total 

1 

.5 

.2 

.2 

.4 

.2 

.4 

states 
number 

1 

= 
of 

1 

3 
sets = 1 
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** ergodic ** 
** 
** 
** 
** 
** 
** 
** 
** 

program to calculate ergodic & transient sets 

department of agricultural economics 

texas a&m university 
september 1990 

** 
** 
** 
** 
** 
** 
** 
** 

*********************************************************************** 

real aa(10,10) 
integer a(10,10),b(10,10),d(10),c(10),e(10),f(10) 
integer c1,c2,c3,c4,c5,c6,c7,c8,c9 
integer sumc,sumc1,sumc2,nmatrix,q 
integer switch1,switch2,switch3 
character*8 param,output1,matfile(2) 
common/blk1/ aa,b,c 
common/blk2/ matfile 
common/blk3/ a,d,e 

*********************************************************************** 
** formats ** 
*********************************************************************** 

45 format (1X, 'number of states = ',i5/ 
&1x,'the total number of sets = ',i5/) 

50 format(1x,'**************** set # ',i5,' *****************',/, 
&1x,'the set is ergodic',/, 
&lx,'the following row(s) comprise set # ',i5/) 

55 format(1x,i5) 
60 format(1x,'**************** set # ',i5,' *****************',/, 

&1x,'the set is transient',/, 
&1x,'the following row(s) comprise set # ',i5/) 

65 format (1x, 'set # ',i5,' communicates with the following sets:'/) 
70 format (20i3) 
79 format (1x) 
82 format (a8) 

********************************************************************** 
** read. in parameter file named PARAM which should have: ** 
** 1) n -> number of states ** 
** 2) tol -> tolerance level for binary conversion ** 
** 3) switch1 ** 
** 0 denotes user requests output of binary ** 
** matrix ** 
** 1 (or nonzero) denotes user does not request ** 
** output of binary matrix ** 
** 4) switch2 ** 
** 0 denotes user requests output of transformed ** 
** matrix ** 
** 1 (or nonzero) denotes user does not request ** 
** output of transformed matrix ** 
** 5) switch3 ** 
** 0 denotes transition matrix or matrices are ** 
** located in a single file ** 
** 1 (or nonzero) denotes transition matrices ** 

v ** are located in more than a single file ** 
** (only one transition matrix per file) ** 
** 6) output1 -> name of the output file ** 
** 7) nmatrix -> number of transition matrices to ** 
** be inputted and multiplied ** 
** 8) matfile (i) -> . ** 
** matfile(1) -> name of first transition ** 
** matrix file ** 



** 
** 
** 
** 
** 

matfile(2) -> name of second transition 
matrix file . . 

matfile(nmatrix) -> name of last tranition 
matrix file 

** 
** 
** 
** 
** 

********************************************************************** 

open(unit=14,file='param ' ,status='unknown ' ) 

read(14,*) n,tol,switch1,switch2,switch3 
read(14,82) output1 
read(14,*) nmatrix 
do 99 i=l,nmatrix 
read(14,82) matfile(i) 

99 continue 

125 

close(14) 

open(unit=10,file=output1,status='unknown ' ) 

if(switch3 .eq. 0) then 
call read1(nmatrix,n) 

else 
call read2(nmatrix,n) 

endif 

do 125 i=l, n 
c(i)=O 
d(i)=O 
e(i) = 0 
f(i) = 0 
continue 

*********************************************************************** 
** convert original (inputted) matrix to binary form ** 
*********************************************************************** 

do 140 i=l,n 
do 150 j=l,n 
if(aa(i,j).gt.tol) a(i,j)=l. 
if(aa(i,j).le.tol) a(i,j)=O. 

150 continue 
140 continue 

*********************************************************************** 
** output the binary version of the original (inputted) matrix ** 
*********************************************************************** 

if (switch1.ne.0) go to 210 

do 175 i=l, n 
write(10,70) (a(i,j), j=l,n) 

175 continue 
write(10,79) 
do 176 i=l, n 
write(10,70) (aa(i,j), j=l,n) 

176 continue 
write(10,79) 

*********************************************************************** 
** determine the transformed matrix ** 
*********************************************************************** 

210 do 225 i = 2, n 
do 250 j = 1, i - 1 
if (a(i, j).ne.1) go to 250 
do 275 k = 1, n 

56 



if « (a(i, k) .ne.a(j, k») .and. (a(j, k) .eq.l» a(i,k)=1 
275 continue 
250 continue 

do 300 I = I, i-I 
if (a(l, i).ne.l) go to 300 
do 325 m = I, n 
if «(a(l, m).ne.a(i, m»).and.(a(i, m).eq.l» a(I,m)=1 

325 continue 
300 continue 
225 continue 

*********************************************************************** 
** output transformed mat:rix ** 
*********************************************************************** 

if(switch2.ne.0) go to 380 

do 350 i=I, n 
write(10,70) (a(i,j), j=I,n) 

350 continue 
write(10,79) 

*********************************************************************** 
** determine transient rows by finding columns with all zeros ** 
*********************************************************************** 

380 do 370 i = I, n 
c8 = 0 
do 375 j = I, n 
if (a(j,i) .ne.O) go to 370 
c8 = c8 + 1 
if (c8.eq.n) then 
f(i) = 1 
else 
endif 

375 continue 
370 continue 

*********************************************************************** 
** calculate the sets (which rows are alike) ** 
*********************************************************************** 

cl = 0 
c2 = c1 
c3 = 0 
do 400 i=I, n 
if (e(i).ne.O) go to 400 
c4 = 0 
if (i.eq.n)then 
if (e(i).eq.O) then 
cl = cl + 1 
d(cl) = i 
else 
endif 
go to 430 
else 
endif 
do 425 j =i+1, n 
if (e(j).ne.O) go to 425 
c4 = c4 + 1 
if (c4.eq.1) then 
c1 = c1 + 1 
d(c1) = i 
else 
endif· 
c7 = 0 
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do 450 k=l, n 
if (a(i, k).ne.a(j, k» go to 425 
c7 = c7 + 1 
if (c7.eq.n) then 
c9 = f ( i) + f (j ) 
if «c9.lt.2).and.(c9.gt.0» go to 425 
e(j) = 1 
c1 = c1 + 1 
d(c1) = j 
else 
endif 

450 continue 
425 continue 
430 c3 = c3+ 1 

if «(c1-c2).eq.0).and.(i.ne.n» then 
cl=c1+1 
d(c1)=i 
else 
endif 
c(c3) = c1 - c2 
c2=c1 

400 continue 

*********************************************************************** 
** calculate and output the total number of sets & states ** 
*********************************************************************** 

c5=0 
do 475 i=l, n 
if (c(i).eq.O) go to 500 
c5 = c5 + 1 

475 continue 
500 write(10,45) n,c5 

*********************************************************************** 
** determine: ** 
** 1) which sets are ergodic ** 
** 2) which sets are transient ** 
** 3) which ergodic sets the transient sets communicate with ** 
** 4) output all of the above ** 
*********************************************************************** 

sumc = 1 
40 525 i=l, c5 
c7 = 0 
c6 = 0 
do 550 j=l, n 
do 575 k=sumc, (sumc + c(i) - 1) 
if (j.eq.d(k» go to 550 

575 continue 
if «a(d(sumc), j).eq.O).and.(f(d(sumc».eq.O» then 
c7 = c7 + 1 
if (c7 .eq. (n-c(i») then 
write(10,50)i,i 
do 6001 = sumc, (sumc + c(i) - 1) 
write(10,55) del) 

600 continue 
write(10,79) 
else 
endif 
else 
endif 
if «a(d(sumc), j).ne.O).or.(f(d(sumc».ne.O» then 
if (c6.eq.0) then 
write(10,60)i,i 
do 625 1 = sumc, (sumc + c(i) - 1) 
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write(10,55) del) 
625 continue 

write(10,79) 
write(10,65) i 
c6 = 1 
else 
endif 
if (c6.ne.0) then 
do 650 I = 1, n 
do 675 m = sumc, (sumc + c(i) - 1) 
if (1. eq.d(m» go to 650 

675 continue 
if (a(d(sumc), 1).ne.O) then 
sumc1 = 1 
sumc2 = sumc1 + c(l) 
if (d(sumc1).eq.l) then 
do 700 q = 1, c5 
if (q.eq.i) go to 700 
if «I.ge.sumc1).and.(I.lt.sumc2» write(10,55) q 
if «I.lt.sumc1).or.(I.ge.sumc2» then 
sumc1 = sumc2 
sumc2 = sumc2 + c(q + 1) 
else 
endif 

700 continue 
write(10,70) 
else 
endif 
else 
endif 

650 continue 
go to 725 
else 
endif 
else 
endif 

550 continue 
725 sumc = sumc + c(i) 
525 continue 

close(10) 

stop 
end 

*********************************************************************** 
** subroutine read1: all probability matrices are in one data file ** 
*********************************************************************** 

subroutine read1(nmatrix,n) 
real aa(10,10),b(10,10),c(10) 
character*8 matfile(2) 

. connnon/blkl/ aa, b, c 
connnon/blk2/ matfile 
open(unit=16,file=matfile(I),status='unknown') 
do 800 i=l,n 
read(16,*) (aa(i,j) ,j=l,n) 

800 continue 
if (nmatrix.eq.1) go to 930 
do 825 m=2,nmatrix 
do 850 i=l,n 
read(16,*) (b(i,j) ,j=l,n) 

850 continue 
do 875 i=l,n 
do 900 k=l,n 
c(k)=aa(i,k) 
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900 continue 
do 910 j=l,n 
temp = 0.0 
do 925 l=l,n 
temp = temp + (c(l)*b(l,j» 

925 continue 
aa(i,j) = temp 

910 continue 
875 continue 
825 continue 
930 close(16) 

return 
end 

*********************************************************************** 
** subroutine read1: probability matrices are in several data files ** 
*********************************************************************** 

subroutine read2(nmatrix,n) 
real aa(10,10) ,b(10,10) ,c(10) 
character*8 matfile(2) 
common/blk1/ aa,b,c 
common/blk2/ matfile 
open(unit=16,file=matfile(1),status='unknown') 
do 950 i=l,n 
read(16,*) (aa(i,j) ,j=l,n) 

950 continue 
close(16) 
do 975 m=2,nmatrix 
open(unit=16,file=matfile(m),status='unknown') 
do 1000 i=l,n 
read(16,*) (b(i,j) ,j=l,n) 

1000 continue 
do 1025 i=l,n 

• do 1075 k=l,n 
c(k)=aa{i,k) 

1075 continue 
do 1050 j=l,n 
temp = 0.0 
do 1060 l=l,n 
temp = temp + (c(l)*b(l,j» 

1060 continue 
aa(i,j) = temp 

1050 continue 
1025 continue 

close(16) 
975 continue 

return 
end 
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