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Abstract 

Technology specification for the multiple-product firm with allocatable 

inputs is explored and extended. Technical interdependence does not hinder 

reduction of a system of constrained individual production functions to a 

single-equation multiple-product generic-input specification.- When costs are 

associated with input allocations, however, the generic-input equation can-

not be derived. Reversible duality relationships apply to the generic-input 

equation even when the behavioral objective is partially maintained in its 

specification. However, two-way duality relationships apply to a system of 

production functions only if they are technically independent with no bind-

ing constraints or non-constant marginal costs associated with the alloca-

tion of fixed inputs. 
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Notational Glossary 

Because of the large amount of notation required, all notation defined 

in the text are repeated here in alphabetical order for convenient refer-

ence. 

Roman 

F is general functional notation, 

fi is general functional notation, 

G is general functional notation, 

h is an output index number, 

i is an output index number, 

j is a variable-input index number, 

K is general functional notation, 

k is a fixed-input index number, 

m is number of outputs, 

n is number of generic variable inputs, 

P = (PI' .•• , Pm) is the vector of output 

P' = (P2/Pl' .•. , Pm/PI) is the vector of 

Pi is price of output i, 

q is number of generic fixed inputs, 

prices, 

normalized output 

R = (r l , •.. ,rn) is the vector of variable-input prices, 

prices, 

R' = (rl/Pl, ... ,rn/Pl) is the vector of normalized variable-input prices, 

r. is the price of variable input j. 
J 

X = (xll' ... ,x, , .•. ,x l""'x ) is the vector of variable-input alloca-_n m ron 

tions, 

X = (xl' .•. ,xn ) is the vector of generic variable-input quantities, 

X. = (x. 1"" ,x. ) is the vector of variable inputs allocated to y., 
~ ~ ~n ~ 

Xl = (x22,···,x2n,···,xm2,···,xmn) is the vector of variable-input alloca-



tions except all allocations of the first variable input and all alloca-

tions to the first output, 

x. is the quantity of the jth generic variable input, 
J 

x~(·) is general functional notation, 
J 

x .. is the quantity of the jth variable input allocated to the ith output, 
~J 

x .. ( .) i·s general functional notation, 
~J 

Y = (Yl' ••• ,Ym) is the vector of output quantities, 

Y. = (yl, ••• ,y. l'Y' l""'Y ) is the vector of output quantities excluding 
-~ ~- ~+ m 

output i, 

Yi is the quantity of output i, 

y~(.) is general functional notation, 
~ 

Z = (zll""'z, , .•• ,z l""'z ) is the vector of fixed-input allocations, 
~q m mq 

Z = (Zl, ••. ,Zq) is the vector of generic fixed-input quantities, 

Zl = (z2l"'" Z2q' • 0 • , zml' ..• , Zmq) is the vector of variable input alloca

tions except all allocations to the first output, 

Zk is the quantity of the kth generic fixed input, 

zik is the quantity of the kth fixed input allocated to the ith output, 

zik(o) is general functional notation. 

Greek 

r is general functional notation, 

a is partial derivative notation, 

e is general functional notation, 

~ is short-run profit (net returns over variable costs), 

~* is short-run maximum profit for given prices of outputs and variable 

inputs and quantities of fixed inputs, 

~*' = ~*/Pl is normalized maximum profit, 

~ is general functional notation, 

Vt is general functional notation. 



TOWARD A RESOLUTION OF THE ALLOCATABLE 

INPUT DILEMMA 

1 

Agricultural production is characterized by many price-taking firms, most of 

which produce multiple products and use many inputs, some fixed and most 

clearly allocated to individual products. Economic analysis of issues of con

cern to such producers typically requires explicit or implicit consideration 

of this multiple~product, multiple-allocatable-input technology. Appropriate 

specification of the technology (production function(s», identification of 

equilibrium conditions, and recognition of duality limitations are necessary 

to correctly examine the economic behavior of such firms. 

More than two decades ago, Pfouts focused attention on a dilemma associ

ated with the allocatable fixed input. He documented that when costs are 

associated with the allocation of a constraining fixed input, only one of 

Samuelson's four conditions of price-taking cost-minimizing Single-product 

firms in equilibrium apply to the multiple-product firm. Even when each 

production function is technically independent in each input, only the first 

of these properties hold for the allocations: (a) variable-input shadow 

price equals input cost, (b) cross-derivatives of input demands with respect 

to other input prices are symmetrical, (c) input demands are downward-slop

ing in own price, and (d) marginal cost is equal to the Lagrangian multi

plier (Samuelson, pp. 57-69). Pfouts (p. 657) also noted that only when 

excess capacity exists in all fixed inputs do all four conditions hold, and 

that is the only situation in which the multiple-product firm can meaning

fully be considered a simple collection. of Single-product firms. 

Since Pfouts, economi~ts have generally ignored the allocation issue, 

apparently by implicitly assuming no allocation costs. This has led to the 

conunon practice of writing technology for the multiple-product firm as a sin

gle equation, Le., with one (or mote) product quantities expressed as an 
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explicit or implicit function of al1 other product and generic-input quanti

ties (e.g., Lau, 1972; Hall). All of Samuels9n's four conditions as well as 

the duality relationships that apply to a single-product firm can be shown 

to apply to the generic inputs of such a multiple-product firm. However, 

there appears to be nothing in the duality literature about relationships 

for the multiple-product firm wi tha technology more appropriately expressed 

as a system of production functions subject to common constraint(s). 

Two recent papers in the agricultural economics literature have refo

cused attention on dilemmas associated with allocatable inputs. Shumway, 

Pope, and Nash extended Pfouts' work by demonstrating that even without 

allocation costs, the presence of a constraining allocatable input is a 

cause of joint production in inputs (Lau, 1972) even for firms with 

technically-independent production functions. Consequently, Pfouts' asser

tionabout the limited condition under which multiple-product firms can be 

treated as a collection of single-product firms is' actual1y even more lim

ited. Separate production functions can be written, but profits can be maxim

ized (or costs minimized) only subject to the constraints on al1ocations. 

Multiple-product models must be formulated and the production of each 

commodity examined as part of a system when a constraint is binding even if 

there are no allocation costs. 

Just, Zilberman, and Hochman addressed technology for the multiple-pro

duct firm from a Pfouts' perspective. Although they ignored allocation 

costs, they wrote the firm's technology as a system of production functions 

subject to input allocation equations. They assert that a system of m 

independent output production functions with n+q input allocation equations 

can be reduced to a single-equation specification of technology (ala Lau, 

1972; Hall) with one (or more) product quantities as a function of all other 

product and generic-input quantities only if (a) m = 1, (b) n+q = 1, (c) 
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m(n+q)-m-(n+q)+l = (m-l) (n+q-l) of the allocations do not appear in either 

the production functions or the constraints, or (d) the firm's behayidral 

objective is considered. The first condition implies a single-product firm. 

The second is a multiple-product firm with only one input (e. g. , land) 

clearly allocated among commodities; no other inputs are distinguished by 

the commodity to which they are applied (an unlikely case in agriculture). 

The third allows cases where inputs may be allocated to groups of commodi

ties so long as the number of allocations does not exceed the number of dis

tinct commodities and generic inputs less one. Since most realistic cases in 

agriculture involve multiple-product firms with more than one input clearly 

allocated among all products, the fourth condition, Le., maintaining 

hypotheses about a behavioral objective, is most often required 1;0 reduce 

technology to a single-equation specification in product and generic-input 

quantities. The resulting equation is a mixture of· technology and economic 

theory. Thus, it cannot be value-free. It is a correct specification only if 

the underlying theory is also correct. 

Objectives 

Several questions remain unanswered or inadequately answered by these works. 

For example, is there a "correct" way to express the technology of a 

mul tiple-product firm? Can a sy~tem of technically-interdependent production 

functions with binding allocation constraints be reduced to a Single-equa

tion generic-input specification? What effect do allocation costs have on 

our ability to reduce the technology to a single equation? When the firm's 

behavioral objective must be considered in deriving a single-equation 

generic-input technology specification, what, if any, duality relationships 

apply to it? What duality relationships apply to the multiple-product 

technology without embodying economic theory in the specification? Answers 

to each of these questions will be sought in this paper. 
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Expressing Technology for the Multiple-Product Firm 

Technology for the multiple-product firm has most often been expressed ~pli-

citly or implicitly either as 

(1) ~(y) 

or 

where Y = (Yl'" .,ym) is the vector of product quantities, X - (xl"" ,Xn )

is the vector of generic var iahle::inPllt. quanti ties (i. e.r the-to.taL_~nt4&¥ 
~ . --

~~~c:;.ll_i-~e.~~ ___ ~~~~ ___ ~_~ __ a~l ~od~!, _ z -= (Zl"'" Zq) is the vector of gen-

eric fixed-input quantities, y, = (Yl , •.• , Y', l' Y'+l""'Y.) is the vector . -~ 3,.- . ~ m . 

of product quantities excluding product 1. Writing the technology as (1) 

. maintains the hypothesis of -!.epar~litY between outp~~~!1_CL inEY~s • Both 
---~--

(1) and (2) maintain either (a) restrictions on the dimensions of Y,X and Z, 

(b) restrictions on the allocations of X and Z, or (c) a behavioral objec-

eral specifica~~9!:!. ___ Qt __ mlJ.l..ti_p_le.~produ_ct _,_t_~_c.b:qqlOgy, a conclusion also noted 
-__ ._...00_1 _ _...._.-_"- ___ , .."-...".--=~.,,,-,.-~~~..-.--

. by Mittelhammer, et al. 
, .. 

When inputs are allocated, a Single-equation extension of (2) is to 

replace X and Z by their allocatl,.ons (e. g., Naylor; Nash): 

(3) Y; = e (y, , X, Z) , 
... -1. 

where X = (xll"",xln"",xml"",xmn) is the vector of variable input 

allocations, and Z = (Zll' .• ·.,zl , ..• ,z l""'z ) is the vector of fixed-in-q m mq 

put allocations. A logical problem with (3) becomes apparent when we con-

sider partial derivatives of with respect to or Zhk' 
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(Mi ttelhammer, et al.). Since xhj is the quantity of input j used in another 

product h, xhj cannot be altered without also altering Yh unless its margi

nal product is zero (which violates standard regularity conditions) or 

another input allocated to Yh is simultaneously altered. Because a change in 

xhj induces a simultaneous change either in Yh or another input allocated to 

Yh' ~~ is _~~~P~~~_.i:fl~e_ .. ~Y~t:L,t!LP~:J:n<;:~Ele for the vectCJr (!i'X, z) to be a set 
·0 

of independent variables . There a;r:e siIIlply too. many variables. on the r~~ht-

hand-side of (3) tofbe ma.tl1emcftica,lly cOllsistentasa reduced ... fgrriieCi~~fi9Il\' 

Further, the above problem is not solved when the constraints on allocations 

of the fixed inputs, 

m 
(4) L zik ~ zk' k = l, ... ,q, 

i=l 

are binding. The vector (Zl' ••. , Zq) can be substituted, for example, for 

(Zll",.,Zlq) in Z.· However, a change in xhj must still be accompanied by a 

change either in Yh or some other input allocated to Yh , both of which would 

remain as right-hand-side variables in the modified equation (3). 

It appears that the only way to appropriately initiate a specification 
-~~----~.~-.---------"--~- ~ > 

of the multiple-product firm ~s to write i~dividu~l production functions for 

al~_. E'.~0.c:'l_~cts. Al though Pfouts and Just, et al. wrote their systems of produc-r, 

tion functions to be technically independent, there is no reason to expect' 
',_ ---'-_~~._ .0-____ c_- _.-:'_"_'~j 

that such a restrictive assumption is generally valid for all mul tiple::-pro-: 

duct firms. Even when many inputs are clearly allocated among products, oth-

ers may not be allocated. In such a case we can still write individual 

production functions with other output quanti ties appearing on the 

right-hand-side of some or all equations: 
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(5) i y; = f (Y. ,X.,Z.), ... -~ ~ ~ 
i = 1, ••• ,m, 

where X. = (x. l ' •.. ,x. ) is the vector of variable inputs allocated to y;, 
~ ~ ~n· ... 

and Zi = (zil"'" Ziq) is the vector of fixed inputs allocated to y i' For 

simplicity, nonallocated inputs are not identified in (5), but the total 

quantity of any generic input could be substituted as appropriate for its 

allocations in all equations of (5). The system of equations ( 5) constitute 

a general specification of multiple"":product technology that does not impose a 
.~---

priori assumptions of either nonjo~ntne:~s or separability. Consequently, it is 

preferred as an initial specification to .any of the single-equation 

specifications, (1), (2), or (3), or to the system of independent production 

functions of Pfouts or Just, et al. 

Reducing the Technology System to a Single Equation 

Just, et al.'s statements governing the reduction of a system of indivi-

dual production function.s to a single-equation specification. of multiple-pro-

duct technology are now elaborated. The reduction. to an equation in, total 

quanti ties of outputs and generic inputs is illustrated in =t~g~_J:~§';:!:~. 

First, assuming that sufficient conditions are satisfied for taking inverses 

of the individual production functions, Just, et al.' s assertions are con-

firmed governing restrictions required to derive a single-equation generic-

Secondly,it is shown that profit maxi!lliza.:tJoncaIl be accoIDpl~s?~e~~_in two 

steps, the fir st of which yields a ~~~~1~=~9~~~~~~!!_<;LI?~5!J::_tc:-=4,I}py:t,.S,p~c::!-~.~ca-
~-"~-. 

tion in the general case of multiple products with multiple allocated inputs 
~~. 

even with technically-intl?I'clependent production functions, as long as there 
"""-·'·-··e_-.- __ • __ ~_-; _~ 

are no.allocat~oncosts'i 
f~~-·· ~ 

Take the system of technically-interdependent production functions (5) 

subject to constraints on allocations of the fixed inputs (4) and the follow-



ing set of identities on allocations of the variable inputs: 

m 
(6) t XiJ' 5 XJ" j = l, ••• ,n. 

i=l 

7 

Assuming that the constraints in (4) are binding (i.e., fixed inputs are 

fully allocated) and inverses. of (5) exist, these m+n+q equations in 

m+m'n+m'q+n+q variables can be .F_e_c!ttc;!!g __ tQ._.a.~"single-equation production func-
~---- . --" ~"-'- ... - ~-.. ". -.. 

tion in m-l+n+(m-l) (n-l)+q+(m~l)q= m(n+q) other' variables. C"~~ this 

implies: 

(7) 

where Xl = (x22"",x2n"",xin2"",xmn)' and Zl = (~2l,···,Z2q'··'-'Zml' 

) 1 . I I 
... ,z .. :;;. "",..t-(\, mq , , 

~~. 

Th\~ inconsistency that appeared in (3) does not trouble the 

single-equation derived specification of technology in (7). Since the total 

quantity of each generic input. is included in (7) and a necessary number of 

allocations are excluded, it is possible to take a partial derivative of -Yl 

with respect to any right-hand-side variable without altering any other 

right-hand-side variable. For example, a change of x22 would be offset (a) 

by an equal and opposite change in x12 ' (b) by a change in x21 ' and (c) by 

an equal and opposite change in" xll .Cnone .of .. -w9,f,s~",,~J:!L~,t9'1m!§~!.~.~J~._~?22 ' 

~~~~.~~~~~_~"~~"~;~p~--~~!_"~2!_.~~!l~-.. ?_th~r_ ... ~i~~t:.-~~~ ~~i~~:,~~~i~i~.~-;~~~t;i~.ci7 
Thus, (7) is a correct general reduced-form specification of the produc-

tion system (4) (6). _I~ ~~_.~~~~~rly __ g§;:j,Y~}:)1-!!~:r.~~-,-~-4..2,,_::-~i_~_L_~~~~_.!!:~~.onstJ' 
raints in (~_~ ___ e_in9-J:n.g .. 9-nci_J,ny~r.?~so~_:t:!l~._,EfQd~.ct:i"Qn_"Jun.ct:iqns .. (5) . 

-----:"---
exist. Yet, unless n= 1, m+q = 1, or a sufficient number of allocations do 
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not appear in (5), (7) includes allocations of variable and/or fixed inputs 

as well as the generic input quanti ties. To remove all of the 

(m-l)· (n-l)+(m-l)·q allocations requires that (m-l)· (n-l)+(m-l)·q more equa-

tions be included in the system. 

Without imposing arbitrary assumptions on the technology, we turn to the 

behavioral objective. Assuming price-taking profit-maximizing behavior, the 

objective function may be written with (7) as: 

m n 
(8) E PiYi - E rJ.x J., 

i=2 j=l 

where ~ is short-run profit (net returns over variable costs), P. is price 
.---" .. , .. ~.~ ..• ~ ..•. " •• ,. -~~. '.' .......... -,., ......... ,.c-·-·~-"-·-····-······'······""·-~~·-"'·~~-· .. ~ 

of output i, and rj is price of variable input j. The first-order equations 

are 

(9a) 3~/3y. = P1 3F/ 3Yi + p. = 0, i = 2, ••• , m, 
~ ~ 

(9b) 3~/3x. = P13F/3Xj - r. = 0, j = l, ••. ,n, 
J J 

(9c) .a~/axij = PlaF/axij = 0, i = 2, .. . ,m; j = 2, ... , n, 

(9d) a~/azik = p. aF/aZ' k = 0, i = 2, ... ,m; k = l, ... ,q. 
~ J. 

Assuming PI > 0, equations (9c) and (9d) imply aF/3x .. = 0 and 3F/aZ' k = 0. 2 
~J ~ 

This gives (m-l)·(n-l)+(m-l)·q additional equations which, like (7), are 

,~.E~nsOnlY o~ __ ~~l~C~~;.~'~]). Assuming the relevant Jacobians are non

zero, these equations can be s<?~~=~.~_l.ls~z:g_"t~~~.;~!DEli~EtigrL~tJl§l_Q..t.em to 

yield the (m-l)(n-l)+(m-l)q ~l..!_oc~~~g~~._~~~,Z~) as functions of (!1,X,Z2: 
. -'---~---'-~-'" , .. -.. ---......... --.---'.' .--.------J 

(10) x. = x .. (Yl,X,Z), i = 2., ••• , m; j = 2, .•. , n, 
~j ~J -

zik = Zik(!l'X,Z), i = 2, ... ,m; k = l, ... ,q. 



By substitution into (7) we obtain 

which by collecting terms gives 

f) 

(11) Yl = G(!l,i,i). ~ 

9 

We have thus obtained the reduced-form specification of one product in 

other product and generic-input quanti ties from a system of technically-

interdependent product functions with binding constraints. However, for a 

multiple-product firm, ~_~_lu.=-=-~=:~ (Le., not dep~ndent on the beha

vioral objective) only if no more than one input, variable or fixed, is 
':"'-"--'"""",-"""",-=,,,,,=-,,-~-,-,,,,,'~c,;..--__ ;"-,, •. ,_ .. - -.c __ '--' __ -- _. ___ ~--___ ". "_'". 

effectively allocated among all products. Otherwise it---..is_dep.endent--on_tho.s.e 
~'~~_-A~~ ........ ~~~.-e.. __ .~ __ .-'",:":"'''' .,..._~<~~~~ -,_-.0-,..'-.- _""" _.-=",-.",,- --.~-->.''''- - ---=.-"----, '~"::-I r-

first-order conditions that do not depend on prices, e.g., (9c) and (9d) for 
--------.~~<~~,--~--~~~~~~----=.~~-~--.-----. -.~~--~-~".-~--.~~~-,--~.-.--~--. "--~-,-~~-.--.. -~ "-.~-.- --~ .~'-"~.~~""""; 

a behavioral model such as (8). 

Allocation Costs 

If costs are associated with allocating the fixed inputs to individual pro-

ducts, (8) can be rewritten following Pfouts as 

m n 
(12) Max 1T = PIF(!I,i,x~,i,z~) + ~ p.y. - ~ r.x. -K(i,z~), 

!1,X,X1,zl i=2 1. l. j=1 J J 

where ~~.~J,.~) ___ ~~.-. t~E:._~~llC?ca~~?n ~~:.~.~.-~~~::c::~-~? First-order equations for 

(12) consist of e9a) - (9c) and 

i = 2, •.• ,m; k = 1, .•• ,q. 
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Because (13) includes a second term, 3K/3zik , it is not possible to 

solve the (m-l) (n-:l).f.(m-l)q equations in (9c) and (13) for (X~,Z~) as func

tions only of (!l'X,Z) unless 3K/3zik is constant, i = 2, ••• ,m; k = l, ••• ,q. 

Otherwise the vector of marginal allocation costs and Pl remain as arguments 

in the (m-l)q equations for z~. Consequently, if ~earenon-constant -------_.-
marginal costs associated with alJ._QcCl.tiIlg_~cCl.nyfci~~g_J,n];lJlt_,-~_J'le~-_ar,.e __ JlDable to ..-----.. -~~~~~~-"~-~~-.'~~.--"--~.~~--'.~---.--.'--" .. . .. -. . _. . - '-------~.~-,--~----, 

obtain enough equations that are functions only of the technology variables 
-, -- ---- -- ". __ .. _. __ ~, ___ , __ ~~~ ___ ._.·c~~ _____ ,._. ---,,~~ __ -O~ - -_. _ _ __ ,,_ "=~=-~'-<'~~-~-'-'~=~"-~~"""""-'-><L~~-=~.~' _. __ ~.~.~ ___ ----, 

to derive a reduced-form generic-input production function such as (11), 

This finding is particularly troublesome. I~ i~ __ ~E2~E,7_r:~.",~~~!,,_~he~_e are 

indeed costs associated with allocating a number of quasi-fixed inputs in 
• .' - - - - -c" --<0' ---j'----•. ~---,-""-.--=--- --~~-"-----~. ~=:---'------=--~-~~,~~--.-,-.-,-.-.-~_~ __ ..,._v...._.....'"',.,._~..,.~-_____=>__~ ,_, 

agriculture. FO,r example, some modifications are required to convert equip
~--' 

rnent used to harvest corn in order to harvest soybeans, grain sorghum, or 

wheat. These m~_~c~!'JQ.QLJ;£E~t.:ht:llt~ __ ,s:gs.~s ofa.110$;;l.'t;j.I1g~a .. fi~eg_._,i,np'd.L_to 

more than one product. The full allocation cost is associated with the first 
~_ •. _:",~c....o:."",,-,,-_-_-::_-=,,,:::;--:::=;~--e",,--cO'c_-=-;.-'=-7~"'·='-----

unit of the second crop harvested, so marginal allocation costs are not cons-

tant across all units. 

It will be shown in the next section that reversible duality r§.l_atj,ons 
("""""'-=~~~_=--~~~ •• ~""""'_"-~~~.~_.~~~"_~= __ ~"' __ v. --=_~ ___ ~" ., ______ ~=_-. 

raints. They do exist for (11), but since non-constant marginal allocation 
~ __ ~~_-----""-'" ,...."'"-4."'-'",=-~o-_-'-,._~:~~~ .. -.-~ 

cos.ts-prevent, deriva-tionof, (11), reversible duality relations cannot be 

de..1rron.strated for any technology specification when there are non-constant 

marginal costs of allocating binding fixed inputs. 

Duality Relationships 

(9a) and 

(9b), in deriving (11), those conditions can be restated and used in the sec-
. f'>=-====~-_-__ ~. -,: -~-=C='-'="==~-=----=-"'"-===-''''_"",,,","",,_,,,,,,----=-,-==_,==-~ 

ond step of Erofit maximization when there are no costs of allocation. The 
~_====-==,=-"",=,~c---=,:-~,,,--::,,',,,-o-c---,,=---.-,-"~,",-.--""~==-,,=--,--~-,,,==~_-'--.=-o..=-"-"=""",~,,,,-_~,--,--,,,,<"_,_,,-__ " ,=-,_:_.~~- C'__ _.p-_~_'_-,,"=.-::::-.c='"~_:_ ~=-=';;'=--'=;;"~-="'--'-';'~=-=--:-=~"'--'-'-''-~''=''''-;-.. ~~_~--=..:;o;.'''''::'_''-'-'-'''--'-::-'-' 

second-step objective function is 

""~ 
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m n 
(14) Max 17'2 = P1G(!1'X,Z) + 1: PiYi - 1: r.x .• 

!l'X i=2 j=l J J 

Its first-order equations are 

(lSa) 017'2/OYi = PloG/OYi + p. = 0, i = 2 r .•• , m, 
~ 

(lSb) 017'2/aXj = P1OG/OXj - r. = 0, j = lr ••• rn • 
J 

Assuming appropriate curvature and smoothness properties are satisfied 

in !l and X, these m+n-l equations can be solved by the implicit function 

theorem for (!l'X) as functions of (P,R,Z): 

(16a) Y i = y~(P,R,Z), .i = 2 r .•• ,m, 
~ 

(16b) x. = X~(P,R,Z), j = 1, ••• , n, 
J J 

where P = (Pl, ••. ,Pm) and R = (rl, ... ,rn). By substituting (16a) and (16b) 

into (11), we obtain 

We now have product supply equations (16a) and (16c) and generic-input 

demand equations (16b) as functions of the exogenous product and variable-in-

put prices and fixed-input quantities. It is apparent that the indirect res-

tricted profit function can be specified using (16a) - (16c): 

(17) 
m 

17'* = P1Yi(P,R,Z) + 1: 
i=2 

P,Y~(P,R,Z) -
~ ~ 

r.x~(p,R,Z) = 
J J 

17'*(P,R,Z). 
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The envelope theorem is valid for its partial derivatives, in product and 

variable input prices and permit direct recovery of (16a) and (16c) and the 

negative of (16b). 

Lau has shown that ,the Hessian of 1T* t is fUlly identified by the Hessian of 

G and vice-versa. Thus, a two-way duality between the multiple-product 

applies to both, first and second derivatives just as a two-way duality 
~....,.~~~~-;...'>C""~..t-=~ __ =,-",-_ "'-.. ":;" . .;_,--.. ,.~:,: ._~ ~ __ .. .:....,",_._;::.""'. _,." ~ __ -_'--'-_~~-"'.~_~ """ ___ ,_",,-,-_"'~=,,,,=_-,-;,;,_ ::_ .. ,,-:::c_-,,:d 

may embody behavioral properties does not alter 'this two-way duality. 
,-----~---~.>--.... ........-- .. :--~'''''--~ ... .." ... --'''-.. -':~--,.; ........ =--.- .", 

Unless there is only one allocatable input, it is not possible to demons-

trate this same reversible duality between the Hessians of the restricted 

profit function and the derived production function (7). The problem is that 

a lack of informatj,on imbedded, in the dual problem makes the matrices 
~-?"'~=~~ 

noncomformable. The dimension of the, square Hessian of (7) is 

m-l+n+(m-'l) (n-l)+q+(m-l)q = m(n+q) as compared to the above-:-noted dimensions 

of 1T*'. The restricted profit function (17) can, indeed be derived from (7), 

either by solution of the entire set of first-order equations in ega) - (9d) 

or by the above two-step procedure, \..E-t;.t the _J)~~~e_~~rs of (7) canno~ 

\.. f!:~ly ;,g~d f_~om .JE1J. This problem prevents~~~ =i~~t}:~J;~9:.?2:' of the 

parameters of any production function with binding constraints on the alloca-

tion of a fixed input if costs are associated with its allocation since (7) 

does not reduce to (11) in that case. 

Further, it is not possible to write separate profit functions for each 

product unless (a) the system of production functions (5) is technically 

independent among products (as assumed by Pfouts and by Just, et al.), (b) 
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the constraints on allocations of the fixed inputs (4).Jl.t"EL..Ell,,~!!9nb!nding, 
~-",-""~---"-,,,,,,,,~,,,,,·:,,c".-_"=:=-.;:, 

and (c) complete data are available on all allocations •. ___ - Therefore, unless 

all these unlikely conditions exist for the multiple-product firm, the same 

problem of nonconformable matrices prevents complete identification of the 

~stem of production functions (5 L from parameter estimates of the profit 

function. The multiple-product restricted profit function (17) can be 

correctly derived from (5) even if there exists technical interdependence in 

production of multiple products and/or binding constraints on allocations of 

fixed inputs and/or incomplete data on input allocations, but (5) cannot be 

derived from (17). There is simply not enough information available from the 

dual estimation. 

Conclusions 

Unless production of multiple products is separable in outputs and inputs or 

only one input is effectively allocated among all outputs, one cannot write 

the value-free technology specification as a single equation. When either of 

these conditions .is not satisfied, the technology should be expressed as a 

system of individual, possibly interdependent, production functions subject 

to any constraints that exist on allocations. If no non-constant marginal 

costs are associated with specific allocations, a single-equation reduced-

form specification of technology in product and generic-input quantities can 

be derived in this general case by incorporating those first-order equations 

from the behavioral objectives that are not functions of prices. Technical 

interdependence does not limit this derivation capability. However, with or 

without independence, the reduced-form equation is not value-free. Alloca-

tion costs prevent derivation of a reduced-form generic-input specification 

of the technology, even using information based on the behavioral objective. 

Complete reversible duality relations exist between individual profit 

functions and individual technically-independent production functions with-
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out binding allocation constraints on fixed inputs or costs of allocation. 

Complete reversible duality also exists between the reduced-form generic-in

put specification, with or without partial incorporation of the behavioral 

objective, and the multiple-product restricted profit function. Duality 

relations for the system of individual. production functions subject to bind

ing allocation constraints on fixed inputs, however, can be demonstrated in 

only one direction, from the technology system"to the restricted profit func

tion. This is true also for both the system of individual production func

tions and the Single-equation specification of technology when allocation 

costs are nonzero. Limitations of dual models for extracting information 

about multiple-product technologies are thus fUrther documented. 
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Footnotes 

The derivation of (7) from (4) ...; (6) can be shown by rewriting (4) and 

(6) as 

m 
(4a) z, ; = z. - L z .. , j = 1, ••• , q, 

1) ) i=2 
l.) 

m 
(6a) x1j = x. - L xij ' j = 1, ••• ,n, 

) i=2 

and taking inverses of the production functions, Y2 , ·0· ,Ym, in 

(Sa) ..•. , z. ), l.q i = 2,- ••• ,m. 

Substituting (4a), (Sa) and (6a) into the first equation of- (5), 

(sb) 

we obtain 

(sc) 
I m . l.-

YI - f [Y I ' xl' - L f (Y , X . 2' ••• , x . , Z . I' • " • , Z . ), 
i=2 l. l.n l. l.q 

m 
X2-.L xi2 ' 

l.=2 
... , m m 

x - LX., zl- L z'l' 
n i=2 l.n i=2 l. 

which, by collecting terms, may be specified as 

... , m 
Z - L z. ] 

q i=2 :rq 



16 

2. These conditions mean that the marginal rate of technical substitution 

for each pair of inputs allocated to one product is the same as for 

allocations of the same pair to every other product. This can be proven 

by taking the partial derivative of Yl with respect to any allocation in 

the vector (X~,Z~) from equation (Sc) in Footnote 1 and setting it equal 

to zero. 

3. Maximizing normalized profit gives the same solution in the choice varia

bles as maximizing profit since we divide by a constant. Further, the 

envelope theorem also applies to normalized profit such that the partial 

derivatives of 1/'*' with respect to (P',R') give (yl,-X). 
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