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ABSTRACT 
 
This paper analyses regression of two independent stationary panels with cross-sectional 
dependence.  It is shown that the pooling least squares (PLS) estimator converges to zero in 
probability while the individual OLS estimator converges to a random variable.  However, the 
PLS-based and the OLS-based t-statistics diverge, so the null hypothesis of no correlation tends 
to be spuriously rejected.   
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I.  INTRODUCTION     
  
The issue of spurious regression is well documented in econometrics; it was first studied by 
Granger and Newbold (1974) using simulations and a full analytical explanation was later 
provided in Phillips (1986).  Spurious regressions occur when two independent integrated 
processes are regressed on each other.  It is found that in such occasions: (i) the OLS estimator of 
the slope coefficient is asymptotically random, so the true slope (zero) fails to be identified and 
the OLS estimator is inconsistent, and (ii) the t-statistic of the slope does not have a limiting 
distribution but diverges at a T rate as the sample size (T) goes to infinity; therefore, the null 
hypothesis of a zero slope coefficient tends to be spuriously rejected.  
 
Recently, Kao (1999) and Phillips and Moon (1999) examined spurious regressions in panel data 
when both the cross-section dimension (N) and the time-series span (T) are large.  For the case of 
regression of two independent nonstationary panels, it is found that the pooling least squares 
(PLS) estimator of the slope converges to zero in probability (so the PLS estimator is consistent), 
provided that cross-section units within each panel are mutually independent.  According to 
Phillips and Moon (1999), this is because that the strong noise effect, which makes the slope 
unidentifiable in each individual time-series regression, is attenuated by the inclusion of a large 
amount of independent cross-section information.  On the other hand, the usual t-statistic of the 
slope diverges (at a T  rate, too), implying that inferences about the slope are wrong with the 
probability that goes to one asymptotically.          
 
This note studies spurious regression under a different panel setting.  In particular, we consider a 
regression between two independent stationary panels with cross-sectional dependence.  To 
model cross-sectional dependence in panels, we assume a factor model in each panel.  We 
establish the limiting distributions of the PLS estimator and the individual OLS estimator (at any 
given time) of the slope, and the limiting distributions of the PLS-based and the OLS-based         
t-statistics.  We find that the PLS estimator converges to the true slope value (zero) as in the case 
of regression in cross-sectionally independent panels (stationary or nonstationary), but at a 
different convergence rate (as discussed in Section III).  On the other hand, the OLS estimator 
converges to a random variable.  We also find that the PLS-based t-statistic and the OLS-based   
t-statistic diverge (both at a N rate) and, as a result, spurious rejections of the zero-slope null 
occur.   
 
The paper is organized as follows.  Section II introduces the factor model based panels with 
cross-sectional dependence.  Section III derives the asymptotic distributions of the PLS and the 
PLS-based t-statistic as well as the asymptotic distributions of the OLS estimator and the OLS-
based t-statistic.  Section IV concludes.  As a matter of notation, throughout the paper, 
“ ( , )N T →∞ ” denotes N and T go to infinity jointly, “⇒ ”signify weak convergence, and “ p→ ” 
means convergence in probability. 
 
 



 2

II.  CROSS-SECTIONALLY DEPENDENT PANELS  
 
Let itx  and ity , for i = 1, ..., N and t = 1, ..., T, be two independent panels defined as  
 

,
.

it i t it

it i t it

y f
x g

λ µ
δ υ

= +
 = +

 (1) 
 
Here, tf  and tg  are unobservable random factors, iλ  and iδ  are non-random factor loading 
coefficients and µit  and υit  are idiosyncratic shocks in itx  and ity , respectively.  Similar to 
Phillips and Sul (2002), we assume a single-factor structure to model dependence across units.  
See also Moon and Perron (2003) and Bai and Ng (2003) for a multi-factor panel model.  
Following Moon and Perron (2003), we make assumptions regarding tf , tg , iλ , iδ , µit  and υit  as 
follows. 
  
Assumption 1 
(a) 0t j t jjf θ ξ∞

−==∑ , where ( )~ 0,1t iidξ  and 0
m

jj j Mθ∞
= <∑  for some m>1. 

(b) 0t j t jjg γ ζ∞
−==∑ , where ( )~ 0,1t iidζ  and 0

m
jj j Mγ∞

= <∑  for some m>1. 
(c) tξ  and tζ  are independent. 
 
Assumption 2 
(a) ,0it ij i t jj dµ ε∞

−==∑ , where ( ), ~ 0,1i t iidε , across i and over t and with a finite fourth moment, 
0inf 0i ijj d∞

= >∑ , and 0
m

jj j d M∞
= <∑  with supj i ijd d= . 

(b) ,0it ij i t jj cυ η∞
−==∑ , where ( )~ 0,1it iidη , across i and over t and with a finite fourth moment, 

0inf 0i ijj c∞
= >∑ , and 0

m
jj j c M∞

= <∑  with supj i ijc d= . 
(c) itε  and itη  are independent. 
 
Assumption 3 
(a) tξ  and isε  are independent. 
(b) tζ  and isη  are independent. 
 
Assumption 4 
Define 2 2

0, ji ijdµσ ∞
==∑  and 2 2

0, ji ijcυσ ∞
==∑ , where 2

,iµσ  and 2
,iυσ  signifies the variance of itµ  and itυ , 

respectively.  Let 2 1 2
1 ,lim N

i iN
Nµ µω ω−

=→∞
= ∑  and 2 1 2

1 ,lim N
i iN

Nυ υσ σ−
=→∞

= ∑ .  Assume that 2
µσ  and 2

υσ  are both 
well defined. 
 
Assumption 5 
(a) 1

1 ( 0)N
iiN mλλ−

= → ≠∑  and 1
1 ( 0)N

iiN mδδ−
= → ≠∑ . 

(b) 1
1

N
i iiN λ δ−

=∑   ( 0)λδσ→ ≠ , 1 2 2
1 ( 0)N

iiN λλ σ−
= → ≠∑ , and 1 2 2

1 ( 0)N
iiN δδ σ−

= → ≠∑ .  
 
Assumptions 1-3 assume that the random factors ( tf , tg ) and the idiosyncratic shocks ( itµ , itυ ) 
are all zero-mean stationary and they are independent to one another.  Under Assumption 1, 
since tf  and tg  are independent, it is easy to see that, as T → ∞ , ( )1/ 2 2

1
0,

T

t t fg
t

T f g N ω−

=
⇒∑ , where 

2
fgω  is the long-run variance of “ t tf g ”.  Note that, under Assumption 1, since the long-run 

variances of tf  and tg  are well-defined and tf  and tg  are mutually independent, the long-run 
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variance of “ t tf g ” is well-defined.  Also, by Assumptions 1 and 2, itx  and ity  are constructed to 
be independent to each other.  The idiosyncratic shocks are assumed to be independent across 
units (Assumption 2(c)).  The extent of cross-sectional correlation in each panel is given by 
 
 

 ( ) ( )

( ) ( )

2

1/ 2 1/ 22 2 2 2 2 2

2

1/ 2 1/ 22 2 2 2 2 2

( )
( , ) ,

( ) ( ) ( ) ( )

( )
( , ) .

( ) ( ) ( ) ( )

i j t
it jt

i t it j t jt

i j t
it jt

i t it j t jt

E g
corr x x

E g E E g E

E f
corr y y

E f E E f E

δ δ

δ υ δ υ

λ λ

λ µ λ µ


=

 + +

 =

+ +

 
 
 
 
Since Assumption 5 does not rule out the possibility that 0iλ =  or 0iδ =  for some i, some cross-
section units (in each panel) may be uncorrelated with one another.  Assumption 4 assumes the 
existence of the long-run variances of the idiosyncratic shocks.   
 
  
III.  SPURIOUS PANEL REGRESSIONS    
       
Consider a simple panel regression model 
 

it it ity xβ ε= + ,  i=1, ..., N; t=1, …, T (2) 
 
The PLS estimator of β  is given by 
 
 

1 1

2

1 1

ˆ

N T

it it
i t

N T

it
i t

x y

x
β = =

= =

=
∑∑

∑∑

, 
 
 
and the PLS residuals ˆ

ît it ite y xβ= − .  Then, to test the null hypothesis of 0β = , we define the 
usual t statistic: 
 
 ˆ

ˆ
t

sβ
β

β= , where 

1/ 2
2

1 1

2

1 1

1 ˆ
ˆ

N T

it
i t

N T

it
i t

e
NTs

x
β

= =

= =

 
 

=  
 
  

∑∑

∑∑

                               
 
 
For comparison, we also consider the OLS estimator of the slope in (2) for any given t, 
 
 

1

2

1

ˆ

N

it it
i

t N

it
i

x y

x
β =

=

=
∑

∑

 
 
 
and the OLS residuals ˆ

ît it t ite y xβ= − .  And, define the OLS-based t-statistic as 
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ˆ

ˆt

t

tt
sβ

β

β
= , where 

1/ 2
2

1

2

1

1

ˆ
t

N

it
i

N

it
i

e
Ns

x
β

=

=

 
 

=  
 
  

∑

∑

�

. 
 
 
Theorem 1 
Let 2 ( )f tE fσ =  and 2 ( )g tE gσ = .  Under Assumptions 1-5, we have the following. 
 
  

(i) Let ( ), → ∞N T ,  ( )

( ) ( )

2 2
1/ 2

22 2 2

2 2
1/ 2

2 2 2 2 2 2

ˆ( ) 0, ,

( ) 0, .

fg

g

fg

f g

a T N

b N t N

λδ

δ υ

λδ
β

λ µ δ υ

σ ω
β

σ σ σ

σ ω
σ σ σ σ σ σ

−

  
  ⇒
   +  

  

  ⇒
  + +
 

 
 
 
 

 
(ii) For any t, let N → ∞ ,  

*
2 2

1/ 22 2
1/ 2 *

*

ˆ( ) ,

( ) ,
t

t t
t t

t

t
t

t

f g
a

g

gb N t

λδ

δ

δ
β

σβ β
σ

σ β−

   
⇒ ≡   

  


 
⇒   Λ 

 
 
 
 where * 2 2 * *2 2 22t t t t t t tf f g gλ λδ δσ β σ β σΛ = − + .  

 
Remarks 
 
1. The PLS estimator of the slope is T -consistent.  This contrasts with the well-known fact 

that the PLS estimator is NT -consistent in the conventional panel regression that assumes 
over-time stationarity and cross-unit independence.  This also contrasts with the T -
consistency achieved in nonstationary panel regression when cross-sectional independence is 
assumed (Kao (1999) and Phillips and Moon (1999)).  On the other hand, the time-specific 
individual OLS estimator of the slope (for any t) is not consistent.  It is also worth noting that 
the PLS estimator, once correctly scaled, converges to a normal distribution.  On the 
contrary, the OLS estimator converges to a random variable that depends on the random 
factors.   

 
2. The PLS-based t-statistic and the OLS-based t-statistic are both divergent, so the spurious 

results appear.  Interestingly, the divergence rate of the PLS-based test is determined by N, 
the cross-section dimension, only.  This is opposite to the nonstationary panel regression case 
(with cross-sectional independence) studied in Kao (1999) and Phillips and Moon (1999), in 
which the t-statistic diverges at a rate that depends on T, the time-series span, only.     

 
3. There is no need to put any restriction on the relative growing rate between N and T to obtain 

the joint asymptotic distributions of the PLS estimator and the PLS-based t-statistic.  In 
contrast, the result obtained in Phillips and Moon (1999) requires the assumption that N 
grows slowly than T. 
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VI.  CONCLUSIONS   
       
In this note, we consider a spurious regression of two independent stationary, cross-sectionally 
correlated panels.  To model cross-sectional dependence, a single-factor model for each panel is 
assumed.  We find that the PLS estimator converges to zero in probability so it is consistent.  On 
the other hand, the OLS estimator converges to a random variable.  We also find that both the 
PLS-based t-statistic and the OLS-based t-statistic diverge and consequently spurious results 
occur.   
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Appendix - Proof Of Theorem 1 
 
Part (i)-(a) 
 

( )
2 2

1/ 2
22 2 2

ˆ 0, fg

g

m
T N λδ

δ υ

ω
β

σ σ σ

 
 ⇒
  +
 

. 
 
 
We first claim that the numerator of β̂ : 

 
( )1 1/ 2 2 2

1 1
0,

N T

it it fg
i t

N T x y N mλδ ω− −

= =
⇒∑∑ , (A1) 

 
as ( , )N T → ∞ .  Note that 
 

1 1 1 1 1 1 1 1 1 1
λ δ λ υ δ µ υ µ

= = = = = = = = = =
= + + +∑∑ ∑∑ ∑∑ ∑∑ ∑∑

N T N T N T N T N T

it it i i t t i t it i t it it it
i t i t i t i t i t

x y f g f g   (A2) 
 
Under Assumption 1, tf  and tg  are two independent stationary processes, it follows that  
 

1 1/ 2 1 1/ 2

1 1 1 1

N T N T

i i t t i i t t
i t i t

N T f g N T f gλ δ λ δ− − − −

= = = =

  =   
  

∑∑ ∑ ∑  
 

( )2 2(1) 0,fg fgm B N mλδ λδω ω⇒ ≡ , (A3) 
 
where B(1) is the standard Brownian motion and 2

fgω  is the long-run variance of “ t tf g ”.  For the 
second term on the right hand side of (A2), we first note that 
 2

1 1

N T

i t it
i t

E fλ υ
= =

 
 
 
∑∑  

 

1 1 1 1

T T N N

s t i is j jt
s t i j

E f f λυ λ υ
= = = =

   =    
    

∑∑ ∑ ∑  
 

[ ]
1 1 1 1

T T N N

s t i is j jt
s t i j

E f f E λυ λ υ
= = = =

   =    
    

∑∑ ∑ ∑  
 

[ ] ( )2

1 1 1
λ υ υ

= = =
= ∑∑ ∑

T T N

s t i is it
s t i

E f f E , (A4) 
 
because ( ) 0s jtE f υ = for any s, t and j, and ( ) 0is jtE υ υ =  if i j≠ .  Let [ ] ( ) ( )− = Γ f

t t hE f f h  and 
( ) ( )

, , ( )υυ υ − = Γi t i t h iE h , we have 
 

(A4) ( ) ( )( ) 2 ( )

1 1 1

T T N
f

i i
s t i

t s t sυλ
= = =

= Γ − Γ −∑∑ ∑  
 
 ( ) ( )( ) 2 ( )

1 1 1
λ

= = =
≤ Γ − Γ −∑∑ ∑

T T N
f v

i i
s t i

t s t s  (A5) 
 
Note that, under Assumption 2(a), 
 

( ) ( ) ( )( ) ( ) ( )
,

0
sup supi i i i ij i j h j j h

j o j
h h d d d d hυ υ υ

∞ ∞

+ +
= =

Γ ≤ Γ = ≤ ≡ Γ∑ ∑ , 
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so that,  
 

(A5) ( ) ( )2 ( ) ( )

1 1 1

N T T
f v

i i
i t s

t s t sλ
= = =

  ≤ Γ − Γ −  
  
∑ ∑∑  

 
 ( ) ( )2 ( ) ( )

1 0

N
f v

i
i h

T h hλ
∞

= =

  ≤ Γ Γ  
  
∑ ∑  

 
 ( ) ( )2 22 ( ) ( )

1 0 0

N
f

i i
i h h

T h hυλ
∞ ∞

= = =

 ≤ Γ Γ 
 
∑ ∑ ∑ , 

 
by the Cauchy inequality.  Due to the summability conditions of Assumptions 1(a) and 2(b), 

( ) 2( )
0h h Mυ∞

= Γ <∑  and ( ) 2( )
0

f
h h M∞

= Γ <∑ , for some finite M (>0).  And, since 2
1 ( )N

ii O Nλ= =∑ , we 
conclude 
 2

1 1
( )

N T

i t it
i t

E f O NTλ υ
= =

  = 
 
∑∑ . 

 
Therefore, 
 

1/ 2 1/ 2

1 1
( )

N T

i t it p
i t

f O N Tλ υ
= =

=∑∑ . (A6) 
 
Similarly,   
 

1/ 2 1/ 2

1 1
( )

N T

i t it p
i t

g O N Tδ µ
= =

=∑∑ . (A7) 
 
Also, since itµ  and itυ  are stationary, cross-sectionally independent, and independent to each 
other, it can be shown that 
 

1/ 2 1/ 2

1 1
( )

N T

it it p
i t

O N Tυ µ
= =

=∑∑ . (A8) 
 
By (A3) and (A6) ~ (A8), the result of (A1) directly follows.    
 
We next claim that the denominator of β̂ :  
 

1 1 2 2 2 2
1 1

N T
it p gi tN T x δ υσ σ σ− −

= = → +∑ ∑ , (A9) 
 
as ( , )N T → ∞ .  Write 
 

2 2 2 2

1 1 1 1 1 1 1 1
2

N T N T N T N T

it i t i t it it
i t i t i t i t

x g gδ δ υ υ
= = = = = = = =

= + +∑∑ ∑∑ ∑∑ ∑∑ . (A10) 
 
Since 1 1 2 2 2 2

1 1
N T

i t p gi tN T g δδ σ σ− −
= = →∑ ∑ , 1/ 2 1/ 2

1 1 ( )N T
i t it pi t g O N Tδ υ= = =∑ ∑ , and 1 1 2

1 1
N T

iti tN T υ− −
= =∑ ∑  2

p υσ→ , the 
result (A9) directly follows.  By (A1) and (A9), we complete the proof of Theorem 1(i). 
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Proof of Theorem 1 (i)-(b): 
 

( )( )
2

1/ 2
2 2 2 2 2 2

0, fg

f g

N t N λδ
β

λ µ δ υ

σ ω
σ σ σ σ σ σ

−
 
 ⇒
 + +
 

. 
 
Write  
 
 

1 1
1/ 2 1/ 2

2 2

1 1 1 1

ˆ

1 ˆ

N T

it it
i t

N T N T

it it
i t i t

x y
t

s
e x

NT

β
β

β = =

= = = =

= =
   

  
  

∑∑

∑∑ ∑∑

. 
 
 
Note that 
 

2

1 1

1 ˆ
= =
∑∑
N T

it
i t

e
NT

 
2

1 1

1 ˆN T

it it
i t

y x
NT

β
= =

 = − ∑∑  
                  
                  2 2 2

1 1 1 1 1 1

1 1 1ˆ ˆ2
N T N T N T

it it it it
i t i t i t

y x y x
NT NT NT

β β
= = = = = =

= − +∑∑ ∑∑ ∑∑ . (A11)                        
 
Following the proof of (A9), it is easy to show that 1 1 2 2 2 2

1 1
N T

it p fi tN T y λ µσ σ σ− −
= = → +∑ ∑ .  Also, by the 

proof of part (i) in Theorem 1, 1/ 2ˆ ( )pO Tβ −= , 2
1 1 ( )N T

it pi t x O NT= = =∑ ∑  and 1 1
N T

it iti t x y= =∑ ∑  1/ 2( )pO NT= .  
Therefore, the first term on the right hand side of (A11) dominates the other terms in the same 
equation and we conclude 
 

2 2 2 2

1 1

1 ˆ
N T

it p f
i t

e
NT λ µσ σ σ

= =
→ +∑∑ . (A12) 

 
By (A12) and Theorem 1(i)-(a), the result follows. 
 
Proof of Theorem 1 (ii)-(a) 
 

*
2 2

ˆ t t
t t

t

f g
g

λδ

δ

σβ β
σ

  
⇒ ≡  

  
. 

 
It is easy to show that 1

1
N

it it t tiN x y g fλδσ−
= ⇒∑  and 1 2 2 2

1
N

it tiN x gδσ−
= ⇒∑ .  The result follows. 

 
Proof of Theorem 1 (ii)-(b) 
 1/ 22 2

1/ 2 *
*t

t
t

t

g
N t δ

β
σ β−  

⇒  Λ 
. 

 
Similar to the proof of (ii)-(a), it is easy to show 
 

1 2 1 2 1 1 2 2

1 1 1 1

ˆ ˆ2
N N N N

it it t it it t it
i i i i

N e N y N x y N xβ β− − − −

= = = =
= − +∑ ∑ ∑ ∑�  

 
2 2 * *2 2 2 *2t t t t t t tf f g gλ λδ δσ β σ β σ⇒ − + ≡ Λ . (A13)  

 
By the Theorem 1 (ii)-(a) and (A13), the result follows.  
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