Value of Information in a Whole-Chain Traceability System for Beef Cattle: Application to Meat Tenderness

Candi Ge
candi.ge@okstate.edu
Brian D. Adam
brian.adam@okstate.edu
Dept. of Agricultural Economics
Oklahoma State University

Selected Poster prepared for presentation at the

Copyright 2016 by [Candi Ge, Brian Adam]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appear on all such copies.
How can each agent be rewarded to provide tenderness attributes, overcoming information asymmetry?

METHODS

Principal-agent model from Resende-Filho & Buhr is expanded to 2 agents in 3-stage supply chain:

Principal (meat-processor) minimizes cost subject to agents (cow-calf producer and feedlot) maximizing utility

PROBLEM

- In the beef marketing system – a fragmented supply chain – credibility attributes such as beef tenderness are difficult to identify and reward
- Beef tenderness can be increased with:
 - Genetic improvement (from cow-calf producer)
 - Optimal feeding (by feedlot)
- How can each agent be rewarded to provide tenderness attributes, overcoming information asymmetry?

OBJECTIVES – In a Whole-Chain Traceability System (WCTS), determine:

- Optimal payment from meat processor to feedlots for feeding to optimize tenderness
- Optimal payment from meat processor to cow-calf producers for tenderness genetics
- Benefits and costs of value-added opportunities for an individual beef producer in a WCTS

PRELIMINARY RESULTS

- In a WCTS, information and payments can skip over one or more stages to achieve desired goals (e.g., processor can directly pay cow-calf producer for info about genetics).
- Optimal payment depends on the costs of actions agents take.
- With WCTS, there is $71.80/head extra profit for improved tenderness. Of this, $16 should go to the cow-calf producer, and $37.83 should go to the feeder

REFERENCE