Economics of Aflatoxin Risk Management in the Selected Southern States

Joe Outlaw, Prof., Dept. of Agricultural Economics, Texas A&M AgriLife Extension
Mark Waller, Prof., Dept. of Agricultural Economics, Texas A&M AgriLife Extension
James Richardson, Professor, Dept. of Agricultural Economics, Texas A&M University
Nicholas Richburg, former Graduate Students, Dept. of Agricultural Economics, Texas A&M University
Levi Russell, Asst. Prof., Dept. of Agricultural Economics, Texas A&M AgriLife Extension
Mark Welch, Assoc. Prof., Dept. of Agricultural Economics, Texas A&M AgriLife Extension
Larry Falconer, Extension Prof. and Ag Economist, Delta Research and Extension Center, Mississippi State University
Kurt Guidry, Professor & Extension Economist, Louisiana State University
Nathan Smith, Associate Professor & Extension Economist, South Carolina Cooperative Extension, Clemson University

Selected Poster prepared for presentation at the 2016 Agricultural & Applied Economics Association Annual Meeting, Boston, MA, July 31-Aug. 2

Copyright 2016 by (Joe Outlaw, Mark Waller, James Richardson, Nicholas Richburg, Levi Russell, Mark Welch, Larry Falconer, Kurt Guidry, Nathan Smith). All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Economics of Aflatoxin Risk Management in the Selected Southern States

Joe Outlaw, Mark Waller, Levi Russell, Mark Welch, James Richardson, Nicholas Richburg, Texas A&M University, Larry Falconer, Mississippi State University, Nathan Smith, University of Georgia, Kurt Guidry, Louisiana State University

Background
Aflatoxins are primarily produced by the fungal strains Aspergillus flavus and Aspergillus parasiticus. They are soil born organisms, and as they grow on a food source, aflatoxin can be produced and build up (Horne et al. 1991). Aflatoxins are classified as a group 1 carcinogen (IARC 1993). Vardon et al (2003) estimated the annual cost of aflatoxin contamination in the U.S. at about $500 million, while Robens and Cardwell (2003) calculated additional annual costs of aflatoxin management in the U.S. at $20-$50 million. The economic threats include market restrictions and possible price discounts that can exceed $1.00 per bushel, or forced crop destruction impacting the livelihood of crop producers and numerous other feed and food industry participants. Aflatoxin contamination has been a perennial problem for Texas corn producers and users and an occasional problem across other Southern States.

The recent development of biological controls (Aspergillus strains that do not produce aflatoxin, referred to as atoxigenics) may provide a cost effective means of risk management. These non-aflatoxin producing strains can be applied to fields to eliminate the aflatoxin producing strains already in the soil. AF-36® and Afa-Guard® are the two atoxigenic products currently utilized across the South.

The aflatoxin strains are relatively inexpensive, however, significant aflatoxin problems do not occur every year nor do the atoxigenics completely eliminate aflatoxin, leaving producers with the question of whether using a mitigation tool is economical given the risk. Federal crop insurance does provide some protection against revenue losses due to high aflatoxin levels in corn. However, the test for aflatoxin is not a perfect test and two tests of the same trailer load often have significantly different results. This means that a producer can have a trailer of corn rejected at an elevator for aflatoxin levels above acceptable levels only to test acceptable or even zero contamination when tested by official crop insurance labs. This introduces an added dimension of risk for producers.

Field Tests of Product Effectiveness
Both of the atoxigenics have been field tested to prove their effectiveness in decreasing aflatoxin contamination, specifically in Texas corn with good results in some tests, and less desirable results in others. A Texas A&M AgriLife extension service trial conducted during the severe drought of 2011 across multiple Texas locations showed less effectiveness with reductions in aflatoxin levels ranging from near 0% reduction across locations and products. The research concluded that the products may not work as well in severe drought years.

Data
Cooperators were identified to provide multi-year field level data for both treated and untreated fields, allowing for an analysis of the effectiveness of atoxigenics under various conditions. The following charts indicate an overall effectiveness of atoxigenic treatment in Texas.

Objectives and Methods
The objective of this study was to perform an economic analysis, incorporating risk, on the decision to use available atoxigenic treatments on a corn crop, and evaluate the economic outcome at different crop insurance levels for corn producers in Selected Southern States. The study used a partial budget simulation model combined with an aflatoxin contamination simulation model to complete a risk analysis on the decision to use atoxigenic mitigation methods. These components are built into a web-based online decision tool for producers to use in evaluating the cost-effectiveness of adopting the atoxigenics technology given historic aflatoxin contamination levels in drought stressed and non-drought stressed years, potential market price discounts, insurance coverage, and cost and treatment effectiveness, and their impact on farm profitability.

Major Results and Implications
Some of the important questions addressed by information gained in this study include:
1. Has the use of atoxigenics reduced the occurrence, and level of severity, of aflatoxin contamination of corn produced in Selected Southern States?
2. Are Southern corn producers increasing the use of atoxigenics?
3. What is the cost effectiveness of atoxigenics as an aflatoxin risk management tool depending on various conditions including, previous history of aflatoxin contamination levels, price discounts associated with various levels of contamination, and insurance costs/coverage for Southern corn producers?
4. What educational implications do these findings have for Southern corn producers, and for extension economists conducting risk management and farm management education programs?

References:
* Herman, T., and A. Thomasson. “Grain Traceability and Its Role in Food Safety”, Cereal Foods World, pgs. 1-6, July-August 2011, vol. 56, no. 4