Green innovation for agriculture: Prospects and lessons from other sectors

Adam B. Jaffe

Director, Motu Economic and Public Policy Research
Adjunct Professor, Queensland University of Technology

Contributed presentation at the 60th AARES Annual Conference, Canberra, ACT, 2-5 February 2016
Green innovation for agriculture: Prospects and lessons from other sectors

Adam B. Jaffe
Director, Motu Economic and Public Policy Research
Adjunct Professor, Queensland University of Technology

AARES February 2016
Motivation

• Challenges:
 • Demand for food
 • Demand for GHG mitigation
 • Effects of climate change

• Gradual, continuous productivity improvement unlikely to be good enough

• Can we imagine a set of public and private decisions that would make agriculture in 2050 look fundamentally different from how it looks today?
Market failures abound

- Environmental externalities
- Knowledge is non-rival and hard to exclude
- Discovery, development, diffusion of new technology typically involve very different agents, so transactions costs can be major issue
- Adoption externalities
- Adoption decision subject to demonstrable cognitive biases
The Past

- Public science
- Commercial research and patents
- Agricultural extension
- Food safety and environmental regulation

- Are these systems up to the task?
Possibly Helpful Case Study

• Has the world ever witnessed the kind of qualitative transformation of a physical/economic system that we need in agriculture?

• The communications/IT revolution, circa 1970-2010

• What appear to have been the key drivers and facilitators of this revolution?
The communications/IT revolution

• Lots of relatively unrestricted research money
• Transformational scientific breakthroughs
• Scope for qualitative transformation of products
• Large innate external demand
• Large government purchases of latest stuff
• Relatively small role for patents
• Diverse potential user base, including dispositional early adopters
Science for agricultural innovation

• Public research spending is inadequate, and probably insufficiently “blue sky”
• Possible breakthroughs, but will require openness to qualitative change
 • Genetic modification
 • Engineered food
 • Direct photosynthesis of fuel or food
 • …
• Redefinition of the “industry” or the “sector”
External demand for agricultural innovation

- Plenty of demand for food and fibre
- No commercial demand for GHG reduction
- Need taxes or quotas that include methane
- Broken records sometimes play the right song
Could public acquisition foster agricultural innovation?

• Acquisition of weapons, satellites, etc. in competitions where price was not the main selection criteria were very important in advancing technology

• Could the same happen in agriculture?

Purchase commitment for:

• Non-belching cows
• Catalyst that fixes Nitrogen from animal waste
• ??
Role of Patents

• Lubricant or sand in the gears?
• Hard to say overall, because we have no empirical comparisons of advanced economies with and without patent systems
• Small countries’ protection of big countries’ IP benefits the latter, not the former
 – Agreement to U.S.-style IP protection should be given only if we get enough in return
Can patents be designed to encourage innovation?

• In theory, the patent system fosters innovation by balancing several forces:
 – Limited monopoly allows inventors to invest in development of their ideas with some protection against appropriation of markets they thereby create
 – The disclosure of inventions in the patent document allows others to learn from and build upon inventions
 – Clear property rights minimize transaction costs, allowing firms to buy/sell IP, and to raise capital against it
 – Clear property rights allows all potential innovators to know the lay of the land: who has rights, and what are the rights that they have: Innovation Cartography (Richard Jefferson)

• Only the first of these actual works today
Patent transparency is crucial

• Many issues in patent policy involve difficult balancing of competing public interests (e.g. patent term extension)

• Obfuscation serves no *public* interest.
 – Disclosure obligation should be enforced
 – Ownership and control should be public information

• Governments and foundations could then seek to build true innovation ecosystems

• E.g., can find patents that cite particular scientific articles
Technology Diffusion

• New technologies everywhere and always diffuse slowly
 – Mechanical reaper
 – Electric motor
 – Enterprise software
• When does slow diffusion become a “paradox”?
• “Expert” analysis of some kind demonstrates that some technology or practice “pays for itself” but lots of agents are not using it.
 – Various energy efficient equipment, insulation, etc.
 – “Best management practices” in various agricultural settings
• Interest in paradox may be motivated by the environmental benefits of underused choice
• But not necessarily: Human Resources
How to think about “paradoxes” – I

• Not really economically superior
 – Real versus hypothetical implementation
 – Soft costs
 – Option value of waiting
 – Heterogeneity

• Market failures
 – Principal/agent issues
 – Regulatory or quasi-regulatory rules or practices
How to think about “paradoxes”—II

• Information
 – It’s costly to learn that you are ignorant
 – Adoption externalities and network effects
 – Heterogeneity again

• Cognitive biases
 – Satisficing versus optimizing
 – First cost bias
 – Salience bias
 – Loss aversion (inertia)
Policy Response to Paradoxes

• No optimal solutions
• Presence of cognitive biases limits value of reasoning from first principles
 – E.g. information provision versus appliance standards
• Policy superiority becomes an entirely empirical question
• Which takes me to…
Policy effectiveness is understudied

• Very few policy choices can be made on theoretical or conceptual grounds.
• Policy success or failure rarely evaluated systematically.
• Randomized Control Trials (RCT) are increasingly used in social policy; less accepted in technology policy.
• If RCT is not practical or politically acceptable, still need systematic evaluation
Parting shots

• Challenges are great. Need profound innovation.
• Market failures abound. No reason to think market will get it right.
• But problems are intrinsically hard. Need systematic evaluation as to what government actions improve the situation.
• Stakes are high. Cannot afford to rule out possible approaches *ex ante*.