

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY OF MANCHESTER
 AGRICULTURAL ECONOMICS

-96-

Report No. 2.

MANAGEMENT FOR
MILK PRODUCTION

MANAGEMENT FOR MULK PRODUCTION.

Research in Cost of Feeding.

Farmers are in a position to manufacture more or less food for their live stock in their fields, or to purchase from merchants less or more food which has been manufactured elsewhere. The majority of farmers are convinced that the cost of feeding with grass and hay grown by themselves is less than the cost of feeding with purchased concentrated foods. This conviction is shared by others who have investigated the subject, and the object of this study is to ascertain as accurately as possible within a limited area how far it is founded on facts, and also to measure the amount of gain or loss which arises from the pursuit of one method or the other.

As manufacturers of grass and hay farmers have to use machinèry which is complicated in its nature, and by no means easy to work. Soil can behave in a great many awkward ways; so can grass; and so can cattle and other live stock. To get the greatest value out of them all they must be made to work fully in combination.

In the statements made and the figures given in this report an attempt is made to describe the experience of sixteen farmers in Lancashire and Cheshire. During 22 weeks of summ: from May 1 to September 30, 1933, they had 485 cows which gave 153,632 gallons of milk. The cows grazed 542 acres of pasture and 470 acres of aftermath, which they shared with dry stock equal to 241 more cows. They received a considerable amount of purchased concentrated feed during the period.

Table I shows the amount of starch equivalent obtained per cow from purchased feed on each farm together with its cost per lb., and also the amount of starch equivalent obtained from grass with its cost per lb. It also gives the actual cost of the starch equivalent consumed by the cows. The information in Columns 1, 2, and 3 was obtained from the weekly feeding records. Column 4 was got by subtracting the figures in Column 1 from those in Column 5 of Table VI. The cost of grazing was got from the rent per a.cre together with costs of fertilisers, cultivations and other expenditure on the fields.

Table I.
Actual Consumption and Cost of Starch Equivalent per Cow.

Farm	S.E. obtained from feed other than		Cost		Cost per 1b. S.E.	S.E. obtained from grass.		Cost		Cost per lb. S.E.
No.	$\begin{gathered} \text { grass. } \\ \text { ib. } \end{gathered}$	£.		d.	pence.	Ib.	£.	s.	d.	pence.
	1.		2.		3.	4.		5.		6.
4.	824	3	15	6	1.10	932	2	8	0	. 62
5.	771	3	3	3	. 98	930	2	13	10	. 69
6.	768	3	0	6	. 94	796	2	13	6	. 80
7.	842	3	15	1	1.07	792	3	12	5	1.09
8.	711	2	17	1	. 96	947	2	5	6	. 58
9.	658	2	11	10	. 94	1355	3	10	7	. 63
10.	364	1	11	7	1.04	1742	4	7	6	. 60
11.	846	4	1	0	1.15	788	2	3	6	. 66
13.	1009	4	4	10	1.00	779	2	11	1	. 79
14.	526	2	5	0	1.02	1220	2	5	$5 \frac{1}{2}$	
15.	539	2	2	8	. 95	1157	2	8	5	. 50
17.	956	4	13	0	1.16	1255	2	18	2	. 55
20.	747	3	13	8	1.10	947	3	4	10	. 82
21.	391	2	0	9	1.25	1270	4	4	0	. 79
22.	794	3	5	5	.99	958	3	4	11	. 81
41.	171		14	1	. 97	1675	2	15	8	. 40
				erag	1.04			Av	rage	. 67

It will be seen that on all the farms except one the cost of 1 lb . of starch equịvalent obtained from the grass is less than the cost of the same amount obtained from concentrates, and this shows that milk produced from grass costs less than milk produced from purchased feed. From
this again it would seem profitable that farmers should get as much as possible of their milk from grass. But this does not mean that no concentrates should be used in summer. Records have shown that when used in combination with grass in a dry summer purchased feed has increased the yield sufficiently to reduce the cost per gallon.

Table II.
Costs of Corcentrates and Mixed Feedjng.

Farm	Cost of Total Requirements of S.E. if concentrates only were used for feeding. pence	Actual Cost under farmers practice of grazing and feeding	Reduction -		
concentrates.				\quad	Increase
:---:	+				

The figures in both these tables represent the experiences of a few Lancashire and Cheshire farmers in the production of grass, in the purchase of feed and in the yields of milk during the summer of 1933. There is a difference between one farm and another. But this is not all. The figures for 1933 taken together with those for 1932 show that the same farmers had different experiences in the two years. The cost of feeding from grass was lower in 1933 than in 1932. All the farmers, each in his own way, have set themselves in the last few years to
cultivate their grass with the object of getting more profitable crops. In every case they have succeeded, and frequently the progress of improvement has been rapid.

Table III.
Comparative Costs.

This table shows a progressive advantage in improving the grass. There may have been something favourable in the season in 1933 compared with 1932, and the large reduction in some of the costs may be partly due to this, but on a few farms for which figures are available the reduction has been consistent over a number of years in spite of variations in the seasons. There are farmers in the Midlands where the cost of 1 lbo of starch equivalent obtained from the grass is only .26d. and .27d. And some of the fields on those farms are not yet giving perfect crops of grass. There is no Lancashire or Cheshire farm where the end of improvement is in sight, and therefore
none on which the cost of producing milk may not yet be reduced. Experience on every farm demonstrates that the cost of producing grass diminishes with the progress of good farming for grass.

The time has not come to analyse fully the kinds of management which account for these results, but it may be said that the reductions in cost between 1932 and 1933, which are large on a number of farms, are chiefly due to expenditure on cultivations and fertilisers in the former and earlier years, which produced their effect in the latter year. There was nothing extravagant. On every farm the money used was too hardly earned to be spent in a lavish fashion. The road to the final standard of improvement is too stiff and too long to be accomplished at a gallop.

Further information and explanation of how the figures in these tables are arrived at are given in the following pages.

Table IV. gives the acreage of pasture and meadow on the farms, and rent per acre.

Table IV.

Farm	Pasture	Meadow	Rent per acre
No.	acres.	acres.	shillings.
4.	8	12	64
5.	$31 \frac{1}{2}$	30	52
6.	120	24	38
7.	19	27	44
8.	47	29	37
9.	43	36	68
10.	69	104	61
11.	34	31	23
13.	64	36	40
14.	$4 \frac{1}{2}$	$6 \frac{1}{2}$	32
15.	35	26	74
17.	10	27	60
20.	19	23	24
21.	101	23	64
22.		40	41
41.			$42 \frac{1}{2}$

In constructing Table V. the farm stock have been reduced to a common unit. The unit chosen was one cattle unit and the following equivalents were used in the calculation.

I cow	$=1$ cattle unit.
I other cattle over 2 years	$=1$ cattle unit.
I other cattle $1-2$ years	$=\frac{3}{4}$ cattle unit.
I other cattle $\frac{1}{2}-1$ year	$=\frac{1}{2}$ cattle unit.
I work horse	$=1 \frac{1}{4}$ cattle units.
I young horse	$=2 / 3$ cattle unit.
I sheep (excluding lambs	
under 3 months)	$=1 / 5$ cattle unit.

Table V. gives the number of cattle units carried on the acreage, and the area of land allowed for grazing of each unit.

Table V.

Farm	Cattle	Pasture	After- math	Pasture per cattle unit	After- math per cattle unit	Total Grazing cattle unit
No.	units.	acres.	acres.	acres.	acres.	acres.

Table VI. gives the requirements - maintenance, production and total - with the yield of milk all per cow during the summer period. Distinctions in the maintenance requirements are made in Column 1 according to
the type of cow kept. Irish Shorthorns, Ayrshire and various crosses are given a smaller requirement than the heavy type of Shorthorns.

Table VI.
Theoretical Requirements of Starch Equivalent.

Dr. H. E. Woodman has pointed out that grass provides a greater amount of starch equivalent than is allowed for in this report. For a cow of 10 cwt. his practice is to allow an increase of 15% to represent what is used to make good the wastage due to the exercise involved in grazing. This is an important point where an attempt is being made to assess the value of each food measured by what it contributes of every kind. Exercise is invariably associated with grazing and with health. The energy necessary to support the exercise is provided by the grass, which should receive credit in proportion.

But this gives an opportunity of referring to the limitations of these records. Their object is to show the result of an economic experiment carried out by a number
of farmers under varying conditions, not to give a complete, detailed, statistical analysis of all the distinguishable elements in the farmers' experiences, not to present separately and exactly the cost of maintenance and the cost of production. The whole, actual, combined cost of these is shown. The cows are not weighed once a day, or even once in six months. Their weight is estimated. If the estimated weight differs from the actual weight, this affects only the proportion of the food going to maintenance on the one hand, and to production on the other. It does not affect the total cost. The weight is kept as nearly constant as possible, and so is the management in every respect, except that of providing a greater proportion of the food consumed by the cows from grass. This is the experiment. The results must be significant, and they are so.

The question of minerals is of increasing interest. Farmers who began to use lime and slag seven or eight years ago expressed their conviction four or five years ago that their use had reduced disease among their cows. More recent experience has confirmed the earlier, and farmers who began the use of minerals later have equally convinced themselves. They attribute an increased yield of milk to improved health brought about in what seems almost too short a time, too directly, by acess to pastures or meadows generously treated with minerals. The task of showing how far the improvement is due to herbage and how far to minerals is not one for the economist, but for the botanist and chemist. If anything further is sought on these lines a vekerinary specialist would require to take part.

Winter Period October 2. to April 30. - 211 days.

Table VII.
Theoretical Requirements of Starch Equivalent.

Farm	Maintenance Requirements per cow per	Total daintenance Requirements per cow	Yield of milk in period	Production Requirements per cow	Total Require- ments
No.	lb.	lb.	ger cow		

Table VIII.

Farm

No.

	1.
	1.
4.	2405
5.	2440
6.	2143
7.	2140
8.	2273
9.	2694
10.	2776
11.	2143
13.	2379
14.	2472
15.	2245
17.	2746
20.	2145
21.	2238
22.	2254
41.	1998

2073
1912
1492
1736
2244
1701
1496
1796
1956
1574
1868
1455
1130
1610
540
S.E. obtained
3.

332
528
551

from hay per cow.

1b。

404
605
450
1075
.647
583
516
571
578
878
690
690
1108
1108
644
1458

Tabl. IX.

The feeding value of "medium hay" is represented by the figure 1 on left hand of Column 4. The figures on the right hand, nearly all fractions, represent by comparison the actual feeding value on the sixteen farms. The object of improvement is to get the actual feeding value up to 1.3 , the feeding value of "very good hay".

The inferior place held by grass in the summer ration of cows in this area has been emphasised. It is nothing compared with the insignificant position accorded to hay in winter. Meadows have received more one-sided treatment than pastures. They have been dunged as often as three times a year on some farms, with no lime or phosphates to balance this. The quality of the hay has been reduced to the lawest degree. While there has been superfluous and wasteful feeding of concentrates, the figures in the two previous tables, however surprising they may be, probably reflect accurately the feeding value of hay on all the farms. The five marked with an asterisk, where
hay has played nearly its full part, or more than its full part, are farms where the meadows have been generously treated with lime, phosphates, and some with nitrogen in mineral form over a period of years. The abnormally high ratios of feeding value obtained from Nos. 10 and 41 are due chiefly to grazing which took place before and after the summer period. The anxiety to make sure of a high yield causes men to overfeed with concentrates, but the experience on these sixteen farms suggests that if the farmers do for their meadows what they have done for their pastures, the meadows will do for them what the pastures have done.

Table X.
Consumption of Starch and Protein Equivalent.
Starch Equivalent.
Protein Equivalent.
Farm

No.

Theoretical	Amount	Excess	Theoretical	Amount	Excess
Requirements	fed	of 2.	Requirements	fed	of 4
	per	over 1.		per	over 3.
per cow.	cow.	per cow.	per cow.	cow.	per cow
Ib.	1b.	1b.	1 b .	1 b .	1b.
1.	2.		3.	4.	
2405	3000	+ 595	391	623	+ 232
2440	2869	+ 429	398	413	+ 15
2143	2429	+ 286	327	380	+ 53
214.0	2705	+ 565	327	452	+125
2273	2290	+ 17	358	325	- 33
2694	3160	+ 466	453	641	+ 188
2776	2595	- 181	473	549	+ 76
2143	2561	+ 4.18	327	455	+ 128
2379	2734	+ 355	377	489	+ 112
2472	3177	+ 705	429	632	+ 203
2245	2549	+ 304	370	459	+ 89
2746	2888	+ 142	538	583	+ 45
2145	2519	+ 374	327	488	+161
2238	2287	$+\quad 49$	350	434	+ 84
2254	2559	+ 305	354	386	$+\quad 32$
1998	1203	-795	292	279	- 13

In Table X. the theoretical requirements of starch and protein equivalents are given with the actual amounts fed. The maintenance requirements of protein have been taken at . 65 lb . to .74 Ib . according to type of cow, and
. 6 per gallon for production.
It will be seen that on all the farms except two the amount of starch equivalent fed was in excess of the theoretical requirements of the cows. Most of the farmers concerned would probably say that they knew this, that they intended to over-feed, by this standard, but the results provide reasons for testing again the balance of their rations. The application of the protein equivalent formula gives a similar result expressed in terms of protein.

Table XI. has been designed to test the balance of the ration. The ratio of the protein equivalent to the starch equivalent varies with the amount of milk produced. A cow weighing 1000 lb . and giving 1 gallon of milk requires 6 lb . of starch equivalent, including 0.6 lb . of protein equivalent for maintenance, and 2.5 lb . of starch equivalent including 0.6 lb . of protein equivalent for production of 1 gallon. The ratio of this ration is 1.2 lb . of protein equivalent to 8.5 lb . of starch equivalent, that is $1: 7$. If a cow of the same weight was giving 4 gallons of milk per day the ration should contain 3 lb . of protein equivalent, and 16 lb . of starch equivalent, a ratio of $1: 5.3$. Thus the ratio grows narrower as the yield increases.

Table XI. deals only with the ratio of the production ration. Naintenance requirements have been subtracted from the amounts fed in every case.

Table XI.
Protejn - Starch Equiva]ent Ratio in Production Ration.

Farm	Gallons	Starch	Protein	Protein - Starch Equivalent
		Equivalent	Equivalent	
		available	available	

No. per cow. Production. Production. Ratio. 13. 1b.

5.3.3.3.3.

The theoretical composition of a feed suitable for the production of 1 gallon of milk is 2.5 lb . of starch equivalent, containing 0.6 lb . of protein equivalent. The ratio of such a feed would be $1: 4.2$ A ratio wider than this indicates a deficiency in protein, and one narrower an excess. The majority of the farms dealt with show the ratios too narrow, and therefore suggest that too much protein was being fed, and protein is the most expensive ingredient in the ration.

