

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY OF MANCHESTER
 AGRICULTURAL ECONOMICS

Report No. 1

MANAGEMENT FOR
MILK PRODUCTION

RESEARCH IN MAHAGMET? FOR MLIK PACDJCTION.

The information contained in the following paper applies to seventeen forms in Lancashire and Cheshire. The farmers kept weekly records of the amount of purchased food they need in the production of milk, and of the cost of other operations and events in the managenent of their herds and fields. These form the basis of this study. Only on two of the farms was a small portion of land ploughed. For the rest, the farmers depended on their pastures and meadows and on provender, the concentrated foods purchased from manufacturers or merchants. Farmers wish to produce milk at as high a profit as they can, and the first step tovards this object is to proaluce at a low cost. The cost of food being a large percentege of the total cost is a subject of supreme interest, and the question which the farmers and the economist kept constantly before them was whether the food necessary to cibtain the amount of milk required could be obtained at a progressively lower cost.

Use is made in this report of an ingenious application of the Starch Equivalent formula adopted by Mr. Arthur Jones of the Midand Agricultural College. This method makes it possible to present a more instructive statement to the farmers, and also a comparison of results obtained in different parts of the country. Host dairy farmers are now so familiar with the theories of the maintenance and production rations, and these have worked so well in practice that they may be tairen as trustworthy foundations of economic studies.
l'he figures in the following tables apply to the year Irom May lst, 1932 to April 30th, 1933, except where a different explanation is given.
liable I gives the acreage of pasture and meadow on the farms, and the rent per acre.

Table No I.

Farm No.	Pasture	Meadow	Eent per acre
	acres	acres	shilings

In constructing takle介the farm stock have been reduced to a common unit. The unit chosen was cine catcie unit and the following equivalents were used in the calculation.
I cow $=1$ cattle unit
1 other beast $=\frac{3}{4}$ cattle units
1 work horse $=1$ " $"$
1 young horse $=2 / 3$ " 1
I sheep $=1 / 7 \mathrm{n} \quad$ i

Table II gives the number of cattle units carried on the acreage, and the area of jand anowed for the grazing of each unit.

Table IT。

Farm	Cattle	Pasture	Aftermain	Pasture per cattle uni.t	Aftermath per cattle unit	$\begin{gathered} \text { Total } \\ \text { Grazing } \\ \text { parite } \\ \text { whit } \end{gathered}$
No.	units	acres	acres	acres	acres	acres
2.	26.5	38	25	1.43	. 94	2.37
3.	27	24	338	. 89	1.25	2.14
4.	34	27	2.2 ${ }^{\frac{1}{2}}$. 80	. 66	1.45
5.	22	12	2.4	. 55	1.1	1.65
7.	17.5	20	27	1.15	1.54	2.69
9.	69	47	26	. 68	- 37	1.05
10.	66	43	31.1	. 65	- 40	1.13
13.	48	34	31	. 71	. 65	1.36
14.	49.5	64	36	1.30	. 72	2.02
15.	11.5	$4 \frac{1}{2}$	$6 \frac{1}{2}$. 39	. 57	. 96
16.	78	154	50	2.0	. 64	2.64
17.	28	27	26	. 96	- 93	1.89
20.	26	35	27	1.35	1.04	2.39
2 L.	13	$10 \frac{1}{2}$	15	. 80	1.15	1.95
22.	25	19	23	. 76	-92	1.68
41.	74	101	40	1.36	. 54	1.90
42.	57	79	32	1.40	. 56	1.96

The year was divided into two periods, the sumer, representing roughly the grazing season, and the winter the time during which cows were chiefly dependent on purchased food. The summer period extended from the beginning of Hay to the end of September, or 22 weeks, the winter period from early October to the end of April, or 30 weeks.

Table III gives the requirements, maintenance, production and total with the yield of milk for each herd during the summer period. Distinctions in the maintenance requirements are made in Column 2 according to the type of cow kept. Irish Shorthorns, Ayrshires and various closses are given a smaller requirement than the heavy type of Shorthorns. The amount of purchased food consumed was obtained from weekly records which the farmer kept, or in a fev: cases
from the bills showing the actual amount of foodstuffs purchased and fed to the cows．There were only two farms on which even a small quantity of food from arable crops was used．

Surmer Period

Week ending May 7th to weer ending 0ctober 2nd -154 days
Table 3.
Theoretical Requirements of Starch Equivalent

Farm	imsintenance Recuirements per cow per day	Total wiajntenance Requirements per herd	$\begin{gathered} \text { Yield } \\ \text { of } \\ \text { milk } \\ \text { in } \\ \text { Period } \end{gathered}$	Production Requirements per herd	Total Recuire－ ments per herd
No．	1b．	1 b 。	gallons	1 b 。	$1 b$.
2.	6.6	24.800	7614	19035	43855
3.	6.9	28690	7833	19653	43343
4.	6.4	33 ご，	9724	24310	57820
6.	6.4	21683	4620	11550	35233
7.	6.4	1.7248	$\boxed{4} 887$	11078	28326
9.	6.9	63556	20739	51973	11.5 ＇29
10.	6.9	70132	12.941	32352	102484
13.	6.9	48380	$14.1 .46 \frac{1}{2}$	35366	$8 ¢ 246$
14.	6.4	3.539	8259	20548	52187
15.	6.4	10\％39	2415	6038	16337
16.	6.4	38.4 .3	8200		58043
17.	6.9	16364	6743	16858	33222
20.	6.4	1.9019	5676	14190	33209
21.	6.4	1.1827	$3411 \frac{1}{2}$	8529	20355
22.	6.4	19712	5424	13560	53272
4］．	6.4	49477	18091	45228	94705
42.	6.4	56179	17983	44958	i0．213＇7

Table IV．gives the actual cost of the Starch：Equivelent consumed by the cows．The information in Columns 2，3，and 4 was obtained from the weekly feeding records．Column 5 was got by subtracting the figures in Column 2 from those in Column 6 of Table III．The cost of grazing was got from the rent per acre together with costs of fertilisers， cultivations and other expenditure on the fields：

Table IV.
Actual Consumption and Cost of Starch Fquivalent.

Farm
S.E.fed
excluding
grazing
perherd

1b.
No.
2. 9245
$\begin{array}{rr}\text { 2. } & 9245 \\ 3 . & 26731 \\ 4 . & 33989 \\ 6 . & 13502 \\ 7 . & 15526 \\ 9 . & 47172 \\ 10 . & 57192 \\ 13 . & 62610 \\ 14 . & 19400 \\ 15 . & 5428 \\ 16 . & 17834 \\ 17 . & 16097 \\ 20 . & 20225 \\ 21 . & 7616 \\ 22 . & 23783 \\ 41 . & 5859 \\ 42 . & 34345\end{array}$
$\begin{array}{ccc}\text { Cost } & \text { Deficiency } & \text { Cost of } \\ \text { per lb. inS.E. } & \text { grifr } \\ \text { S.E. supplied } & \text { fy grazing } & \end{array}$
13. £s, s: d.

Cost
per Ib.
suppice by groving
pence
.60
.91
1.28
.84
1.31
.83
1.07
1.47
.72
.69
1.03
1.00
.94
.96
1.28
.85
.96

Every one of the seventeen farms represented in these tables is undergoing a process of improvement and the process is at different stages on the different farms. Comparative figures cannot be given for many, as the records have only recently been kept on the majority of farms.

All those whose cost of Starch Equivalent per Ib. is between $\frac{1}{3}$. and Id, that is, between .6 and .96 in Column 7, have been improving their pastures and meadows for three, four or five years.

These figures do not compare favourably with those from the Midlands, where the cost of the lb. of Starch Equivalent from grazing varies from $\frac{1}{4} \alpha$. to $\frac{3}{4} \alpha$. But when it is remembered that improvement amounts almost to reclamation in Lancashire, that the fields are very heavily stocked, that farming conditions generally are more favourable in the unspoiled country in the south, reasons for the difference are easily found. And Lancashire farmers are not finished with the job they have undertaken.

Winter Period October 2nd to April 30th. - 211 days.

> Table V

Theoretical Requirements of Stexch Equiva? ent.

Farm	Haintenance Requirements per cow per day	Total Majntenamce Requirements per herd	$\begin{gathered} \text { Yield } \\ \text { of } \\ \text { milk } \\ \text { in } \\ \text { perjod } \end{gathered}$	Production Fequirements per herd	Total Require ments
No.	Ib.	Ib.	gallons	1 l.	lb.
2.	6.6	29523	10236	25715	55238
3.	6.9	35378	10221	25553	60931
\leq.	6.4	45913	13250	33150	79063
6.	6.4	29709	6300	15750	45697
7.	6.4	23002	6120	15775	396177
9.	6.9	87554	2744.1	68603	155957
10.	6.9	95089	16495	41237	137326
13.	6.9	66971	28470	711.76	138147
14.	6.4	4.2403	13282	33205	75608
15.	6.4	12567	3889	9723	22290
16.					
17.	6.9	27517	11258	28145	55662
20.	6.4	27276	7043	17608	44884
21.	6.4	13888	4.4 .16	11040	24928
22.	6.4	27548	7887	19718	4.7256
41.	6.4	65224	10508	26270	91194.
42.	6.4	76973	12973	32433	109: 36

Table VI.
Comparison of Theoretical Requirements of Starch

Equivalent with Actual Quantities Fed.

Farm

No.
Theoretical Requirements of.S.E.

2.	55238
3.	60931
4.	79063
6.	45459
7.	39677
9.	155957
10.	137326
13.	13814.7
14.	75608
15.	22200
16.	
17.	55662
20.	44888
21.	24928
22.	$\triangle .7266$
41.	91494
42.	109406

Actual Guantities of S.E. fed

Excess or deficiency

- of quantities fed over
Theoretical Requirements

1b.
Total Per Cow.

- 2296
- 108
+1657
+19736
$+.5744$
$+6985$
+12480
-9859
+21128
$+14530$
$+13$
- 4678
$\begin{array}{r}108 \\ +\quad 68 \\ +\quad 261 \\ +394 \\ +208 \\ -150 \\ +459 \\ +463 \\ +140 \\ \hline-27\end{array}$
$+18657$
+1640
$+\quad 7297$
$\begin{array}{r}+\quad 4297 \\ +\quad 401 \\ \hline\end{array}$
+7039
- 247

924
$+\quad 159$
$+\quad$
54563
95895
116445

It will be seen that on all the farms except three the amount of Starch Equivalent fed was in excess of the theoretical requirements of the cows. Most of the farmers concerned would probably say that they knew this, that they inten.ed to over-fecd, by this standard, but the results provide reasons for testing again the balance of their rations.

The application of the Protein Equivalent formula gives a similÿar result expressed in terms of the protein. In Table VII the theoretical requirements of Starch and Protein Equivalents are given with the actual amounts fed. The maintenance requirements of Protein have been taken at .65 Ib . to .74 lb . according to type of cow, and .6 jer gallon for production.

Table VII
Consumption of Starch and Protein Equivalent.
Starch Equivalent. Protein Equivalent.

Farm
Theoretical Requirements
per herd

2.	55238
3.	64931
4.	79053
6.	45459
7.	39677
9.	155957
10.	137326
13.	138147
14.	75608
15.	22290
16.	-
17.	55662
20.	44804
21.	24928
22.	47266
41.	91494
42.	109406

Amount
$\begin{array}{cc}\text { Excess } & \text { Theoretical } \\ \text { of 2. Requirements } \\ \text { over l. } & \text { per herd. } \\ \text { per cow } & 3\end{array}$
-108
+68
+580
+261
+394
+208
-150
+459
+463
+140
-
-247
+924
+159
+357
+91
+123
fed
per

4

10597
12394
19026
79353
7228
34308

34308
24702

28717
17964
65
$+\quad 122$
+183
+183
$+\quad 25$
$+141$
+68
$+\quad 1$
$+\quad 97$
+787
$4237+68$
9345
12546
4336
8671
14218
15386
68
$+\quad 39$
+280
$+\quad 75$
$+\quad 56$
$+\quad 27$
$+\quad 7$

8.

Table VIII has been designed to test the balance of the ration. The ratio of the Protein Equivalent to the Starch Equivalent varies with the amount of milk produced. A cow weighing 1000 lb. and giving 1 gallon of milk requires 6 Ib. of Starch Equivalent, including 0.6 Ib. of Protein Equivalent for maintenance, and 2.5 lb . of Starch Equivalent, including 0.6 lb. of Protein Equivalent for production of I gallon. The ratio of this ration is 1.2 lb. of Protein Equivalent to 8.5 1b. of Starch Equivalent, that is 1:7. If a cow of the same weight was giving 4 gallons of milk per day the ration should contain 3. Ib. of Protein Equivalent and 16 Ib . of Starch Equivalent, a ratio of $1: 5.3$ Thus the ratio grows narrower as the yield increases.

Table VIII deals only with the ratio of the production ration. Maintenance requirements have been subtracted from the amounts fed in every case.

Table VIII.

Protein - Starch Equivalent Ratio in Production Fation.

Farm
Gailons

No.
per herd

2.	10286
3.	10221
4.	13260
6.	6300
7.	6120
9.	27441
10.	16495
13.	26470
14.	13282
15.	3889
16.	-
17.	11258
20.	7043
21.	4416
22.	7887
41.	10508
42.	12973

Starch Equivalent available for Production
23419
27210
52886
21404
22760
81083
31342
92304
47735
11025
23467
36265
12680
27015
30671
39472

Protein Protein - Starch Equivalent available for
Production Ratio

7555	$1: 3.1$
9100	$1: 2.99$
14363	1\% 3.68
4536	$1: 4.95$
4800	$1: 4.74$
24940	$1: 3.25$
14397	$1: 2.18$
21535	1 : 4.28
13657	$1: 3.49$
2962	$1 ; 3.72$
8447	1.2.78
9876	$1: 3.67$
3423	$1: 3.7$
5873	$1: 4.6$
7594	$1: 4.03$
8068	$1: 4.88$

The theoretical composition of a feed suitable for the production of 1 gallon of milk is 2.5 lb. of Starch Equivalent, containing 0.6 lb . of Protein Equivalent. The ratio: of such a feed would be 1.: 4.2. A ratio wider than this indicates a deficiency in Protein, and one narrower. an excess. The majority of the farms dealt with show the ratios too narrow, and therefore suggest that too much Protein was being fed, and Protein is the most expensive ingredient in the ration.

In table IX. figures for three years are given for two farns. On Farm 2 the farmer set about his fields with harrows, lime and phosphates in 1929 in a very generous manner. He brought down the cost of purchesed food at once, and in 1931 his lb. of Starch Equivalent firom the grass cost only .53 of a penny. It remains about there, but both pasture and meadow are stịl improvable to a great extent. On Farin 6 the improvement was begun in 1928, lime was used then phosphates. There was also a very limited experiment with potash, harrowing and clover seed. The first and great reduction in cost came after the use of nitrogen in 1932 . The cost of the lb. of Starch Equivalent obtained from the grass fell from 1.44 d . to .34 d . Assuming that 2.5 lb . of Starch Equivalent is required to produce \ddagger gailons of milk, this is a reduction of: $1 \frac{1}{2} \mathrm{~d}$. in the cost per gallon.

TabIe IX.

Farm No 2.

1930	11940	58	10	4	1.17	38764	34	6	1
1931	15511	7110	3	1.1	38381	86	4	0	.52
1932	9245	47	19	2	1.25	34.590	86	17	3

Farm No 6.

1930	21097	109	1	9	1.24	9115	5316	8
1931	21760	9216	11	1.02	8347	50	19	5
1.46								
1932	13502	5413	8	.97	19731.	69	6	0
194								

One result of this research is that it provided a means of measuring the value of grass, an unknorm factor, in terms of provender, a known factor. While there is ground for satisfaction in the spread of better farming methods, fuller consideration of the results show that prooress cannct be sensatiohly rapid. It is true that a farmer can reduce his costs by a comparatively large amount, but it is also true that in Lancashire conditions the reduction is not great absolutely.

Table X.

Grazing. Value, Cost, Profit or Loss.

Farm No.	Value of grazing as measured in terms of provender.	Cost of grazing.	Difference
2.	$180 \quad 32$	86173	+93 511
3.	$97 \quad 50$	8256	+14196
4.	$117 \quad 3 \quad 4$	12798	- 1064
6.	791411	696.0	+ 10811
7.	5940	$6917 \quad 2$	- 10132
9.	3051211	236146	+6985
10.	207119	202162	+ 4157
13.	10835	1321611	-24136
14.	14216	98.45	+ 43171
15.	$\begin{array}{rrrr}47 \\ 212 & 10 & 7\end{array}$	$\begin{array}{rrr}31 & 12 \\ 17412 & 8\end{array}$	+151710 +3718
17.	218311	719 910	+12141 +
20.	55145	501411	+ 4196
21.	$64 \leq 7$	5019.0	+13 57
22.	42146	50137	- 7191
41.	34456	203192	+140 $6 \frac{4}{3}$
42.	267 3 2	2361111	+ 30113

Some of the keenest and most successful improvers have been unwilling to keep or give records of their results, but a large number will be available in future years. Those given, however, are sufficient to show the nature of the progress which can be made. High rents, for small heavily stocked farms, with dung dominating the management of pastures as well as meadows, make grazing dear. But a number of farmers have reached the stage in improvement where the contrast between the performance of unimproved and improved areas is so striking and powerful that they regard the former as notorious sources of loss, and their systematic and complete elimination as the minimium standard of good farming.

