

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Management Guide for Planning a Farm or Ranch Business

1994. Buford Ave - 232 ClaOff

St. Paul MN 55108-6040

finpack

 planning for tomorpoW... today COMPUTERIZED FARM FINANCIAL PLANNING AND ANALYSIS PACKAGECooperative Extension Service - South Dakota State University © U.S. Department of Agriculture

Revised 1989 by
LeRoy Lamp, Lawrence Madsen, Curtis Hoyt, Ralph Matz, and Burton Pflueger SDSU Extension Farm Management staff

INTRODUCTION

This Management Guideline is designed to help you plan how to use your land, capital, labor and management skills more profitably. It is intended to serve as a handy reference to answer questions that come up during the daily activities of a farm or ranch business and to help plan changes in your current operation. You can also use the guide in Extension or vocational agriculture farm management or farm planning programs.

The estimates used in this guide are based on slightly above average management ability. Adjust them up or down to reflect your own management ability.

Management Tips are included throughout the publication. These are both reminders of timely production practices and stimulants to make production changes if needed.

The guide is divided into five sections color-coded for your convenience. Most of the data were provided through published and unpublished material by Experiment Station and Extension Service personnel at South Dakota State University. Information not available from these South Dakota sources was taken from the public and private sources listed below.

CREDITS

Cooperative Extension Service, South Dakota State University, Brookings, S.D.

Agricultural Experiment Station, South Dakota State University, Brookings, S.D.

Cooperative Extension Service, University of Minnesota
Midwest Plan Service
USDA Crop and Livestock Reporting Service
Iowa State University research and Extension publications.
OVERVIEW OF MANAGEMENT GUIDELINESFOR A FARM OR RANCH BUSINESSOperating Agreements Considerations
A4732
PAGE
EC-7443
Financial Analysis
Estimated Total Family Living Costs
MARKETING TIPS 15
Grain
Livestock
Glossary of Marketing Terms
GUIDE TO WEIGHTS AND MEASURES 21
Weights and Measures Tables Reference Formulas
Conversion Formulas from Metric Conversion Formulas to Metric
CROP PRODUCTION TABLES 26Measuring Hay and Foragessilo capacitiesCalculating Storage CapacitiesPasture Production RatesForage Conversion Rate for Hay EquivalentsFrost Hazard MapGermination Temperatutes for Crop/WeedsCrop Seed Characteristics and Seeding RatesCalculating Plants per AcreCorrecting Yields for Moisture contentEstimated Crop Machinery Investment andMachinery Ownership Costs per Tillable AcrePre-harvest Labor and Machine/Power CostsHarvest Labor and Machine/Power CostsEstimated Annual Labor Requirements per Acrefor Grain and Forage Crops
LIVESTOCK PRODUCTION TABLES 43
Breeding
Gestation
Pounds Production per Cow at Different Weaning Weights and calf-crop Percentages
Computing Animal Units
Corn-Equivalent Feed Value of Grains Livestock Labor Requirements
Livestock Housing Design Data

MANAGEMENT AIDS FOR YOUR FARM BUSINESS

FINPACK

FINPACK is a computerized farm financial planning and analysis package available to producers. It provides long-range farm budgeting, one- to three-year cash flows, enterprise analysis and year-end farm business analysis.

FINPACK is available through the SDSU Cooperative Extension Service or other trained sources. The program costs $\$ 50$ per farm family through the Extension Service.

DAKOTATXT

DAKOTATXT is an agricultural marketing and information service available on SDPTV channel via a de-coder. It primarily provides current market quotes from the major marketing exchanges. However, it also gives weather reports, crop and livestock emergency alerts and other relevant agricultural news.

Overview of Management Guidelines
 for a Farm or Ranch Business Operation

FARM BUSINESS PLANNING FOR BETTER FAMILY LIVING

Farm business planning concerns use of resources. This means using your land, capital, labor and management to achieve the kind of living your family desires. In most cases, the family wants a higher income, but not necessarily the highest income possible. This is true because the desire for making money is closely tied to non-profit desires such as decreasing risk and the amount of time and effort needed earn money. Increasing individual family members' personal satisfaction is also important. Increasing the income level can meet these goals to a point. Eventually, however, some income must be forfeited to reach these non-profit goals.

A financially successful farm business pays for:

1) All cash operating expenses
2) Depreciation
3) Interest on investment
4) Operator and family labor (going wage rates)
5) Management

Family living expenses may or may not be generated by the farm business.

The budgeting procedures and data included in this guide are designed for farm business planning. Use them to compare different ways of organizing your farm business, not to calculate net income. Current prices, which are not provided in this guide, are needed to calculate net income.

These procedures show what may be the best long-term system of setting up the farm business. On the other hand, use an annual budget or operating plan for short-term planning and decision making. Keep and study farm records of your actual farm operation at all times. They will provide the information you need for both long- and short-term planning.

Budgeting procedures provide you with a planning method that allows you to quickly and easily compare different opportunities. You can use it to look at different ways to use your land, capital, labor and management. It also allows you to see how changes will affect your probable income.

Budgeting procedures can do five specific things for you:

1. Help you avoid costly organization mistakes which can happen unless you consider your whole farm business. Make your mistakes on paper rather than in practice.
2. Help you take a closer look at your whole farm operation. Remember each farm is different because each family has different resources and different needs.
3. Enable you to make plans that are adapted to your family and farm. It also also help you estimate your expected income.
4. Help you decide if, with your current resources, it is possible to reach your family's goals, wants and needs.
5. Help you decide what changes or adjustments in resources are needed and/or possible so as to be able to reach your family's goals, wants and needs.

HIGH PROFIT FARM PLANS

Generally speaking, if you have good cropland, plan the land use and cropping programs for your farm first. However, most farms do not have enough cropland to earn the family's desired income from crops alone. Therefore, these farm business operations should include livestock enterprises.

If your farm or ranch has tillable land with relatively low crop productivity, plan the livestock program first and fit the cropping system to the livestock program.

The Cropping System

High profit cropping systems use crops and combinations of crops that will produce the most returns per acre in value, and corn or hay equivalent at the lowest possible cost. To achieve this you need to look for ways to cut the cost of production per bushel or ton of the crop produced.

Following recommended agronomic practices will lead to lower production costs per unit. Tillage methods, timeliness, choice of varieties, seeding rates, disease and pest control, soil testing and fertilizer use must be closely monitored.

Carefully consider machinery and equipment investment. In some cases, it may be more profitable to use custom operators or leasing plans. Using these alternatives may allow you to use your capital in a more productive part of the farm business. Use partial budgets to determine which alternatives may be the most profitable.

Livestock System

Development of the most profitable livestock program for your farm is an individual problem that involves many factors. These factors include available feed supplies, labor, managerial skill and personal preferences.

Keep in mind as you plan that profitable livestock programs are built around the feed supply produced by sound land use and
cropping systems. With the capital and labor available these livestock systems provide for:

1. Use of nonsalable pastures, crop aftermath and by-product feed.
2. Use of salable feeds.
3. Use of purchased feed.

Although higher returns from labor usually can be secured from crop production, livestock use labor that can not be used for growing crops. When more labor is allocated to the more profitable enterprises, a larger volume of business on a given acreage is possible.

Available markets, or the lack of them, will influence the amount and kind of livestock kept.

Livestock efficiency is one of the single most important factors influencing livestock net returns. Each livestock enterprise requires its own particular skills and practices. To be a good livestock producer, you must know and keep up with those skills that apply to your enterprise. Some bench marks for profitable livestock production:

1. Pigs marketed per litter -- 7.5 to 9.5
2. Pounds of milk per cow per ??? -- 140 to 180 cwt.
3. Percent beef calf crop weaned -- 90 to 95
4. Percent lamb crop raised -- 120 to 160
5. Daily Gains:

Fed Steer Calves -- 2.0 to 2.5
Fed Heifer Calves -- 1.8 to 2.2
Fed yearlings -- 2.3 to 3.0
Fed lambs -- 0.4 to 0.7
Pigs (birth to market) -- 1.4 to 1.6
6. Eggs per hen housed -- 210 to 250
7. Income per dollar's worth of feed fed Average goal -- \$1.40 to $\$ 1.90$ Realistic goal -- \$1.60 to \$2.10

Invest in a costly automated system only if you can clearly see that it will pay for itself. New equipment should return from 22 to 28 percent of its purchase price each year to cover depreciation, interest, taxes, repairs and other costs of owning the equipment.

Budgeting is a planning method that you can use to compare different income opportunities on your farm or ranch. You need to consider three kinds of budgets: enterprise, total business, and partial.

An Enterprise Budgetis developed for just one aspect of your operation. It lists the expenses from raising a specific crop or type of animal, and the income from selling that commodity. Develop separate budgets for each crop or type of livestock.

The Total Business Budget is a complete listing of the operation's income and expenses for the year. It is useful for determining the business's overall financial condition.

Partial Budgets usually are used to estimate how a planned change will affect net income. The costs and added returns of both the enterprise dropped and the enterprise added are compared to determine the expected change in net income.

Use the tables in EMC 864, or your own figures, to develop your crop and other land use enterprise budgets. Use example livestock enterprise budgets in EC 745 to estimate your own costs.

After you have decided which enterprise budgets apply to your operation, you are ready to analyze your total farm or ranch business. Complete the FINLRB portion of the FINPACK program available through your Extension office.

How does the profitability of your present plan compare with other plans for your farm or ranch business? Is there a more profitable plan that can be carried out? You can test alternative plans using a partial budget.

A plan sheet like the one following can be used to quickly estimate the potential effect of a planned change, before you include it in the plan for your whole farm or ranch business.

Partial Budget for Planned Changes

Enterprise Dropped \qquad
Enterprise Added
I. Returns from enterprise added
\qquad
TOTAL RETURNS ADDED
II. Costs from enterprise dropped
\qquad
TOTAL COSTS DROPPED
III. Costs from enterprise added
\qquad
\qquad
TOTAL COSTS ADDED
IV. Returns from enterprise dropped
\qquad
\qquad
TOTAL RETURNS DROPPED
\qquad
\qquad
\qquad
\qquad
V. Estimated Change in Net Income
A. Add returns added (I)
to costs dropped (II)
B. Add costs added (III)
to returns dropped (IV)
C. EXPECTED CHANGE IN NET INCOME
(A minus B)

QUICK TEST CHECKS FINANCIAL STRESS

Your financial condition is related to your ability to meet current expenses and obligations. It you are having trouble meeting these, you are suffering some degree of financial stress.

The debt-to-asset ratio has been used to measure financial stress in the past. The ratio tells you what percentage of your assets would be required to repay your debts. It is a good indicator of your financial risk at a specific time. However, it can not warn you if your risk level is changing.

Because of this shortcoming, the debt-to-asset ratio is being replaced by three other financial stress indicators. These ratios and how to calculate them are outlined below.

Times Interest Earned Ratio

This ratio indicates the operation's ability to pay interest out of operating profit. The amount of financial risk decreases as the value of the ratio increases.

To calculate: Net Cash Income

$$
\text { RATIO }=\frac{\text { before interest and taxes }}{\text { Total Interest Payments }}
$$

Stress Score:
Healthy $=$ Ratio of 2 or above.
Warning $=$ Ratio of 1.2 to 2 .
Trouble $=$ Ratio under 1.2.

Financial Leverage Ratio

This ratio measures whether the money you borrowed is making or losing money. There is a net benefit from borrowed capital when the ratio is greater than 1. Below a ratio of 1 , every borrowed dollar is costing more than it earns.

Calculating this ratio is a three-step process. First, figure your return on equity (ROE), then your return on assets (ROA) and then the leverage ratio.

To calculate:
Net Income minus
ROE $=\frac{\text { unpaid labor and management }}{\text { Net Worth }}$

$$
\text { RATIO }=\frac{\text { ROE }}{\text { ROA }}
$$

```
Stress Score:
    Healthy = Ratio greater than 1.
    Trouble = Ratio less than 1.
```


Debt Burden Ratio

This ratio assesses the ability of the operation to retire debt from working capital or earnings. As the ratio decreases, it is harder to retire farm debt from earnings.

To Calculate: RATIO $=\frac{\text { Net Cash Income }}{\text { Total Farm Debt }}$
Stress Score:
Healthy $=$ Ratio greater than 25.
Warning $=$ Ratio of 15 to 25.
Trouble $=$ Ratio under 15.
These ratios can not provide an absolute measure of financial health. But, having one or more of the ratios in the "trouble" area is a sign that additional analysis of your financial situation is needed.

MANAGEMENT TIP You can learn what your financial ratios are by using FINPACK of the Planning for TomorrowToday program available through your local Extension office.

The following ratios and indicators should be considered as GUIDES ONLY because circumstances vary widely between farm units and producers, as well as between producers and lenders.

FINANCIAL RATIOS

What is Your Debt Level

1. Debt-to-asset ratio Total Liabilities (B)/ Total Assets (B)

Can You Cover Current Obligations?

RISK INDICATORS

Superior	under 20%
Good	20 to 40%
Close Watch	40 to 55%
Weak	55 to 70%
Inferior	over 70%

Superior over 2.0
2. Current Ratio

Current Assets (B)/ Current Liabilities (B)

What is Your Interest Exposure?
3. Interest to Gross Income Interest Expense (I)/ Gross Income (I)

Whole Farm Profitability?
4. Return on Assets Net Income (I) + Interest Expense(I)/ Beginning Total Assets (B)

Profitability on Equity Investment?
5. Return on Equity Net Income (I)/ Beginning Net Worth (B)

Firm Growth or Decline Due to Earnings?
Good
Close Watch
Weak
Inferior

Superior under 10\%
Good 10 to 15\%
Close Watch 15 to 20%
Weak
Inferior
Superior
Good
Close Watch
Weak
Inferior
1.4 to 2.0
1.0 to 1.4 0.7 to 1.0 under 0.7

20 to 25\% over 25%
over 12%
8 to 12%
4 to 8\% 0 to 4%
under 0%
Superior over 10\%
Good 6 to 10\%
Close Watch 2 to 6%
Weak
Inferior
-2 to 2%
under - 2%
6. Earned Net Worth Ratio Net Income (I) - Family Consumption (C)/ Beginning Net Worth (B)

Superior
Good
Close Watch Weak
Inferior
over 8%
4 to 8%
0 to 4%
(-4) to 0% under -4\%
(B) from Balance Sheet
(I) from Income Statement
(C) from Cash Flow Statement

Prepared by Drs. Mark A. Edelman, Larry L. Janssen, Wallace Aanderud, Dept. of Economics, SDSU.

ANNUAL PAYMENT PER \$1,000 BORROWED By Years to Repay and Interest Rate

The amount of capital that you can borrow without stressing your operation financially is commonly called loan capacity. The following example and table shows you one way of calculating loan capacity based on the amount of earnings available for capital investment.

SAMPLE
A. Cash available for new investment
B. Years to repay loan
C. Interest Rate
D. Annual Payment per $\$ 1,000$
(From Table below)
E. Loan Capacity
\quad (A divided by D $\times 1,000$)

Example
$\$ 4,020$
30
13
134
$\$ 30,000$

You
\qquad
\qquad
\square
\square
\qquad

Annual Payment per $\$ 1,000$ Borrowed table
No. of years
to repay loan

	$\frac{6 \%}{6 \%}$
1	$\$ 1,060$
3	374
5	237
7	179
10	136
15	103
20	87
25	78
30	73
35	69
40	66

	$\frac{12 \%}{120}$	$\$ 1, \frac{13 \%}{130}$	$\$ 1,14 \%$			
1	416	423	431	$\$ 1,15 \%$	438	$\$ 1,160$
3	277	284	291	298	342	402
5	220	226	234	241	249	313
7	177	184	192	199	203	215
10	147	155	163	171	175	188
15	134	142	151	160	164	178
20	128	136	146	155	159	173
25	124	134	143	152	157	172
30	122	132	142	151	156	171
35	121	131	141	150	155	170
40						

ESTIMATED TOTAL FAMILY LIVING COSTS Related to Number of Persons and Income

Family Income	Number of Persons in the Household				
	2		4	5	6
\$11,000	\$8,500	\$9,415	\$9,915	\$10,375	\$10,785
13,000	9,735	10,455	11,100	11,725	12,285
15,000	10,665	11,380	12,020	12,640	13,195
17,000	11,605	12,330	12,980	13,600	14,155
19,000	12,645	13,360	14,000	14,640	15,190
21,000	13,865	14,600	15,255	15,875	16,430
23,000	14,395	15,140	15,805	16,460	17,045
25,000	14,930	15,685	16,360	17,040	17,650
27,000	15,400	16,215	16,940	17,680	18,280
29,000	15,910	16,740	17,480	18,220	18,885
31,000	16,410	17,305	18,100	18,835	19,490
33,000	17,050	17,910	18,680	19,430	21,100
35,000	17,550	18,385	19,130	19,965	20,710
37,000	17,960	18,900	19,740	20,570	21,310
39,000	18,450	19,400	20,250	21,090	21,940
41,000	18,960	19,940	20,810	21,720	22,535
43,000	19,470	20,480	21,380	22,305	23,130
Poverty					
Guidelines	4,850	6,020	7,190	8,360	9,530

Note: Total estimated expenditures above do NOT include taxes, savings, major remodeling, legal fees or funeral expenses.

Use this table to estimate your living expenses for lines 403, 404 and 405 in FINLRB Input Form if you do not have your own records.

MANAGEMENT TIP: Family living expenses should be paid from a personal account that is separate from the farm business account.

CONSIDERATIONS FOR SETTING UP A FARM INCOME SHARING
 OR OPERATING AGREEMENT

1. Set up farm account Each contribute share: Partner A \qquad Partner B \qquad
2. Set up separate personal living accounts. Each is responsible for own personal living expenses.
3. All crop and livestock sales will be deposited in farm account.
4. Income from the farm account will be transferred to personal living accounts at a specified time using these percentages: Partner A \qquad Partner B \qquad
5. All farm operating costs are paid from the farm account. Each partner pays their own real estate taxes and present loan loan principal and interest obligations from their own personal accounts.
6. Cull livestock sales will be deposited in the farm account.
7. Replacement livestock will be raised on the farm or purchased from the farm account.
8. Present owner of livestock will retain ownership of the same number of livestock as owned at the start of the operating agreement.
9. An inventory owned by each partner will be taken at the the start of the operating agreement on:
A. All livestock (Number, kind, weight and value).
B. Hay and Forage Feeds (Tons, kind and value).
C. Grain (Bushels, kind and value).
D. Other feeds and supplies on hand (Kind and value).
*Parnter B may buy his share of grain and feed inventories on hand at the start of the operating agreement.
10. If the operating share agreement is dissolved, any increase above starting inventories will be shared at percentages listed above. Any decrease in inventories owned by Partner A that Partner B did not purchase as a share at the start of the operating agreement, will be paid back by Partner B at the percentage listed above.
11. A current inventory of livestock and machinery owned by each partner in the farm operation shall be maintained on file. The inventory list should be signed by both partners designating the legal owner with notorized signatures.
12. The share plan should be refigured any time there is a major change made in the resource contributions or capital investments in the farm operation.

Marketing Guidelines

Commodity marketing is an emotional experience

1. Price changes create hope, greed, fear and panic.
2. Lack of understanding creates fear of marketing tools.
3. Lack of marketing goals and control creates despair.

Objectives of a written marketing plan

1. Obtain above average NET PRICE - not highest price.
2. Generate CASH FLOW needs for business and family.
3. LIMIT LOSSES of investment because of declining prices.
4. REDUCE TIME that money is borrowed.
5. IMPROVE LENDER FAITH in your marketing management.
6. LIMIT EMOTION in the marketing decision.

Net Price $=$ prices received - marketing costs

1. Improving PRICES RECEIVED:
-Know your transportation costs.
-Check prices at available markets.
-Keep records on dockage, grading and moisture.
-Know the discount schedule of your market.
2. Subtract all costs of storage:
-Interest Expense
-Handling and moisture shrink
-Spoilage and insect damage
-Elevator storage charge (if stored in one)
-Insurance
Obtaining a higher NET PRICE?
3. Increase PRICES RECEIVED
-Speculation on cash inventories is a risky strategy. -Other marketing alternatives can be less risky.
4. Decrease STORAGE COSTS
-More predictable and sure way to reduce costs. -Greater control.

Basic Marketing Facts and Tips

1. Holding longer $=$ more chance forlarge monetary loss or gain.
2. Each commodity has distinct pattern of high and low prices.
3. Price declines or increases more likely in certain months.
4. By knowing marketing alternatives, you can control price risk and increase net price.

Specific Marketing Tips

1. Maintain up-to-date market information.
2. Consider forward pricing part of your crop by using
-Forward Contracts

- Buying a Put option
-Hedge on Futures Market

3. If selling at harvest, sell at earliest possible moment.

4: Market to take advantage of favorable historical odds.
5. Use commodity loans as cheap capital and a price floor.
6. Attempt to achieve marketing goal early in the year.
7. Periodically evaluate ALL marketing alternatives.
8. Talk to other producers, lenders and county agents about organizing marketing management meetings.

Linking the marketing plan to cash flow and equity position

1. Segment business and family cash flow.
2. Speed cash inflows, if possible and economical.
3. Slow cash outflows, if credit rating is maintained.
*Dick Shane, SDSU Extension grain marketing specialist.

Marketing plans must be made in conjunction with production plan.

1. The plan should be written down.
2. Develop farm and family goals.
3. Develop price objectives.
4. Revise, review and monitor - be FLEXIBLE.

Seasonal price patterns do exist; however, they are:

1. Not always consistent
-CATTLE prices usually lowest in fall and highest in spring
-HOG prices have lows in both the fall and spring.
2. Noticeable in basis patterns on futures market.
3. Not good price predictors.

Include forward pricing in your alternatives

1. Forward contracting
-Prices based on futures market (lower).
-Expect to make delivery or pay penalty.
-There are no margin calls or commission fees.
-Contract specifications are not set.
2. Hedging
-Expect to pay broker commissions and make margin calls.
-Contract specifications are set.
-The basis is critical (see sources below).
-Opposite transactions are required to hedge.
3. Options
-The futures market is the underlying commodity.

- Costs are known to the buyer (premium).
-Able to take advantage of higher prices.
Sources of bias in marketing decisions

1. Delivery point and futures market.
2. Between markets - your local and delivery point.
3. Quality of product - grade, weight, sex.
4. Time.
5. Market psychology.

Must work with broker, banker and spouse.

1. Broker
-Knowledgeable about your product.
-Follows your direction.
2. Banker
-Understands your total requirements.
-Unlimited margin money.
3. Spouse
-Keep informed and help make decisions.
*Gene Murra, SDSU Extension livestock marketing specialist.

CASH MARRET: Selling livestock or crop commodities at auctions and terminals for that day's market price for that commodity.

FORWARD CONTRACTING: Using a method of marketing that sells a commodity for a specified price on a specific date in the future. Commodity must be delivered at an agreed upon location and date, and be of contract quality or specifications.

FUTURES CONTRACT: The agreement to buy and recieve, or to sell and deliver, a commodity at a future date for a specified price.

HEDGING The sale (or purchase) of futures against the physical commodity or its equivalent as protection against a price decrease (or increase).

LONG: One who has bought a futures contract.
SHORT: One who has sold a futures contract.
BASIS: Historical differences between local cash price of a commodity and its near future contract's price.

MARGIN: The amount deposited by buyers and sellers to insure performance on futures contracts. If a futures position is losing money, the broker requests additional money to maintain the margin deposit level. These requests are referred to as MARGIN CALLS.

OFFSET: The liquidation of a long or short futures (or option) position by an equal and opposite futures (or option) transaction.

CALL OPTION: The right, but not the obligation, to sell a futures contract at a specified price during a specified time period.

PUT OPTION: The right to sell a futures contract at a specified price during a specified time period.

PREMIUM: The cost an option buyer pays the option seller for an option.

STRIKE PRICE: The price at which the option can be exercised. It is also called the EXERCISE PRICE because it is the price that the futures position is set at in case the option is exercised.

EXERCISE: The process by which the option buyer converts the option into a futures position.

EXPIRATION DATE: The day when the owner of the option loses the right to exercise the option.

IN-THE-MONEY: The current market price exceeds the strike price of a call or is below the strike price of a put.

INTRINSIC VALUE: The amount of difference between the current market price of a call or put, and the option's strike price.

OUT-OF-THE-MONEY: The current market price is less than the strike price of a put. Out-of-the-money options have time value. They have no intrinsic value.

Guide to

Weights and Measures including
 Metric Conversions

Commercial Weight
$2711 / 32$ grains (gr.) $=1$ dram (dr.)
16 drams 1 ounce (oz.)
$2,000$ pounds $=1$ ton (T.
2,240 pounds $=1$ long ton

Dry Measure

```
2 pints (pt.) = 1 quart (qt)
8 quarts = 1 peck (pk)
    4 pecks = 1 bushel (bu)
```

2,240 pounds $=1$ long ton

Square Measure
144 sq. inches $=1 \mathrm{sq}$. foot
9 sq . feet $=1 \mathrm{sq}$. yard
$301 / 4 \mathrm{sq}$. yards $=1 \mathrm{sq} . \operatorname{rod}$
272 1/4 sq. feet $=1$ sq. rod 40 sq . rods $=1 \mathrm{sq}$. rood $4 \mathrm{sq} \cdot$ roods $=1$ acre $43,560 \mathrm{sq}$. feet $=1$ acre 640 acres $=1$ sq. mile

Cubic Measure

67.2 cu. inches $=1$ dry qt.

231 cu. inches $=1$ gallon
537.6 cu . inches $=1 \mathrm{peck}$
$1,728 \mathrm{cu}$. inches $=1 \mathrm{cu}$. foot
2,150.4 cu. inches $=1$ bushel
$11 / 4 \mathrm{cu}$. feet $=1$ bushel
$243 / 4$ cu. feet $=1$ perch
27 cu . feet $=1 \mathrm{cu}$. yard
128 cu. feet $=1$ cord

Liquid Measure

1 teaspoon $=1 / 6 \mathrm{oz}$.	1 quart $=0.95$ liters (1.)
3 teaspoons = 1 tablespoon	$1 \mathrm{l} .=1,000 \mathrm{ml}=1.06 \mathrm{qt}$.
1 tablespoon $=1 / 2 \mathrm{oz}$.	4 quarts $=1$ gallon
1 pint $=16 \mathrm{oz}$. of water	1 gallon $=8.3$ lbs. of water
2 pints $=1$ quart 1 acre foot of water	7.5 gallons $=1$ cubic foot cubic feet of water
	gallons
	144 lbs . of water
1 acre inch of water	gallons
	lbs. of water

Linear Measure

Perimeter (distance around)
RECTANGLE: $\mathrm{P}=2 \mathrm{x}$ length +2 x width
SQUARE: $\quad P=4 \mathrm{x}$ side
CIRCLE: \quad Circumference $=* d$ $=2 * r$

$$
\begin{aligned}
& *=3.14 \\
& \mathrm{~d}=\text { diameter } \\
& \mathrm{r}=\text { radius }
\end{aligned}
$$

Area (A)
RECTANGLE: $\quad \mathrm{A}=$ length x width
SQUARE: $\quad A=$ length x width (or the side squared)
PARALLELOGRAM: $A=$ base x height
TRIANGLE: $\quad A=1 / 2$ base x height
CIRCLE:
$A=* r-s q u a r e d$
CUBE:

$$
\begin{aligned}
& \mathrm{A}=6 \mathrm{x} \text { edge-squared } \\
& *=3.14 \\
& \mathrm{r}=\text { radius }
\end{aligned}
$$

Volume (V)
CYLINDER: $\quad V=$ area of base x height
$=* r-s q u a r e d \times h$
RECTANGULAR SOLID $\mathrm{V}=$ length x width x height
CUBE:
$\mathrm{V}=$ edge x edge x edge (edge-cubed)
CONE:

SPHERE: $V=4 / 3 * r$-cubed

* $=3.14$
$r=$ radius

METRIC CONVERSION FACTORS

Approximate Conversion from Metric Measures

SYMBOL	WHEN YOU KNOW		MULTIPLY BY		TO FIND	
			SYMBOL			
		LENGTH				
$m m$	millimeters	0.04		inches	in	
cm	centimeters	0.4		inches	in	
m	meters	3.3		feet	ft	
m	meters	1.1	yards	yd		
km	kilometers	0.6		miles	mi	

$c m * *$	square cm	AREA		
$m * *$	square m	0.16	square in	in**
km**	square km	1.2	square yd	$\mathrm{yd} * *$
ha	hectare	0.4	square mi	$\mathrm{mi} * *$
	$=10,000 \mathrm{~m} * *$	2.5	acres	

MASS (weight)

g	grams	0.035	ounces	oz
kg	kilograms	2.2	pounds	lb
t	tonnes	1.1	short tons	

		VOLUME		
$m l$	millimeters	0.03	fluid ounces	fl oz
l	liters	2.1	pints	pt
1	liters	1.06	quarts	qt
l	liters	0.26	gallons	gal
$m * * *$	cubic meters	35.0	cubic feet	ft***
$m * * *$	cubic meters	1.3	cubic yards	yd $* * *$

TEMPERATURE (exact)

^C Celsius temp ${ }^{\wedge} \mathrm{C} \times 9 / 5+32$ Fahrenheit temp ${ }^{\wedge} \mathrm{F}$

```
NOTE: ** = squared
    *** = cubed
    ^ = degrees
```

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
		LENGTH		
in	inches	2.54	centimeters	Cm
ft	feet	30.0	centimeters	cm
yd	yards	0.9	meters	m
mi	miles	1.6	kilometers	kn

		AREA		
in**	square inches	6.5	square cm	$\mathrm{cm} * *$
ft**	square feet	0.09	square meters	$\mathrm{m} * *$
yd**	square yards	0.8	square meters	$\mathrm{m} * *$
mi**	square miles	2.6	square km	$\mathrm{km} * *$
	acres	0.4	hectares	ha

MASS (weight)

		MASs (weight)		
oz	ounce	28.0	grams	g
lb	pounds	0.45	kilograms	kg
	short tons	0.9	tonnes	t
	$=2,000 \mathrm{lb}$			

> 28.0
> 0.45
> 0.9
$=2,000 \mathrm{lb}$

AREA

VOLUME				
tsp	teaspoon	5.0	milliliters	ml
Tbsp	tablespoon	15.0	milliliters	ml
fl oz	fluid ounces	30.0	milliliters	ml
c	cups	0.24	liters	1
pt	pints	0.47	liters	1
qt	quarts	0.95	liters	1
gal	gallons	3.8	liters	1
ft***	cubic feet	0.03	cubic meters	m***
yd***	cubic yards	0.76	cubic meters	m***
TEMPERATURE (exact)				
${ }^{\wedge} \mathrm{F}$	Fahrenheit temp	F-32 x 5/9	Celsius temp	${ }^{\wedge} \mathrm{C}$

```
NOTE: ** = squared
    *** = cubed
    ^ = degrees
```


Crop Production Tables

Round Stacks

The volume in cubic feet of round stacks is best figured by using this formula:

```
Volume = [(0.4 x 0) - (0.012 x C)] x c x c
```

In this formula, 0 equals the OVER, or the distance in feet from the ground on one side up and over the peak down to the ground on the other side. You should take two measurements of o from different spots and then average them.
C equals the CIRCUMFERENCE or the distance in feet around the stack at the ground.

EXAMPLE If O measures 40 ft and C measures $60 \mathrm{ft} .$, the volume in cu. ft. is figured this way:
$V=[(0.4 \times 40)-(0.012 \times 60)]$ x 60×60
$V=[1.6-.72] \times 60 \times 60$
$V=.88 \mathrm{x} 60 \mathrm{x} 60$
$V=3,168 \mathrm{cu} . \mathrm{ft}$.

Oblong or Rectangular Stacks

The volume of an oblong or rectangular stack equals its length times the area of its cross section. The LENGTH can be easily measured, but an accurate fromula is need to figure the area of the cross section. Two other measurements, the OVER and the WIDTH, are used in this formula.

The following definitions are used in the formulas below. The OVER, 0 , is the distance from the ground on one side, up and over the peak and down to the ground on the other side. The WIDTH, W, is the width of the stack at the ground. The LENGTH, L, is the average length of the stack at the ground.

For low, round-topped stacks:
$\mathrm{V}=[(.52 \mathrm{x} 0)-(.44 \mathrm{x} W)] \mathrm{x} W \mathrm{x} L$
For high, round-topped stacks:
$\mathrm{V}=[(.52 \mathrm{x} 0)-(.46 \mathrm{x}$ W)] x W x L
For square, flat-topped stacks:
$\mathrm{V}=[(.56 \times 0)-.55 \times \mathrm{W})] \times \mathrm{X} \mathrm{x} \mathrm{L}$
EXAMPLE Determine cu. ft. in a square, flat-topped stack if L measures $50 \mathrm{ft} ., \mathrm{W}$ measures 35 ft . and 0 measures 70 ft .
$V=[(.56 \times 70)-(.55 \times 35)] \times 35 \times 50$
$V=[39.20-19.25] \times 35 \times 40$
$V=19.95 \times 35 \times 50$
$V=34,912 \mathrm{cu} . f t$.

DETERMINING HAY TONNAGE

To find the approximate number of tons in a given stack, simply divide the number of cubic feet in the stack (formulas given on the previous page) by the cubic feet per ton as shown in the table below.

Cubic Feet per Ton of Settled Hay

Type of Hay	cu. ft.	Type of Hay	cu. ft.
	470		
Alfalfa	500	Straw (baled)	200
Clover	210	Straw (loose)	800
Chopped Hay	175	Timothy	625
Baled Hay			
(loosely stacked)			450

BEST TIME TO CUT HAY

Cut	
Alfalfa	
Alsike and Red Clover	$1 / 10$ to $1 / 4$ of crop is blooming or new shoots begin developing from the crown
Annual Lepedeza	$1 / 2$ to full bloom
Crimson Clover	In full bloom to early seed stage depending on height and leafiness
Ladino clover	Flower fading at base of most advanced heads
Sericea	Heading out to bloom stage
Small grains	l2 to 15 inches high
Soybeans and cowpea	Grain is in milk stage
Sweet clover	Pods are from $1 / 2$ to fully

MANAGEMENT TIP: It is better to harvest hay early than late.

Shelled corn bushels in round bin
Capacity $=$ bin diameter ft. x depth ft. x . 630
Bushels in rectangular storage
Capacity $=$ width ft. x depth ft. x length ft. x. 8
Hay Sheds with 20 ft. sidewalls
Capacity per foot of Length
(tons)

Shed Width	Baled	Chopped	Loose
$24^{\prime \prime}$	2.0		
30^{\prime}	2.6	1.9	0.8
36^{\prime}	3.1	2.3	1.0
40^{\prime}	3.4	2.8	1.2
		3.1	1.4

(Table courtesy of Midwest Plan Service)
APPROXIMATE DRY MATTER CAPACITY OF SILOS

Depth of Settled Silage		Silo Diameter, ft.									
				16'	18'				26	28^{\prime}	30^{\prime}
20'	8	12	16	21	27	33	40	47	56	65	74
$24^{\prime \prime}$	11	15	21	27	34	43	52	61	72	83	96
28^{\prime}	13	19	26	35	44	53	64	76	90	104	119
32'	16	23	32	41	52	65	78	93	109	127	145
36^{\prime}	19	28	37	48	62	76	92	109	129	150	172
40^{\prime}	22	32	44	57	72	89	107	127	150	173	199
44^{\prime}		37	50	65	82	102	123	146	172	200	229
48'		42	56	74	93	115	140	166	195	226	260
52'			64	83	105	129	157	186	219	254	291
56'			71	93	117	144	174	207	243	282	324
60'			78	102	129	159	192	228	273	309	357
64'					142	174	210	250	301	339	391
68^{\prime}					155	190	228	271	328	369	424
72'								293	356	400	458
76^{\prime}								316	385	431	493
80'								339	414	462	528

MANAGEMENT TIP: Use this formula to estimate tons of silage at various moisture contents:
actual tons of silage =
(tons of dry matter) x (100/est. dry matter in silage)

CAPACITIES OF HORIZONTAL SILOS PER 10 FT. OF LENGTH (Level Fill at $50 \mathrm{cu} . \mathrm{ft} .=1$ ton)

Depth ft.		20^{\prime}	30^{\prime}	$\begin{aligned} & \text { Silo } \\ & 40^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { floor } \\ & \text { 50, } \end{aligned}$	width 60^{\prime}	$\begin{aligned} & \mathrm{ft} . \\ & 70^{\prime} \end{aligned}$	80^{\prime}	90'	100^{\prime}
10'	bu.	1800	2600	3400	4200	5000	5800	6600	7400	8200
	tons	45	65	85	105	125	145	165	185	205
12'	bu.	2206	3168	4128	5088	6048	7008	7968	8928	9888
	tons	55	79	103	127	151	175	199	223	247
14'	bu.	2632	3752	4872	5992	7112	8232	9352	10472	11592
	tons	66	94	122	150	178	206	234	262	290
16'	bu.	3064	4344	5624	6904	8184	9464	10744	12024	13304
	tons	77	109	141	173	205	237	269	301	333
18'	bu.	3528	4968	6408	7848	9288	10728	12168	13608	14048
	tons	88	124	160	196	232	268	304	340	376
20'		4000	5600	7200	8800	10400	12000	13600	15200	16800
	tons	100	140	180	220	260	300	340	380	420

NOTE: Closed end bins hold additional storage. To compensate for this, multiply the capacity listed by the following ratios:
10^{\prime} depth $=1 / 8 \quad 16^{\prime}$ depth $=1 / 5$
12' depth $=1 / 7 \quad 18^{\prime}$ depth $=1 / 5$
14^{\prime} depth $=1 / 6 \quad 20^{\prime}$ depth $=1 / 4$
Open end of bin is less than full. Use the following ratios to determine what factor to deduct: Slope of silage Deduction
$1 / 4$
$1 / 2$
$0 \times$ closed end capacity
1/2
$2 \times$ closed end capacity
1/1
$4 \times$ closed end capacity

EXAMPLE: Bin is 50^{\prime} wide and 12^{\prime} deep with one closed end.
Capacity per 10^{\prime} (from table) $=127$ tons
Capacity per $120^{\prime}=12 \times 127=1,524$ tons
Closed end $=1 / 7 \times 127=18$
Open end deduction $=2 \times 18=36$ tons Total Capacity $=1,544+18-36=1,526$ tons

APPROXIMATE STORAGE SPACE REQUIREMENTS FOR SILAGE AND HIGH MOISTURE CORN

Material Description	lb./cu. ft.	cu. ft./ton
Corn Shelled:		
25% moisture	43.1	46
30% moisture	39.7	51
Corn and cob meal:	38.5	
30% moisture		52
Silage:	$40 *$	
upright silo	$35 *$	50
horizontal silo	$25 *$	60
spread in bunk		80

*Silage densities and weights are highly variable, depending on material, cut, moisture content and depth in silo.

STORAGE CAPACITY FOR COMMON ROUND BINS

$\begin{gathered} \text { Diameter } \\ \text { (ft.) } \end{gathered}$	bu. per ft. of height	Capacities for Selected Depths			
		11'	13'	16'	19'
14	125	1375	1625	2000	2375
18	203	2200	2635	3250	3850
21	277	3050	3600	4400	5300
24	362	4000	4700	5800	6900
27	458	5050	5950	7300	8700
30	565	6215	7345	9040	10735
36	814	8950	10600	13000	15450
40	1005	11050	13050	16100	19100
NOTE: Does not include space above eave. Based on 15.5 MC corn and 1.25 cu . ft. per bushel.					

APPROXIMATE CAPACITY OF EAR CORN CRIBS

width (ft.)	RECTANGULAR		ROUND		
	$\begin{gathered} \text { height } \\ \text { (ft.) } \end{gathered}$	bu. per 10 ft . (length)	$\begin{aligned} & \text { diameter } \\ & \text { (ft.) } \end{aligned}$	height (ft.)	$\begin{gathered} \text { capacity } \\ \text { (bu.) } \end{gathered}$
4	12	188	12	12	540
	16	256		16	720
	20	320		20	900
6	12	288	14	12	740
	16	384		16	980
	20	480		20	1230
8	12	284	16	12	960
	16	512		16	1280
	20	638		20	1610
10	12	480	18	12	1220
	16	640		16	1620
	20	800		20	2030
NOTE:	Based on $21 / 2$ cubic feet per bushel.				
	$\begin{aligned} & \text { Include } \\ & \text { tunne } \\ & \text { Roof sl } \end{aligned}$	$1 / 2$ cone spac e 1:1	th no ded	ction	center

Average Annual	Native Range or Pasture Condition			
Precipitation	Excellent	Good	Fair	Poor
	-Anim	Unit Mon	per Acre	
30-34"	1.2-2.0	0.9-1.6	0.6-1.2	0.3-0.6
25-29"	1.0-1.8	0.75-1.4	0.5-1.1	0.25-0.5
20-24"	0.8-1.5	0.6-1.2	0.4-0.9	0.2-0.4
15-19"	0.6-1.2	0.45-0.9	0.3-0.7	0.15-0.3
10-14"	0.4-0.9	0.3-0.6	0.2-0.5	0.1-0.2
5-9"	0.2-0.6	0.15-0.4	0.1-0.3	0.05-0.1

*An AUM is the grazing needed for a 1,000 pound cow for 1 month.

USE THESE NOTES TO DETERMINE YOUR GRAZING RATE

The figures to the right in each column under each range or pasture condition are rates that many pastures are being used at. South Dakota's range and pasture condition decreases when these lands are grazed at these rates. Also, livestock production will be LOWER than assumed in the budget tables.

The figures to the left in each column under each range or pasture condition are recommended agronomic rates of use. Pasture condition should improve when these rates are used.

Soil condition and group are important factors when estimating grazing rate:
*SAND, SANDY, SILTY and CLAYEY soils use the values given for the annual precipitation level.
*WETLANDS triple the value given.
*SUBIRRIGATED double the values.
*OVERFLOW and SALINE LOWLANDS use values for the next highest precipitation level.
*CHOPPY SANDS use values one-half level lower.
*FOR VERY SHALLOW SOIL, SHALE and BADLANDS use values at least two levels lower.
*DENSE CLAY, SHALLOW SOIL and PANSPOT use values one-half to one level lower.

TAME PASTURE:

Animal unit months of grazing from land planted to grass or grass legume mixtures can be estimated if you can estimate the hay yield that you would expect from these acres. AUM's of grazing per acre equal approximately 2 times the tons of hay that could be harvested.

Grazing capacity can also be estimated based on native pasture productivity. Use a factor of $21 / 2$ times the expected productivity of good to excellent native pasture for the area. For example, if native pasture is expected to produce one AUM per acre, tame pasture should product $21 / 2$ AUM's of grazing.

MANAGEMENT TIP: Grazing capacity can be increased by rotational grazing (Savory system) and selective weed control and pasture renovation practices.

Forage	Alfalfa Hay Equivalent Factor
Alfalfa Hay	1.00
Grass Hay	.90
Oat Hay	.90
Corn Silage (30\% DM)	.30
Sorghum Silage (30\% DM)	.27
Oat Silage (30\% DM)	.29
Alfalfa Haylage (65\% DM)	.63
Alfalfa Silage (55\% DM)	.54
Alfalfa Silage (25\% DM)	.28
Alfalfa Grass Silage (40\% DM)	.30
Mixed Grass Silage (30\% DM)	.27

OTHER FEED VALUE RELATIONSHIPS

*44\% soybean oilmeal was assumed where supplement is indicated.
1 T . corn silage $=1 \mathrm{AUM}$
$1 / 3 \mathrm{~T}$. grass hay $=1$ AUM
1 T. alfalfa equivalent $=3.5$ AUM's
3 T. corn silage $=1$ T. grass hay +4.5 bu. corn
3 T. corn silage +200 lbs. supp. $=1$ T. alf. hay +8 bu. corn
1 T. grass hay $=3 \mathrm{~T}$. oat silage +2 bu. corn
1 T. alfalfa hay $=3 \mathrm{~T}$. oat silage +300 lbs. supp.
1 T. alfalfa grass silage $=1 \mathrm{~T} . \operatorname{corn}$ silage $+100 \mathrm{~T} . \operatorname{supp}$.
1 T. corn silage $=4$ bu. corn +.15 T . grass hay
1 bu. corn $=1.1$ bu. sorghum

$$
\begin{aligned}
& =1.25 \text { bu. barley } \\
& =2 \text { bu. oats } \\
& =0.9 \text { bu. wheat }
\end{aligned}
$$

1 T. ear corn $=28 \mathrm{bu}$. shelled corn
*Depending upon the farm situation and the fall season, small grain stubble and corn stalks may provide up to 1 AUM of grazing. The most usual rate of use is less than 0.5 AUM per acre.
*Approximately 1 ton of silage is produced for each 5 bushels of corn yield or for each 7 bushels or oat yield.

MANAGEMENT TIP: Try to harvest hay at its optimum. Remember that is it better to harvest hay early than late.

Seeds	Inches between each Kernel	Final
Per ac.	(based on row width)	Population*

	20"	$24 "$	28"	301	32"	$36^{\prime \prime}$	38"	$40^{\prime \prime}$	
14,000	22.4	18.6	16.0	15.0	13.9	12.4	11.8	11.2	12,600
15,000	20.9	17.4	14.9	14.0	13.0	11.6	11.0	10.4	13,500
16,000	19.6	16.4	14.0	13.2	12.2	10.9	10.4	9.8	14,400
17,000	18.4	15.3	13.2	12.4	11.5	10.2	9.8	9.2	15,300
18,000	17.4	14.6	12.4	11.7	10.9	9.7	9.2	8.7	16,200
19,000	16.5	13.8	11.8	11.1	10.3	9.2	8.7	8.2	17,100
20,000	15.7	13.1	11.2	10.5	9.8	8.7	8.3	7.8	18,000
22,000	14.3	11.9	10.2	9.5	8.9	7.9	7.5	7.1	19,800
24,000	13.1	10.8	9.3	8.7	8.1	7.2	6.9	6.5	21,600
26,000	12.1	10.1	8.6	8.1	7.5	6.7	6.4	6.0	23,500
28,000	11.2	9.3	8.0	7.5	7.0	6.2	5.9	5.6	25,200
30,000	10.4	8.7	7.5	7.0	6.5	5.8	5.5	5.2	27,000
32,000	9.8	8.1	7.0	6.6	6.1	5.4	5.2	4.9	28,800

NOTE: Where hill dropping is used, double or triple the single kernel spacing, depending number of kernels dropped per hill.

NUMBER AND LENGTH OF ROWS IN AN ACRE

```Length of rows in rods*```	If distance between rows is:						401
	20"	$24 "$	$30^{\prime \prime}$	32"	361	38"	
40	39.6	33.0	26.4	24.7	22.0	20.8	19.8
60	26.4	22.0	17.6	16.5	14.7	13.9	13.2
80	19.5	16.5	13.2	12.7	11.0	10.4	9.9
100	15.8	13.2	10.5	9.9	8.8	8.3	7.9
120	13.2	11.0	8.7	8.2	7.3	6.9	6.5
140	11.3	9.4	7.5	7.0	6.3	5.9	5.6
160	9.8	8.2	6.6	6.2	5.5	$\underline{5.2}$	4.9
*One rod equals	5 ft	40 r	equa	660	.; 0	acre	uals
160 sq. rods or	560	$f t$.					


KERNEL	ACRES planted at different plant populations			
Count/bag	$\frac{16,000}{3.8}$	$\frac{18,000}{3.3}$	$\underline{20,000}$	$\frac{22,000}{2.0}$
60,000	4.4	3.9	3.5	3.2
70,000	5.0	4.4	4.0	3.6
80,000	5.6	5.0	4.5	4.1
90,000	$\underline{4.9}$	$\underline{5.3}$	$\underline{4.8}$	$\underline{4.3}$
95,000				

MANAGEMENT TIP: From a genetic standpoint, kernels of the hybrid lot are the same regardless of kernel size. University research has not shown a significant yield advantage for any one kernel size. Kernel size relates more to planting convenience which is becoming less important.

ESTIMATED POPULATION AND YIELDS

Row width	Length of Row   for $1 / 1000$ Acre
$20^{\prime \prime}$	$26^{\prime} 2^{\prime \prime}$
$30^{\prime \prime}$	$1^{\prime \prime} 5^{\prime \prime}$
$36^{\prime \prime}$	$14^{\prime} 6^{\prime \prime}$
$38^{\prime \prime}$	$13^{\prime \prime} 9^{\prime \prime}$
$40^{\prime \prime}$	$13^{\prime} 1^{\prime \prime}$

How many plants per acre?
Step 1: Measure $1 / 1000$ of acre (see above). Count plants.
Step 2: Multiply by 1000.
Example: 40 inch rows - measure 13'1". Counted 18 plants. Multiply by 1000. 18,000 plants per acre.

How many bushels per acre?
Step 1: Measure 1/1000 of acre (see above). Harvest corn.
tep 2: Weigh grain. Multiply by 1000 for "pounds per acre"
tep 3: Check moisture. Use the Moisture Content Table on the next page to divide "pounds per acre" by pounds per bushel adjusted for moisture.
Example: 36-inch rows. Measure 14'6". Harvest 7.25 lbs of shelled corn $x 1000=7,250$ lbs. per acre. Moisture is $19 \%$.
$7,250 \mathrm{lbs} . / 58.42 \mathrm{lbs}$. per bu. $=124 \mathrm{bu}$. per acre.
How to correct yields for moisture content.
Step 1: Shell a two-pound sample and test IMMEDIATELY.
Step 2: Use the table on the next page to determine how many pounds of that corn are required to equal a bushel ( 56 lbs.) of No. 2 shelled corn at $15.5 \%$ moisture.

\% Moisture	Shelled	Ear	\% Moisture	Shelled	Ear
in corn	corn*	corn*	in corn	corn*	corn*
10.0	52.48	63.49	23.5	61.86	79.01
11.0	53.17	64.25	24.0	62.26	79.76
12.0	53.17	65.06	24.5	62.68	80.50
12.5	54.08	65.50	25.0	63.09	81.25
13.0	54.39	65.95	25.5	63.52	82.03
13.5	54.71	66.42	26.0	63.95	82.82
14.0	55.02	66.89	26.5	64.38	83.50
14.5	55.35	67.39	27.0	64.82	84.19
15.0	55.67	67.89	27.5	65.27	84.90
15.5	56.00	68.40	28.0	65.72	85.62
16.0	56.33	68.94	28.5	66.18	86.32
16.5	56.67	69.51	29.0	66.65	87.04
17.0	57.01	70.09	29.5	67.12	87.76
17.5	57.36	70.69	30.0	67.60	88.50
18.0	57.71	71.31	31.0	68.58	89.94
18.5	58.06	71.95	32.0	69.59	91.43
19.0	58.42	72.60	33.0	70.63	92.85
19.5	58.78	73.27	34.0	71.70	94.28
20.0	59.15	73.96	35.0	72.80	95.71
20.5	59.52	74.60	36.0	73.94	97.17
21.0	59.90	75.36	37.0	75.11	98.64
21.5	60.28	76.07	38.0	76.32	100.13
22.0	60.67	76.79	39.0	77.57	101.63
22.5	61.06	77.53	40.0	78.87	103.16
23.0	61.45	78.25			

(Iowa State Publication, Agronomy 205)
*Equals the number of bushels required to equal a bushel (56 lbs.) of No. 2 shelled corn at $15.5 \%$ moisture. The figures for ear corn are applicable only during the harvest season.

	Investment	Machine Ownership Costs
Area \& Tillable Ac.	New Average	Depreciation Interest
	dollars per acre-	


North East - Area 1			
Small (under 300) 270	150	24.30	15.00
Medium (300-700) 250	140	22.50	14.00
Large (over 700) 220	120	19.80	12.00
East North Central - Area 2			
Small (under 600) 200	110	18.00	11.00
Medium (600-1,000) 180	100	16.20	10.00
Large (over 1,000) 155	85	13.95	8.50
Central North Central - Area 3			
Small (under 700) 170	95	15.30	9.50
Medium (700-1,200) 155	85	13.95	8.50
Large (over 1,200) 130	70	11.70	7.00
South Central - Area 7			
Small (under 500) 225	125	20.25	12.00
Medium (500-900) 210	115	18.90	11.50
Large (over 900) 170	95	15.30	9.50
Southwest Central - Area 6			
Small (under 400) 290	160	26.10	16.00
Medium (400-700) 270	150	24.30	15.00
Large (over 700) 225	125	20.25	12.50
East South East - Areas 8 \& 9			
Small (under 300) 280	155	25.20	15.50
Medium (300-600) 260	145	23.40	14.50
Large (over 600) 220	120	19.80	12.00
Western Range - Areas 4 \& 5			
Average for area 150	90	13.50	10.80
*Depreciation based on 10 is equal to $9 \%$ of new investmen   *Interest charge was calcul	ar	10\% sa	alue

## YOUR FARM ESTIMATE:

If you do not have your own inventory value for crop machinery, use the average per acre investment that you feel is closest to your situation.
$\qquad$ tillable ac. $x$ \$_ per ac. $=\$$ $\qquad$ est. machinery inventory
Machine investment and ownership costs may vary from table due to:
*No. of crop acres per farm
*Average field size
*Diversity of crops grown
*Percentage of cropland in fallow
*Age of equipment
*Equipment size
*Amount of custom hire

## ESTIMATED MAN HOURS PER ACRE

AND ALLOCATED VARIABLE POWER AND IMPLEMENT COST PER ACRE Pre-harvest Operation
Table 7

	Machine	Man	Repairs \&	Fuel, Oil
Operation	Size	Hours	Service	Grease
Plow	4-16's	. 52	\$5.08	\$1.54
Plow	$5-16^{\prime} \mathrm{s}$	. 41	4.71	1.90
Plow	$6-16^{\prime} \mathrm{s}$	. 35	4.67	2.29
plow	$8-16^{\prime} \mathrm{s}$	. 25	4.32	2.00
Plow	10-16's	. 18	4.30	1.50
Plow	16-18's	. 11	4.35	1.40
Disk (Tandem)	17 feet	. 15	. 48	. 43
Disk (Tandem)	19 feet	. 14	. 56	. 49
Disk (Tandem)	22 feet	. 12	. 56	. 52
Disk (Tandem)	25 feet	. 10	. 54	. 52
Disk (Tandem)	30 feet	. 09	. 53	. 51
Chisel Plow	15 feet	. 20	. 68	. 93
Chisel Plow	17 feet	. 17	. 66	. 92
Chisel Plow	25 feet	. 13	. 79	. 99
Chisel Plow	29 feet	. 11	. 75	1.08
Chisel Plow	31 feet	. 10	. 78	1.12
Field Cultivator	12 feet	. 27	. 53	. 61
Field Cultivator	17 feet	. 20	. 51	. 60
Field Cultivator	27 feet	. 13	. 57	. 59
Field Cultivator	33 feet	. 10	. 59	. 64
Field Cultivator	49 feet	. 07	. 63	. 73
Springtooth	24 feet	. 12	. 23	. 33
Springtooth	36 feet	. 08	. 23	. 28
Spiketooth Harrow	30 feet	. 10	. 29	. 41
Spiketooth Harrow	48 feet	. 07	. 25	. 37
Spiketooth Harrow	66 feet	. 04	. 24	. 38
Plow/pony press	4-16's	. 60	6.25	2.75
Plow/pony press	6-16's	. 40	5.95	2.60
Plow/pony press	8-16's	. 30	5.65	2.55
Rotary Hoe	25 feet	. 12	. 26	. 23
Rotary Hoe	40 feet	. 08	. 27	. 19
Chop stalks	4 row	. 20	. 49 (G)	. 52
Chop stalks	8 row	. 12	. 54	. 43
Surflex	16 feet	. 20	. 63	. 58
Surflex	2-16 feet	. 11	. 58	. 54

(G) = Gasoline
(D) = Diesel

Fuel cost conversion $\quad(G-D)=0.83$

$$
\begin{aligned}
& (\mathrm{D}-\mathrm{G})=1.20 \\
& (\mathrm{D}-\mathrm{G})=0.89
\end{aligned}
$$



## ESTIMATED MAN HOURS PER ACRE <br> AND ALLOCATED VARIABLE POWER AND IMPLEMENT COSTS PER ACRE Harvest Operations

Table 8

	Machine	Man	Repair \&	Fuel, Oil
Operation	Size	Hours	Service	Grease
Swath Small Grain	$14^{\prime \prime}$ (PTO)	. 18	\$1.19	\$0.42
Swath Small Grain	18' (PTO)	. 14	1.17	. 30
Swath Small Grain	21' (PTO)	. 12	1.08	. 26
Swath Small Grain	16' (SP)	. 14	1.72 (G)	. 21
Swath Small Grain	18' (SP)	. 13	1.91	. 28
Combine Grain \& Beans	$16^{\prime \prime} \mathrm{PTO}$ \& M	. 31	2.80	1.41
Combine Grain \& Beans	$20^{\prime}$ PTO	. 26	2.34	1.44
Combine Grain \& Beans	20' SP	. 25	2.92	. 92
Combine Grain \& Beans	$24^{\prime \prime} \mathrm{SP}$	. 20	2.78	. 76
Haul/Store SG.\&Beans	Tractor/Wagon	. 39	. 40	1.28
" " " " " " "	Tractor	. 32	. 25	1.48
Corn picker-sheller	2 row	. 79	3.08	1.75
Haul \& Store Corn	Tractor/Wagon	. 60	. 42	1.96
Haul \& Store Corn	Truck	. 50	. 45	2.20
Chop Silage (8T)	2 row	. 63	8.09	2.86
Chop Silage (8T)	4 row	. 40	6.90	2.57
Haul \& Store Silage	3 tractors	1.70	1.90	3.88
" " " " " "	Dump Wag/truck	. 55	3.55	2.32
Mow Hay	7 feet	. 35	. 87 (G)	. 48
Mow Hay	9 feet	. 27	. 76	. 36
Rake Hay	24' (dump)	. 10	. 20	. 18
Rake Hay	7 feet	. 30	. 70	. 37
Rake Hay	9 feet	. 25	. 70	. 34


Windrow Hay	$16^{\prime} \mathrm{SP}$	. 17	1.72	. 21
Windrow Hay	18' SP	. 16	1.91	28
Windrow Hay	21' SP	. 14	1.94	24
Mow, Condition	Windrow, 12'	. 20	1.50	27
Mow, Condition	Sickle, 9'	. 33	1.70	. 50
Bale Hay (1.5 T/A)	4.5 T/hr.	. 40	5.00*	. 93
Lg. Round Bale (same)	$6.0 \mathrm{~T} / \mathrm{hr}$.	. 30	2.08**	1.00
Stack Hay (same)	Front Loader	. 35	1.15	. 70
Stack Mover (same)	10 Ton	. 10	1.00	. 36
Stack Wagon (same)	3 Ton	. 28	4.75	1.04
Stack Wagon (Same)	6 Ton	. 24	5.95	. 76
Haul-Store-Bale/T.	Bale wagon(SP)	. 25	2.20	52
Haul-Store-Bale/T.	2 men	1.40	. 45 (G)	. 92
Chop Haylage	12' windrow	. 45	4.10	1.76
Chop Haylage	14' windrow	. 40	3.60	1.80
Haul \& Store Haylage	Dump wag/truck	. 45	2.90	1.88
Haul \& Store Haylage	3 tractors	1.40	1.55	3.16
Corn Combine	4 row (PTO)	. 39	4.58	1.37
Corn Combine	4 row (SP)	. 37	3.67	1.37
Corn Combine	6 row (SP)	. 25	3.14	1.10
Corn Combine	8 row (SP)	.20	2.81	. 95

*Includes cost of twine ( $\$ 2.40$ ) per ton of hay at 1.5 ton
**Includes cost of twine (\$0.55) per ton of hay at 1.5 ton

# ESTIMATED ANNUAL LABOR REQUIREMENTS IN HOURS PER ACRE GRAIN AND FORAGE CROPS* <br> Including Overhead and Maintenance 

Table 9 $\qquad$

Enterprise	Low	Average	High	Typical	Yours
		-hours	per a		
Corn	4.5	3.6	3.0	3.3	
Grain Sorghum	3.3	2.8	1.8	2.3	
Wheat					
After small grain	2.9	2.5	2.0	2.2	
After row crops	3.4	2.9	2.4	2.6	
On fallow	2.6	2.2	1.6	1.8	
Barley	2.9	2.5	2.0	2.2	
Rye	3.0	2.6	2.1	2.3	
Oats	3.0	2.6	2.1	2.3	
Flax	2.8	2.4	1.9	2.1	
Soybeans	4.0	3.0	2.0	2.7	
Sunflowers	3.5	2.9	1.9	2.4	
Alfalfa or grass*	0.9	0.8	0.6	0.7	
Annual Hay (Pre-harvest)	1.7	1.4	1.2	1.3	
Summer Fallow	1.5	1.3	1.1	1.2	
Baled Hay+					
1 cutting	3.9	3.2	2.6	3.0	
2 cuttings	6.3	5.0	4.3	4.9	
3 cuttings	8.4	6.8	6.2	6.5	
Stacked Hay					
1 cutting	1.8	1.6	1.0	1.3	
2 cuttings	3.2	2.4	1.9	2.2	
3 cuttings	4.2	3.6	2.6	3.0	

Stack wagon, swath, move
1 cut
2 cuttings
1.1
0.8
1.0

3 cuttings
2.21 .7
1.5
1.8
3.0
2.2
2.0
2.4

Silage

Alfalfa**	4.1	2.9	2.2	2.5	-
Corn	6.0	4.6	3.8	4.4	-
Oats	5.1	3.8	3.1	3.6	-

[^0]
## Livestock

## Production Tables

## LIVESTOCK BREEDING AND SELECTION Mating Capacity of Sires

	Number of Females to Mate in a Breeding Season	
Animal	Hand mating	Pasture mating
Cattle	20	10-12
2-year-old or over	30-50	25-30
Hogs		
Boar pig	5-20	5-8
Yearling boar	20-30	10-15
Mature boar	35-40	15-20
Sheep		
Ram lamb	10-20	10-12
Ram 18 months or over	30-50	20-25
Horses		
2-year-old stallion	10	5
3-year-old stallion	30	15
4-year-old stallion	35-40	20
6-year-old stallion	40-75	20-25

## BREEDING TABLES

Puberty Periods

|  | Ave. Age <br> (mo.) | Best Age to <br> breed (mo.) | Duration | Repeats |
| :--- | :---: | ---: | :--- | ---: | :--- |
|  |  |  |  |  |
| Jennet | 12 | 24 to 36 | 3 to 7 days | 3 weeks |
| Mare | 10 | 24 to 36 | 3 to 7 days | 3 weeks |
| Cow | 10 | 18 to 24 | 10 to 30 hrs. | 3 weeks |
| Sow* | 6 | 9 to 10 | 1 to 4 days | 3 weeks |
| Ewe | 6 | 18 to 20 | 1 to 2 days | $13-19$ days |
| *Gilts should be bred early the second day of heat and sows |  |  |  |  |
| sometime during the second day. |  |  |  |  |

## Estrus (Heat)

	Occurs After Parturition	Time to Breed After Delivery	Ave. Gestation per. days
Jennet	3 to 17 days	9th day	365
Mare	3 to 17 days	9 th day	340
Cow	28 days	6 to 8 weeks	283
Sow*	3 to 9 days	$81 / 2$ weeks	114
Ewe	6 to 7 months	summer \& fall	150
*Conce	te and litter	size can usua	increase

Read across to expiration of period from date in first column. THe gestation periods are averages.

EXAMPLE: From Jan. 1st expiration date for mares is Dec. 6 th, or 340 days from Jan. 1st; for cows, Oct. 10 or 283 days from Jan. 1st; etc.

Time of Service	Mares	Cows	Ewes	Sows
	340 days	283 days	150 days	114 days
Jan. 1	Dec. 6	Oct. 10	May 30	Apr. 25
Jan. 6	Dec. 11	Oct. 15	June 4	Apr. 30
Jan. 11	Dec. 16	Oct. 20	June 9	May 5
Jan. 16	Dec. 21	Oct. 25	June 14	May 10
Jan. 21	Dec. 26	Oct. 30	June 19	May 15
Jan. 26	Dec. 31	Nov. 4	June 24	May 20
Jan. 31	Jan. 5	Nov. 9	June 29	May 25
Feb. 5	Jan. 10	Nov. 14	July 4	May 30
Feb. 10	Jan. 15	Nov. 19	July 9	June 4
Feb. 15	Jan. 20	Nov. 24	July 14	June 9
Feb. 20	Jan. 25	Nov. 29	July 19	June 14
Feb. 25	Jan. 30	Dec. 4	July 24	June 19
Mar. 2	Feb. 4	Dec. 9	July 29	June 24
Mar. 7	Feb. 9	Dec. 14	Aug. 3	June 29
Mar. 12	Feb. 14	Dec. 19	Aug. 8	July 4
Mar. 17	Feb. 19	Dec. 24	Aug. 13	July 9
Mar. 22	Feb. 24	Dec. 29	Aug. 18	July 14
Mar. 27	Mar. 1	Jan. 3	Aug. 23	July 19
Apr. 1	Mar. 6	Jan. 8	Aug. 28	July 24
Apr. 6	Mar. 11	Jan. 13	Sept. 2	July 29
Apr. 11	Mar. 16	Jan. 18	Sept. 7	Aug. 3
Apr. 16	Mar. 21	Jan. 23	Sept. 12	Aug. 8
Apr. 21	Mar. 26	Jan. 28	Sept. 17	Aug. 13
Apr. 26	Mar. 31	Feb. 2	Sept. 22	Aug. 18
May 1	Apr. 5	Feb. 7	Sept. 27	Aug. 23
May 6	Apr. 10	Feb. 12	Oct. 2	Aug. 28
May 11	Apr. 15	Feb. 17	Oct. 7	Sept. 2
May 16	Apr. 20	Feb. 22	Oct. 12	Sept. 7
May 21	Apr. 25	Feb. 27	Oct. 17	Sept. 12
May 26	Apr. 30	Mar. 4	Oct. 22	Sept. 17
May 31	May 5	Mar. 9	Oct. 27	Sept. 22
June 5	May 10	Mar. 14	Nov. 1	Sept. 27
June 10	May 15	Mar. 19	Nov. 6	Oct. 2
June 15	May 20	Mar. 24	Nov. 11	Oct. 7
June 20	May 25	Mar. 29	Nov. 16	Oct. 12
June 25	May 30	Apr. 3	Nov. 21	Oct. 17
June 30	June 4	Apr. 8	Nov. 26	Oct. 22


Time of	Mares	Cows	Ewes	Sows
Service	340 days	283 days	150 days	114 days
July 5	June 9	Apr. 13	Dec. 1	Oct. 27
July 10	June 14	Apr. 18	Dec.	Nov. 1
July 15	June 19	Apr. 23	Dec. 11	Nov. 6
July 20	June 24	Apr. 28	Dec. 16	Nov. 11
July 25	June 29	May 3	Dec. 21	Nov. 16
July 30	July 4	May 8	Dec. 26	Nov. 21
Aug. ${ }^{\text {a }}$	July 9	May 13	Dec. 31	Nov. 26
Aug. 9	July 14	May 18	Jan. 5	Dec. 1
Aug. 14	July 19	May 23	Jan. 10	Dec. 6
Aug. 19	July 24	May 28	Jan. 15	Dec. 11
Aug. 24	July 29	June 2	Jan. 20	Dec. 16
Aug. 29	Aug. 3	June 7	Jan. 25	Dec. 21
Sept. 3	Aug. 8	June 12	Jan. 30	Dec. 26
Sept. 8	Aug. 13	June 17	Feb. 4	Dec. 31
Sept. 13	Aug. 18	June 22	Feb. 9	Jan. 5
Sept. 18	Aug. 23	June 27	Feb. 14	Jan. 10
Sept. 23	Aug. 28	July 2	Feb. 19	Jan. 15
Sept. 28	Sept. 2	July 7	Feb. 24	Jan. 20
Oct. 3	Sept. 7	July 12	Mar. 1	Jan. 25
Oct. 8	Sept. 12	July 17	Mar. 6	Jan. 30
Oct. 13	Sept. 17	July 22	Mar. 11	Feb. 4
Oct. 18	Sept. 22	July 27	Mar. 16	Feb. 9
Oct. 23	Sept. 27	Aug. 1	Mar. 21	Feb. 14
Oct. 28	Oct. 2	Aug. 6	Mar. 26	Feb. 19
Nov. 2	Oct. 7	Aug. 11	Mar. 31	Feb. 24
Nov. 7	Oct. 12	Aug. 16	Apr. 5	Mar. 1
Nov. 12	Oct. 17	Aug. 21	Apr. 10	Mar. 6
Nov. 17	Oct. 22	Aug. 26	Apr. 15	Mar. 11
Nov. 22	Oct. 27	Aug. 31	Apr. 20	Mar. 16
Nov. 27	Nov. 1	Sept. 5	Apr. 25	Mar. 21
Dec. 2	Nov. 6	Sept. 10	Apr. 30	Mar. 26
Dec. 7	Nov. 11	Sept. 15	May 5	Mar. 31
Dec. 12	Nov. 16	Sept. 20	May 10	Apr. 5
Dec. 17	Nov. 21	Sept. 25	May 15	Apr. 10
Dec. 22	Nov. 26	Sept. 30	May 20	Apr. 15
Dec. 27	Dec. 1	Oct. 5	May 25	Apr. 20
Dec. 31	Dec. 5	Oct. 9	May 29	Apr. 24


Gestation		Incubation	
Bear	6 months	Chickens	21 days
Bitch	9 weeks	Ducks	30 days
Cow	9 months	Guineas	28 days
Cat	8 weeks	Geese	30 days
Deer	8 months	Pheasants	25 days
Dormouse	31 days	Pigeons	41 days
Goat	5 months	Swan	28 days
Guinea Pig	21 days	Turkeys	
Mare	11 months		
Mule	12 months		
Opossum	26 days		
Rabbit	30 days		
Sheep	5 months		
Sow			
Squirrels \& Rats	28 weeks		
Wolf\& Fox	62 days		

## Pounds Production per cow at Different Weaning Weights And Calf Crop Percentages

Calf		Averag	Weaning	Weight	(lbs)		
Crop	500	$\underline{474}$	450	425	400	375	350
95\%	475	452	425	404	380	366	333
90\%	450	428	405	383	360	338	315
85\%	425	404	383	361	340	319	298
80\%	400	380	360	340	320	300	280
75\%	375	356	338	319	300	282	263
70\%	350	333	315	298	180	263	245

## AVERAGE WATER REQUIREMENTS

	Gal./Day/Head
Dairy Cows	15 to 25
Beef Cattle	7 to 12
Swine (Market Hogs)	1 to $21 / 2$
Sows plus Litter	$1 / 2$ to 6
Ewes or Lambs	1 to 2
100 Laying Hens	8 to 10
100 Turkeys 10 weeks	
100 Turkeys 25 weeks	


Kind of Animal	Number per   Animal Unit	Conversion   Factor*
Beef cow and calf		
Dairy cow	1.0	1.00
Weaned calves (400-600)	1.0	1.00
Heifers (550-700)	2.0	.50
Deferred steers (600-750)	1.7	.65
Bulls	1.5	.70
Horses	.8	1.25
Colts		
Ewes and lambs	2.8	1.25
Ewes		.50
Lambs raised	7.0	.20
Feeder lambs	15.0	.14
Goats	20.0	.07
Brood sows	7.0	.05
Hogs raised to 200 lbs.	2.5	.14
Feeder pigs	5.0	.40
Hens or ducks	7.0	.20
Pullets raised	100.0	.15

*1,000 pounds of body weight is commonly considered as an animal unit. If you prefer to estimate your own animal units; add beginning and ending weights, and divide this total by ( 2 times 1,000) .

CORN EQUIVALENT FEED VALUE OF GRAINS*

Grain	$\begin{gathered} \text { Dairy } \\ \text { Cow } \end{gathered}$		Feeding Beef Cattle		Feeding Hogs		Feeding Lambs		Average Values bu.
	bu.	1 b .	bu.	1 l .	bu.	1 b .	bu.	lb.	
Corn	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Sorghum	1.00	1.00	. 87	. 87	. 92	. 92	. 95	. 95	. 95
Barley	. 86	1.00	. 77	. 90	. 82	. 95	. 75	. 87	. 80
Wheat	1.07	1.00	1.12	1.05	1.10	1.03	. 91	. 85	1.10
Oats	. 51	. 90	. 49	. 85	. 49	. 85	. 46	. 80	. 50

*The figures shown in this table are approximate rates that may be expected when the various feeds are used in appropriate amounts and in well balanced rations. Consult literature on livestock feeding for more complete information.

## LIVESTOCK LABOR REQUIREMENTS

NOTE: All labor hours include an addition for total general farm overhead labor.

DAIRY COWS
Cows Gutter Cleaner Free Stall* Free Stall* (No.) Stanchioned and pipeline walk thru Herringbone -hours per cow-

$0-25$	90	85	75	70
$25-49$	75	70	60	55
$50-74$	65	60	50	45
$75-100$	55	50	40	35
$100+$	50	45	35	30

*For loose housing systems add 5 hours to free stall system.

BEEF COWS (to weaning)
Farm Conditions Ranch Conditions Calf Sold Calf Sold

(No.)	(hours/head)	(No.)	(hours/head)
$0-25$	12	$0-100$	$8 *$

25-50 11
11
100-200
7
50-75
10
200-300
6

75+
8
300+
5
*Add one hour per cow for A.I.

OTHER CATTLE

	Wintering   (hours/head)	Summer Pasture	
(No.)	4	(No.)	(hours/head)
$0-75$	3	$0-75$	1.0
$75-150$	2	$75-150$	0.8
$150+$		$150+$	0.6

RAISING DAIRY CALVES

Springing	Heifers	Yearling	Feeders
(No.)	(hours/head)	$($ No.)	(hours/head)
$0-15$	28	$0-15$	12
$15-30$	23	$15-30$	10
$30+$	20	$30+$	8

LIVESTOCK FEEDING ENTERPRISES

BEEF (1)		LAMBS (100)		PIGS (10)	
(NO.)	(hrs./mo.)	(No.)	(hrs./mo.)	(No.)	(hrs./mo.)
40-80	. 90	0-100	30	0-150	2.1
80-120	. 70	100-300	20	150-300	1.8
120-200	. 45	300-500	10	300-450	1.5
200-300	. 35	500-800	6	450-600	1.2
$300+$	. 25	$800+$	5	$600+$	0.9

BROOD SOWS


EWES AND LAMBS

> Sell Mixed Market and Feeder Lambs

(No.)	(hours/ewe)
$0-50$	4.5
$50-100$	4.0
$100-300$	3.5
$300-500$	3.0
$500-750$	2.5
$750+$	2.0

LAYING HENS

Farm Flock $*$	Commercial Flock		
(NO.)	(hrs./100)	(No.)	(hrs./1,000)
$0-100$	240	$0-2,500$	800
$100-200$	210	$2,500-5,000$	550
$200-300$	180	$5,000-7,500$	400
$300+$	150	$7,500+* *$	300

*Includes labor to raise 120 sexed chicks per 100 hens. **Labor required for 10,000 bird flock may be less than 200 hours per 1,000 hens when fully mechanized.

Table 1 Planning Data

Feeder Cattle		Bred			Bulls
Calves	Finishing	Heifers	Cows	Cows	
400-800\#	800-1200\#	800\#	1000\#	1300\#	1500\#
	-C	fee	a		

Lot Space
Unpaved lot w/ mound
Mound space Unpaved lot w/o mound
Paved lot

$150-300$	$250-500$	$250-500$	$300-500$	$300-500$	1200
$20-25$	$30-35$	$30-35$	$40-45$	$40-45$	$50-60$
$300-600$	$400-800$	$500-800$	$500-800$	$500-800$	1500
$40-50$	$50-60$	$50-60$	$60-75$	$60-75$	$-\cdots$

Barn Space

Barn w/lot	$15-20$	$20-25$	$20-25$	$20-25$	$25-30$	40
Barn w/o/lot	$20-25$	$30-35$	$30-35$	$35-40$	$40-50$	$45-50$

Enclosed barn 17-20 cu. ft.
w/slotted floor
-not recommended -

## Feeder Space

Once/day feeding 18-22
Once/day feeding 18-22
Twice/day fdg. 9-11

$22-26$	$22-26$	$24-30$	$26-30$	$30-36$
$11-13$	$11-13$	$12-15$	$12-15$	--
$4-6$	$4-6$	$5-6$	$5-6$	--
$10-11$	$11-12$	$12-13$	$13-14$	-

## Approximate Feed Requirements



Ventilation	-cubic feet per minute per head-					
Cold Barns**	Clarm Barns	$15-100$	$20-130$	$30-180$	$50-470$	$50-470$

Manure Production***

lb/head/day	$24-48$	$48-72$	48	60	78	90
cu.ft./hd/day	$0.4-0.8$	$0.8-1.2$	0.8	1.0	1.3	1.5

[^1]Table 2 Bunk Design

| Throat Height (maximum) |  |
| :--- | :--- | :--- |
| Calves (400-800 lb) | $18^{\prime \prime}$ |
| Heifers/finishing ( $800-1,200 \mathrm{lb})$ | $20^{\prime \prime}$ |
| Mature cows/bulls | $24^{\prime \prime}$ |

Bunk Depth (maximum)
Calves 8"
Heifers/finishing 12"
Mature cows 18"
Bunk Width
Eat from both sides
Calves 36"
Heifers/finishing 48-60"
Mature Cows
Eat from one side
48-60"
Mechanical feeder
18" bottom width
Add 6-12" to 60" width
Step Along Bunk
Height
6-8"
Width
12-16"
Bunk Apron

Slope	$3 / 4-1 "$ per foot
Width	$10-12^{\prime}$ (minimum)

Neck rails
3/8" tightly woven cable
2" pipe
2x6 plank 16-24" opening

Table 3 Floor and Lot slopes
Handling Facilities
1/8 to 1/4" per foot
Lots
Paved
1/8"/foot (minimum)
Earth
Mound sideslope
Bunk Apron

1/2-3/4" per foot
$1^{\prime}$ per $5^{\prime \prime}$
3/4-1" per foot nearly self-cleaning

MANAGEMENT TIP: The only accurate way to know the nutrient content of a feed is to have it chemically analyzed or tested.

Table 1 Cow Stall platform sizes

Cow Weight	Stanchion StallsWidth $\quad$ Length		Tie Stalls	
			Width	Length
Under 1,200 1b	4'0"	5'6"	$4^{\prime} 0 \prime$	5'9"
1,200-1,600 1b	4'6"	5'9"	4'6"	6'0"
Over 1,600 1b	Not	mended	5'0'	6'6"

*Use electric cow trainers. Dimensions from curb edge to gutter edge.

Table 2 Recommended Stall Barns Dimensions
Alley Width
Flat manger-feed alley
Step manger-feed alley
Step manger (24")
Feed alley (4'0' to $4^{\prime} 6^{\prime \prime}$ )
Service alley with farn cleaner 6'0"
Cross alley* 4'6"
Manger Width
Cows under 1,200 lb 20"
Cows 1,200 lb or more 24-27"
Gutters
Width** 16" or 18"
Depth, stall side 11-16"
Depth, alley side 11-14"

[^2]Table 3 Free stall Dimensions

Heifers	Width	Length
$5-8 \mathrm{mo}$.	$2^{\prime} 6^{\prime \prime}$	$5^{\prime} 0^{\prime \prime}$
9-12 mo.	$3^{\prime} 0^{\prime \prime}$	$5^{\prime} 6^{\prime \prime}$
13-15 mo.	$3^{\prime} 6^{\prime \prime}$	$6^{\prime} 6^{\prime \prime}$
16-24 mo.	$3^{\prime} 6^{\prime \prime}$	$7^{\prime} 0^{\prime \prime}$
Cows (ave. herd weight)		
1,000 1b	$3^{\prime \prime} 6^{\prime \prime}$	$6^{\prime 1} 10^{\prime \prime}$
1,200 1b	$3^{\prime \prime} 9^{\prime \prime}$	$7^{\prime} 0^{\prime \prime}$
1,400 1b	$4^{\prime} 0^{\prime \prime}$	$7^{\prime \prime \prime}$
1.6001 b	$4^{\prime} 0^{\prime \prime}$	$7^{\prime} 6^{\prime \prime}$

Stall width measured center-to-center of $2^{\prime \prime}$ pipe dividers. For wider divider dimensions, increase stall width accordingly. stall lengths are measured from front of stall to alley side of curb.

Table 4 Typical Free stall Alley Width

```
Feeding and stall access alley
 Access alley between 2 stall rows
 Solid floor 8-10'
 Slotted floor 6-9'
 Feeding alley 9-10'
```

Table 5 Replacement Animal Space Requirements
CALF HOUSING
Housing Type
0-2 mo (individual pens)
Calf Hutch (plus 4x6' outdoor run) 4x8'
Bedded Pen $4 \times 7^{\prime}$
Tie Stall 2×4'
3-5 mo (groups up to 6 head)
Super Calf Hutch $25-30 \mathrm{cu} . \mathrm{ft}$./hd
Bedded Pen
Pen Size
25-30 cu.ft./hd
HEIFER HOUSING

Housing Type	Age, months			
		-cu.ft		
Resting area \&	25	28	32	40
paved outside lot	35	40	45	50
Total Confinement				
Bedded resting area*	25	28	32	40
Slotted floor	12	13	17	25

[^3]|  | 3-4 | Age, months |  |  | 16-24 | Mature Cow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5-8 | 9-12 | 13-15 |  |  |
|  | -inches per animal- |  |  |  |  |  |
| Self Feeder |  |  |  |  |  |  |
| Hay of silage | 4 | 4 | 5 | 6 | 6 | 6 |
| Mixed ration or grain | 12 | 12 | 15 | 18 | 18 | 18 |
| Once-a-day feeding hay,silage or ration | 12 | 18 | 22 | 26 | 26 | 26-30 |

Table 7 Bunk Design
Throat Height (max)
Calves
18"

Heifers 20"
Mature Cows 24"
Bunk Width (max 60')
Both sides feeding
Calves 36"
Heifers
Mature Cows
One side feeding
Mechanical feeder
48-60"

Mechanical feeder
48-60"
18" bottom width
Add 6-12" up to max width
step along bunk
Height
4-6"
width
12-16"
Bunk Apron
slope
3/4-1" per foot
Width
10-12'
Neck Rails
3/8" cable
2" pipe
$2 \times 6$ plank 16-24" opening


Wool Produced

lb/yr	$6-18$	$5-14$	-	$4-7$

Approximate Feed Needed++ (lb/day per animal)

Hay	4-7	2.5-4	4-7 + grain	1-2 + grain
Haylage	8-10	5-7	8-10 + grain	$2-4+$ grain
Corn Silage				
+ supp.	12-20	7-9	12-18	4-6
Grain	0.5-2.5	0.0-0.75	0.75-2.5	1.0-3.0
Supplement	0.0-0.25	0.12-0.25	0.25-0.5	0.25-0.5
*For lambing rates above 170\%, increase floor space 5 sq.ft/h				

***Use heated or circulating type in cold buildings.
+Water requirements vary considerably with time of year and ration. Maintian water at $35+\mathrm{F}$ in winter and below 75 F in summer.
++Approximate rations for 3 optional forages. Data for computing feed storage and handling needs only.

*Provide brooder heat for pigs.

Swine considerations con't.

## FEEDER and WATERER SPACE

Self feeder: 1 space/4 pigs
Supp. feeder: 1 space/15 pigs
Sow feeders: 1'/sow self feed
2'/sows all feed at once
Waterers: 1 space/20-25 pigs

## BUIDLING FLOOR SPACE

Sows and boars: 15-20 sq.ft.
Pigs to 40 lbs: 3 sq.ft./pig
40-100 lbs.: 4 sq. ft./pig
100-150 lbs: 4 sq.ft./pig
150-market: 8 sq.ft./pig
100-market: 6 sq.ft. under roof
+6 sq.ft. outside paved lot
FLOOR AND LOT SLOPES
Slotted floors; usually flat
Farrowing, solid floors:
1/2 - 3/4"/ft w/o bedding
1/4 - 1/2"/ft w/bedding
Finishing: 1/2 - 1"/ft
Paved lots: 1/4-1"/ft
Paved feeding lots:
indoors: 1.4"/ft. min
outdoors: 1"/ft.
Building alleys:
1/2"/ft cross slope for crown
1/10-1.4"/ft to drain
Gutters and pits:
1"/25'to 1"/100'to drains.

## SPRAY COOLING

Water $=0.09 \mathrm{gal} / \mathrm{hr} / \mathrm{pig}$.
Nozzle size $=0.045 \mathrm{gal} / \mathrm{min} / \mathrm{pig}$

PASTURE SPACE
10 gestating sows/acre
7 sows w/litters per acre
50-100 growing-finishing pigs per acre; depending on fertility

## SHADE SPACE

15-20 sq.ft./sow
20-30 sq.ft./sow \& litter
4 sq.ft./pig to 100 lbs.
6 sq.ft./pig over 100 lbs.

FLOOR THICKNESS
4": Feed aprons and floors with minimum vehicle traffic, building floors.
5": Paved feedlots; building drives.
6": Heavy traffic drives.

SLOT WIDTHS in slotted floors Newborn pigs*: 3/8" and 3/4-1" 25-40 lb. **: 1/2 to 1" 40 to market: $3 / 4$ to $1^{\prime \prime}$ Sows \& Boars: 1" to 1 1/4"

AIR INTARE (Ventilation)
Size in sq.in. $=1 / 4(\mathrm{cfm}$ fan capacity)
*Cover slots during farrowing; wide slots behind sows, 3/8" elsewhere.
**3" width preferred over wider slats.
 $\qquad$
$\qquad$



$$
\begin{aligned}
& \text { Q } \\
& \text { Q }
\end{aligned}
$$


When




$\square$
$+{ }_{4}^{2}$







4 1 +4
4)

What




[^0]:    *Labor requirements for planting only. Labor for making hay or silage is estimated in forage harvest system.
    **One cutting assumed. For two cutting multiply hours by 1.8.
    +For big bale, windrow, haul and store use $50 \%$ of hours above.
    MANAGEMENT TIP: A good maintenance program can reduce downtime and costly repair and labor expenses, and extend equipment life.

[^1]:    *Size system to provide full day consumption in a 4-hr period in hot weather.
    **Provide ridge openings, eave inlets and adjustable wall openings located low on sidewalls in the animal zone.
    ***Total storage volume can be $25-50 \%$ higher because of wasted or spilled feed and water.

[^2]:    *Taper the end stalls toward 6" at the front for added turning room for the feed cart.
    **Or as required for barn cleaner.

[^3]:    *Assume access to $10^{\prime}$ wide scraped feed alley.

