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Abstract

Traditional large appliances absorb a large share of residential electricity
consumption and represent important targets of energy policy strategies aimed at
achieving energy security. Despite being characterized by rather mature
technologies, this group of appliances still offers large potential in terms of
efficiency gains due to their pervasive diffusion. In this paper we analyse the
electricity consumption of a set of four traditional ‘white goods’ in a panel of ten
EU countries observed over 21 years (1990-2010), with the aim of disentangling
the amount of technical efficiency from the overall energy saving. The technical
efficiency trend is modelled through a set of technology components representing
both the invention and adoption process by the means of specific patents weighted
by production and bilateral import flows, which allows to overcome the rigid
Stochastic Frontier framework in modelling the effect of technical change. Our
results show that the derived energy demand and inefficiency trends are both
related to changes in the amount of available technology embodied in energy
efficient appliances. The effect is significant both in its domestic and international
components and suggests an active role of innovation and trade policies for
achieving efficiency targets which directly impact the amount of electricity
consumed by households.
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1 Introduction

The reduction of primary energy consumption through energy efficiency (EE henceforth)
represents a cornerstone of the transition towards a resource-efficient green economy in
Europe and a possible strategy to achieve energy independence and security (EC, 2011).
According to the new EU climate and energy strategy for 2030 agreed by EU leaders on the
23" October 2014, in order to achieve a greenhouse gas emissions reduction target of 40% by
2030 compared to 1990, it would be required an increased level of energy savings of
approximately 25% by 2030 compared to 1990.

In energy economics, EE is commonly interpreted as the relationship between the output
produced by an economy and the energy consumed to produce it (Patterson, 1996 and Lovins,
2004, among others). Thus, a general characteristic of EE is the use of less energy inputs for a
larger or equivalent level of economic activity or service. In light of this, the achievement of
higher EE performance intrinsically relies on technological innovation as a means for
improving productivity of the energy input and reducing operating costs (Linares and
Labandeira, 2010; Florax et al., 2011; Hartman, 1979). Most of the studies on EE focused on
the industrial sector, leaving room for investigation on the analysis at residential level.
Official statistics (EC, 2012a) show that this latter accounted in 2010 for roughly 30% of total
final electricity consumption and such a share does not seem to be slowing down (IEA, 2012).
Besides population growth, this is due to the modern lifestyle, which extensively depends on
the availability of devices, systems and equipment powered by electricity. However, the role
of domestic consumption appears relevant mostly for the widespread presence of traditional
large appliances (freezers, refrigerators, washing machines and dishwashers), which are still
responsible for 25% of households’ electricity consumption as opposed to other appliances
such as information and communication devices whose energy needs are negligible with
respect to the so called "white goods’’ (Saidur et al., 2007)2 Moreover, since home appliances
generally consume electricity instead of renewable fuels or direct combustion fuels, they carry
a relevant carbon footprint in countries where electricity production is carbon intensive
(Cabeza et al., 2014). Even though improving EE for relatively old technologies embodied in
large appliances is likely to become increasingly costly (due to decreasing marginal returns of
energy efficiency technologies), the potential contribution of EE to reduce energy
consumption is still large if we consider the combined effect of little incremental inventions
and the large diffusion of traditional electrical appliances. Being these latter crucial to fulfil
primary needs, they are widespread among households' dwellings (IEA, 2009) and at the
attention of policy makers who are implementing an increasing number of important
regulatory actions such as the ‘Eco-design Directive’ for Energy-Using Products (EuP
Directive 2005/32/EC), the introduction of energy labelling for electric devices (Directive
92/75/ECC) or more recently, the Energy Efficiency Directive approved in 2012, which
establishes a set of binding measures to help the EU reach ambitious energy efficiency targets
(EC, 2012b).

Recent studies have confirmed the cost-effectiveness of EE gains deriving from electrical
appliances with respect to those deriving from other sectors (McKinsey, 2009) and identified
important sources of energy saving in eco-design measures for household appliances (EC,
2012a). In particular cooling appliances (freezers and refrigerators), washing machines and
dishwashers seemed to be particularly responsive to energy efficiency policies and showed
large impacts in terms of EE performances also in consequences of Corporate Social

! European Commission proposal (EC COM 2014-15).
% The portfolio of energy services available for households massively increased in the last 40 years, with a strong
penetration of new devices and appliances aimed at satisfying these services. See Burwell and Swezey (1990).
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Responsibility strategies relying on voluntary agreements of manufactures:. In this context,
the availability of new energy efficiency technologies developed by firms and progressively
adopted by households represents a key driver to divert the increasing trend of residential
electricity consumption.

The literature has highlighted as available EE technologies are adopted at sub-optimal level,
identifying barriers of different nature (Brown, 2004; Jaffe et al., 2004; Gillingham and
Palmer, 2014). The phenomenon is known in the literature as the EE gap and can be defined
as the perceived gap in uptake of existing energy efficient technologies despite these latter are
characterized by positive net present values (Jaffe and Stavins, 1994). This translates into
slower paces of EE technology adoption (demand side) and, consequently, in weaker market
stimuli for firms to innovate (supply side). Broadly speaking, once a technology is invented
and available on the market, its adoption rate, slow in the first phase, rapidly accelerates up to
a saturation point in which the diffusion of the new technology reaches its maximum and
declines in favour of new technologies introduced into the market (Griliches, 1957; Geroski
2000). In the case of EE technologies, the typical S-shaped curve traced by the level of
technology turnover has different explanations, such as the adopters' propensity, which in turn
depends on the awareness level about energy saving potential and the access to technical
information. The high level of heterogeneity among consumer preferences leads to differences
in the expected returns to adoption, although these differences tend to be reduced over time as
the cost of new technologies falls and information becomes increasingly available.
Furthermore, the heterogeneity in the technology adoption rate changes according to the good
considered (Jaffe et al., 2004; Fernandez, 2001), since the longer the expected lifetime of the
appliance, the more the consumer faces long-term energy savings concerns, also considering
the growing trend in energy prices occurred in the last decades (Popp, 2002).

In this paper, we employ an original dataset to analyse the determinants of households’
electricity demand for a set of ‘white goods’, i.e. traditional large electrical appliances, for a
panel of 10 EU countries observed over a period of 21 years. Differing from other studies, we
focus on the role of innovation dynamics to explain the virtuous mechanism through which a
large share of energy consumption has been reduced in the sector of residential electrical
appliances. By relying on patents (in particular those related to appliance-specific energy
efficiency), our electricity demand function incorporates the contribution of technology
invention and diffusion processes as a source of efficiency-driven energy saving by
controlling also for specific energy consumption drivers, such as per-capita income, dwelling
size and type of appliance. In the second part of the analysis, we employ a stochastic frontier
analysis (SFA) to disentangle the amount of energy saving observed in the demand estimation
due to technical efficiency. In doing this, we use our technology measure for modelling the
distribution of technical efficiency which is supposed to affect EE performances via technical
change, thus leading to net gains in energy saving.

The rest of the paper is structured as follows. Section 2 describes the relationship between
energy consumption, EE and technological innovation. In Section 3 we present the dataset
and the empirical strategy to estimate the standard electricity demand function and the
associated stochastic frontier, while results and efficiency scores are discussed in Section 4.
Section 5 concludes the paper with some policy implications.

¥ An example is the Conseil Européen de la construction d’appareils domestiques (CEDEC).
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2 Energy efficiency and innovation

2.1 The empirical evidence

There is very scarce empirical evidence analysing the relationship between technical change
and the level of energy consumption in the residential sector. Early empirical analysis mainly
focused on a product-based approach in which the demand drivers play a key role through the
well-known price-induced innovation hypothesis (Hicks, 1932). In this respect, Newell et al.
(1999) test the hypothesis of policy-augmented price-induced innovation relying on sale data
of room and central air conditioners as well as of gas water heaters in the 1958-1993 period.
They find positive relation between EE performances and the technology turnover. This latter
is led by increasing energy prices or lower appliances' prices. The regulatory activity, taken
into account by analysing government efficiency standards, is also effective for stimulating
technological improvement, together with the introduction of energy labelling requirements.
However, more recent contributions seem to be more prone in following a context-based
approach, in which the energy saving performances are considered as a part of a more
complex process mainly governed by the technology advances, this latter being often induced
by a set of drivers such as policy-related and behavioural factors (van der Bergh et al., 2007;
del Rio Gonzalez, 2009; Horbach, 2008). On the wake of the numerous studies on eco-
innovation, a further strand of empirical literature focused on the determinants of EE
technologies and their diffusion mechanisms. In this respect, Jaffe and Stavins (1995)
measure the impact of energy prices, adoption subsidies and building codes on the home EE
level in the United States between 1979 and 1988, finding a stronger effect of government
subsidies compared to that led by increasing energy prices on the average level of EE in
buildings. Although energy taxes (captured by relatively high energy prices over the period)
have a positive impact on technology adoption, the magnitude of the effect is relatively small.
Moreover, technology standards seem to have no impact on the adoption of new EE
technologies, suggesting that the building codes are often set too low to be effective. More
recently, Verdolini and Galeotti (2011) analyse the supply and demand determinants on
energy-efficient and environmental-friendly technologies also including spatial knowledge
spillovers in a panel of 38 countries. Besides the positive impact of these latter, further stimuli
to innovate derived from by the variability of energy prices via induced innovation hypothesis
as well as from the technological opportunity, measured by country-specific knowledge
absorptive capacity. The determinants of new EE technologies in the building sector is also
investigated by Noailly (2012), who tests the impact of alternative environmental policy
instruments (regulatory energy standards in building codes, energy prices and specific
governmental energy R&D expenditures) on EE patent applications in eight technological
building sectors as a proxy for firms' innovative effort. The panel covers seven European
countries over the period 1989-2004 and finds that regulatory standards have a greater impact
than energy prices and R&D support on innovation. The author argues that the insignificance
of prices can be due to the specificity of the building sector, in which the principal-agent
problem would play a limited role (Gillingham et al., 2009). A similar approach is followed in
Costantini et al. (2014), using a panel of 23 high-income OECD countries over 21 years. By
disaggregating the analysis in three sectors, namely lighting, buildings and large electrical
appliances, the paper analyses the relationship between different innovation drivers, with a
particular emphasis on the policy intervention. They test firms' innovative activity, measured
by EE patents filed at the European Patent Office (EPO), when subject to a heterogeneous set
of policy measures. The analysis confirms the important role of energy prices for stimulating
EE technologies, but enlarges the framework to other important drivers that are effective in
spurring EE innovative activity such as long-run energy strategies (abundance of electricity



generation from domestic sources), policy spillovers and the mix of in-force policy
instruments.

Nonetheless, to the best of our knowledge, there are no studies that directly relate the EE
performances at residential level to the impact of new technologies, which are more and more
widespread across the white goods. In light of this, the present paper takes advantages of the
contribution of eco-innovation literature for identifying relevant EE technologies, in order to
derive a measure of technical efficiency which is assumed to be directly governed by the
innovation process.

2.2 Measuring energy efficiency

The measurement of EE at aggregate level, even focusing on a specific sector as we do in
the present work, is not an easy task. The reasons of such a difficulty can be manifold. First,
energy saving and EE are not completely overlapping terms, as EE is a sub-set of the energy
saving (or energy conservation) domain. This latter is a broader concept since energy saving
can be achieved through EE gains or simply by reducing the level of economic activity, which
may also reveal a change in consumers’ behaviour. Patterson (1996) led the way to
conceptualise EE in economic terms, proposing a set of indicators of different nature and
laying out some methodological issues when different indicators are applied to real data. For
instance, the commonly-used energy-GDP ratio or energy productivity index*, without
specific calculations at margins, may suffer from bias when structural effects are not
separated from technical efficiency. Indeed, when different countries or sectors are compared
using the aggregated energy-GDP ratio, the specific composition of the economy is not taken
into account and the results may lead to misleading conclusions. For instance, a country can
efficiently produces energy-intensive goods and show a high energy/output ratio, while at the
margin, this bias disappears. Bosseboeuf et al. (1997) highlighted other measurement
difficulties such as the heterogeneity in data definition and the divergence of indexes
interpretations, since the concept of energy efficiency is subject to heterogeneous definitions
across countries. In this respect, many national energy agencies attempted in past to address
the issue of harmonisation in EE data and related definitions (EPA, 1995; ENEA, 1996). In
addition, climatic differences between countries, particularly important when comparing
energy efficiency in space heating, play a role when the analysis extends over large latitudes.
The lack of consensus for measuring EE has been also recently pointed out by Khademvatani
and Gordon (2013), who departing from a marginal EE index, introduced a theoretical
framework which incorporates the social value of externalities. These latter may bias the
measure of efficiency, since "firms can be privately efficient in energy use but not socially”
(pp. 154). Accordingly, the difference between the shadow value and the price of energy is
identified as a measure of energy inefficiency and provides a profit incentive for the economic
agent to alter the energy use.

A further relevant difficulty for measuring EE at sector level is due to the fact that EE
performances are strongly related to the technology employed in the ‘production process’. In
our case we refer to the technological content embodied in each single appliance, which
through the diffusion process, translates its marginal contribution in a large impact on the
energy saving at aggregate level. This process takes place since each appliance’s contribution
is multiplied by the number of appliances sold on the market and operating in the households’
dwellings. Unfortunately, such an effect is difficult to be captured given the lack of data on
the stocks of devices as well as their different technological characteristics.

* Energy productivity is the reciprocal of energy-GDP ratio. See Sue Wing and Eckaus (2007) and Markandya et
al. (2006), among others.



Regarding the analytical approaches developed to measure the level of technical efficiency,
one of the most effective is represented by the Stochastic Frontier Analysis (SFA), a
parametric empirical technique which allows to estimate both the level of theoretical and
actual efficiency of a given production system in the well-known framework of the
neoclassical production function (Aigner et al., 1977; Meeusen and van den Broeck, 1977)s.
Although such a technique is not exempt from drawbacks, as for instance the imposition of a
predetermined functional form, its use has been extensively exploited in the literature of
energy economics (see Buck and Young, 2007; Boyd, 2008; Stern, 2012; Filippini and Hunt,
2012, among others).

In the specific case of residential sector, the empirical evidence remains spare, since only a
limited number of studies have focused on this issue and, with few exceptions, no one focuses
the analysis at the residential level. The study by Buck and Young (2007) uses cross-sectional
data on energy use to derive efficiency scores for different types of commercial buildings.
They find that Canadian buildings are fairly efficient, with significant differences between
government-owned buildings and those owned by non-profit organisations, this latter being
more efficient. However, the authors recognise that, due to data limitations, the effect of new
technologies adoption is not fully captured by their model. The level of residential energy
efficiency is also investigated by Filippini and Hunt (2012), who use a balanced panel
deriving from the US-EIA database to analyse the energy consumption in 48 US States over
the 1995-2007 period. They find inconsistency in several States between the standard energy
intensity indicators and energy efficiency scores deriving from the stochastic frontier
approach used in the analysis, suggesting further investigation on this direction. More
recently, Filippini et al. (2014) focus on the impact of government policies aimed at
improving energy efficiency in the residential sector. Although the large number of in-force
policy instruments existing in the EU, they find room for efficiency gains and a high level of
variability across countries, although not significant differences between new and old EU
Member States have been detected.

Even though these studies specifically focus on the measurement of EE at the residential
level, they do not address the potential of innovation as a means for achieving EE gains. The
technology is usually modelled EE as a latent variable and does not allow for explicit
considerations regarding the dynamics of innovation process (Filippini et al., 2014, among
others). Moreover, when investigating the relationships between energy consumption and
efficiency gains, a further relevant issue is represented by the so-called ‘rebound effect’
(Khazzoom, 1980; Greening et al., 2000; Sorrell and Dimitropoulos, 2008). This refers to a
situation where the energy saving obtained through EE lowers the price of the associated
energy service and increases its demand (direct rebound) or the demand for other goods
(indirect rebound). Such an issue seems to be absent in the literature of residential efficiency
analysis, although several studies signal significant and relevant impacts of the rebound effect
in reducing the energy saving deriving from efficiency gainss. Although deserving some
precautionary attention, in our analysis the impact of rebound effect is supposed to be
strongly mitigated, since the use of traditional electrical appliances is strictly devoted to fulfil
primary needs, thus being characterised by low values of demand-price elasticity which imply
limited levels of rebound effect (see Herring et al., 2007; Ek and Soderholm, 2010; van den
Bergh, 2011; Chakravarty et al., 2013). However, the disaggregation that we propose between
continuous and intermittent appliances represents a further strategy to address potential
presence of rebound, relying on the hypothesis that those appliances that need to be

> Other possible approaches can be the Data Envelopment Analysis (DEA) (Thore et al., 1994) and the
gecomposition methods (Ang, 1995).

For some empirical evidence on the rebound effect in the residential sector see Greening et al. (2000),
Saunders, 2013; Hilty et al., 2006 and Davis, 2008.



continuously in operation have minimum substitutability response and low saturation effect to
possible changes in consumer behaviour due to efficiency gains (Lorentz and Woersdorfer,
2009; Ouyang et al., 2010; Guertin et al., 2003).

3 Empirical strategy

Our empirical analysis begins by estimating a standard energy (derived) demand function. In
order to provide a preliminary test on the significance of technological advances in domestic
appliances, the estimation of electricity demand already includes the impact of innovation
process. In the second part of the study, we disentangle the effect of technical efficiency from
the overall gain in energy saving resulting from the energy demand estimates. In order to
separate technical energy efficiency from general energy saving, we employ a technology-
augmented stochastic-frontier model, which accounts for both the role of domestic and
foreign EE innovation in the national markets.

3.1 Technology modelling

As previously discussed, the level of technology can strongly affect EE performances and
deserves specific attention. In light of this, we focus on the dynamics through which the
technology evolves, providing an original methodology to include the innovation dynamics in
the rigid constraints of stochastic frontier analysis. Following the conceptual contributions of
innovation scholars (see Stoneman, 1993; 2001 among others), three main stages in the
innovation process can be identified, namely invention (i.e the generation of new ideas),
innovation (i.e. the development of new ideas into marketable products and processes) and
adoption (or diffusion stage, in which the new products and processes spread across the
potential market). Hence, in order to understand how the economy changes as new
technologies are introduced and used, the stage of diffusion assumes a crucial aspect.

In our case, a new EE technology has to be firstly developed and embodied in the appliance.
Then, this latter has to be diffused and made easily accessible to consumers (both in terms of
logistics as well as of economic affordability) and, finally, adopted (Karshenas and Stoneman,
1993). In this respect, data and metrics for measuring both firms’ innovative performances as
well as the level of technology diffusion is particularly important. Data on specific product
characteristics would represent good sources of data for analysing the technological level of
appliances, but they are difficult to be collected for long time series. On the other hand,
technology-input measures, such as firms’ R&D expenditures are often not publicly available.
Some studies aim at investigating the implications of consumers’ behaviour in response to EE
gains deriving from the use of more efficient appliances by employing energy labels and
codes as a measure of efficiency performance (Datta and Gulati, 2015, among others).
Notwithstanding, such an approach provides a poor representation of the technology portfolio
embodied in the appliances under scrutiny, with a raw distinction among the different
technology advances implemented by the multitude of manufacturers of appliances. In this
respect, the approach that we propose allows to model the technology as a continuous
variable, without jumps occurring in technology shifts (i.e., EE classes) and thus producing a
more realistic representation of the rate and direction of technical change.

To this aim patents, despite some limitations, constitute a widespread data source in the
economics of innovation (Hall et al., 2005; Jaffe and Trajtemberg, 2004; Malerba and
Orsenigo, 1996; Oltra et al., 2010; Lanjouw et al., 1998; Lanjouw and Schankerman 2004;
van Pottelsberghe et al., 2001), since they provide a wealth of information on the nature of the
invention and the applicant for rather long time series. Patent data frequently represent the
direct result of R&D processes, a further step toward the final output of innovation, that is
useful knowledge through which firms are able to generate new profit sources. Nevertheless,



in the case of green technologies, standard international patent classifications only partially
represent the whole range of sub-fields characterizing complex technological domains such as
EE (Barbieri and Palma, 2015) or biofuels (Costantini et al., 2015b). In light of this, the
patent database here adopted allows to integrating the Y02 Cooperative Patent Classification
(CPC) based on patent classes for green technologies, which recently incorporates energy
efficiency technologies for the residential sector, with the specific work carried by Costantini
et al. (2015a) on specific sub-sector of electrical appliances. Table B1 in the appendix
describes the CPC classes that were relevant for our study. As a result, we collect a total of
9619 unique patent applications filed at the European Patent Office (EPO) and belonging to
the four appliances, namely freezers and refrigerators, washing machines and dishwashers.
Our patent sample has been ordered by application date and assigned to the applicant’s
country.

A possible limitation when patents are employed as a measure of innovation output is
represented by the high heterogeneity in their value (Griliches, 1998 among others). It is thus
necessary to control for patent quality. In this respect, it is worth noting that EPO applications
are more expensive than applications to national patent offices and inventors typically apply
to EPO if they have strong expectations in terms of economic exploitation of the invention.
The difference in costs deriving from the decision to filling to EPO instead of national patent
offices provides a “quality hurdle which eliminates applications for low-value inventions”
(Johnstone et al., 2010, p. 139).

In order to capture both past and recent innovative efforts, the domestic patent stock IT has
been calculated following Popp (2003):

0

;= z m_se PO (1 — e7F2l5t)) 1)

s=0

where 7 indicates the patent count, 5, the rate of decay (set to 0.1) that captures the
obsolescence of older patents, S, the rate of diffusion (set to 0.25) that accounts for the delay
in the diffusion of knowledge, i indexes countries and ¢, s index time. This modelling choice
allows for treating the technology stock as a cumulative process, but at the same time it
accounts for the obsolescence effect, as new technologies are available, older patents become
less profitable (Evenson, 2002; Hall, 2007).

Given that patents represent only the first stage of innovation process (i.e., invention), we
derive a proxy of technological diffusion by considering both the domestic and foreign

penetration of EE electrical appliances sold in the market. Our measure consists in a domestic

innovation component and a foreign innovation component (z2°™¢St¢ and 7/ T¢9",

respectively). Technology embodied in electrical appliances enters the national markets
through domestic production and foreign import flows, these latter expanding the internal
supply of energy efficient appliances. Hence, in this stage new EE appliances are sold by
firms to households and contribute to mitigate the energy consumption. In order to capture the
impact of technology embodied in the appliances and actually sold in the market, each
national patent stock is multiplied by the national production of appliances. Nevertheless, a
relevant share of physical efficiency also depends by appliances purchased and used by
households in the national territory and imported by foreign producers. As suggested by Shih
and Chang (2009) and more recently by Costantini and Liberati (2014), well-established
international market relationships represent a good means for testing the degree of embodied
technology diffusion. Accordingly, patent stocks belonging to foreign firms are multiplied by
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the corresponding appliance-specific bilateral import flow. Both the domestic and foreign
technology stocks have been divided over the total amount of appliances circulating in a given
country, calculated as the domestic production less the export share to which we summed the
imported production from foreign countries.

In formula, the two technology stocks are calculated as follows:

3
ZDomestic — z Hi(Yi — Expi) 2
vt £ \Y; — Exp; + X Imp; (22)
3
roreign _ z Lj=ijimp, (2b)
v — \Y; — Exp; + X Imp;

k=1

in which Exp represents the total export, Y the domestic production, Imp;; the import
quantity entering from country i to country j, IT the patent stock, k indexes the technological
domain to which the three group of appliances belong and t indexes time. Data on domestic
production and bilateral trade flows, considered at eight digit level of detail and expressed in
monetary values (Euro), derive, respectively, from PRODCOM and COMEXT database, both
available from Eurostat (2013a, b).”

Figure 1 plots the dynamics of the two technology components (domestic and foreign) for
each country and year, showing some preliminary and interesting insights. First, both the
domestic and foreign patent stocks are steadily increasing over time, with the foreign
component always predominant. Two exceptions are represented by Italy and, recently,
Germany, in which the amount of EE-technical knowledge domestically developed is greater
than the one imported from abroad. On the contrary, Slovenia is characterised only by
imported innovation. This figure depicts a heterogeneous pattern in which some countries are
leaders in both technology development and export, while some others are mainly
characterised by technology adoption. The split between domestic and foreign market
interconnections dynamics is crucial when EE is under scrutiny, since no a priori expectations
in terms of EE trend can be drawn by observing only the domestic technology component (the
national stock of technical knowledge weighted by the net domestic production). In fact, we
may expect a relatively large improvement in technical efficiency also in technology-adopting
countries, since EE performances are not affected by the level of national or international
technological capacity, rather by the availability on the market of new energy efficient
appliances, wherever the latter derive from. Although not directly investigated in this paper, it

! We selected the following CN8 (Combined Nomenclature 8-digit) codes for measuring bilateral trade flows
in the COMEXT database: 8418 "Refrigerators, freezers and other refrigerating or freezing equipment, electric
or other; heat pumps; parts thereof (excl. air conditioning machines of heading 8415)", 8422 "Dishwashing
machines; machinery for cleaning or drying bottles or other containers; machinery for filling, closing, sealing or
labelling bottles, cans, boxes, bags or other containers; machinery for capsuling bottles, jars, tubes and similar
containers; other packing or wrapping machinery, incl. heat-shrink wrapping machinery; machinery for aerating
beverages; parts thereof" and 8450 "Household or laundry-type washing machines, incl. machines which both
wash and dry; parts thereof". We selected the following NACE (rev. 1.1) codes for measuring domestic
production and total import and export of appliances: 29711110 "Combined refrigerators-freezers; with separate
external doors”, 29711133 "Household type refrigerators”, 29711135 "Built-in refrigerators”, 29711150
"Freezers of the chest type; capacity =< 800 litres", 29711170 "Freezers of the upright type; capacity =< 900
litres", 29711200 "Dishwashers", 29711330 "Fully-automatic washing machines; capacity =< 10 kg", 29711350
"Non-automatic washing machines; capacity =< 10 kg".



is worth noting that the role of government regulation, in particular of those policies aimed at
promoting energy saving, can strongly affect the innovative capacity of a country, and
consequently, its EE performances. In this respect, Costantini et al. (2015a) provide fresh
evidence that foreign countries characterized by great innovation capacity have larger
incentive to export new EE appliances in those countries with higher policy stringency and a
well-balanced mix of policy instruments. Such a policy-induced effect translates in larger
markets for EE appliances and contributes to mitigate the level of energy consumption.
Moreover, the invention capacity of a country is also a function of other indirect effects, such
as knowledge spillovers able to enhance the capacity of knowledge absorption (Verdolini and
Galeotti, 2011).

Figure 1 — Trends of technology by country
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3.2 Energy demand model

Our analysis considers a balanced panel of ten EU countriess observed over the 1990-2010
period. In the energy demand specification, households are assumed not to demand electricity
per se, but for the need of energy services, such as washing or cooling, which are satisfied by
using different electrical appliances (Linares and Labandeira, 2010). Income, electricity prices
and technology constitute the inputs of the (derived) electricity demand that we estimate for
two groups of home electrical appliances, namely cooling appliances (refrigerators and
freezers) and washing appliances (dishwashers and washing machines). Data on appliance-
specific electricity consumption comes from the Odyssee database which has been developed

® Austria, Denmark, France, Germany, Greece, Italy, Netherlands, Slovenia, Sweden and the United
Kingdom.
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by Enerdata in collaboration with several national energy agencies, under the supervision of
the European Commission.

In addition to these inputs, we employ a set of additional controls. The first is the average
size of households' dwellings (from Odyssee-Enerdata), since larger houses have been
recognized in the literature as the most important socio-economic determinant of residential
energy consumption and it is more likely to imply a higher number of appliances per
dwelling; this allows us to control possible size-effects in the energy demand (Kaza, 2010;
Kelly, 2011; ETCSCP, 2013). In addition, we consider the hypothesis that the electricity
households’ demand can vary with the characteristics of the urban context. To this aim, we
include the share of urban population over the total population (World Bank, 2015).

Since the electrical appliances considered in the analysis are not responsive to changes in
climate conditions, we do not control for average temperature or heating degree-days as in
similar studies aimed at estimating energy demand (Stern, 2012; Filippini et al, 2012; 2014).
Even though the set of considered countries belong to a homogeneous and limited
geographical area (i.e. EU Member States), we employ a fixed-effects model to account for
unobserved heterogeneity due to unobserved differences across national innovation systems,
market and institutional settings and cultures.

By defining E;, the annual level of total electricity consumption expressed in kWh and
demanded by households for using the two groups of appliances, the panel fixed-effect
demand equation is defined as follows:

GDP
In (E) = o + i (Rt B2 (555) + B In(Dwesizye +
L

(3)

Urb
+ B4 In ( Pop

POP )i't + 6t + Ei,t

where P, and %represent, respectively, end-use electricity prices per KWh (International

Energy Agency and Eurostat) and gross per-capita income (World Bank), both expressed in
purchase-power parity (PPP) 2005 US dollars, Dweys;,, denotes the average household size in

PP is the urban population as a share of total population, 8, indicates the

Urb
squared meters, — ==
set of time dummies with t = 1990, ...,2010, «; is the country fixed effect and ¢;, is the
idiosyncratic error term. We calculated the natural logarithms of both dependent and
independent variables, hence the estimation results represent demand elasticity changes with
respect the input employed. Descriptive statistics for these variables are reported in Table Al
of the Appendix.

Given that our dataset allows to differentiating energy consumption by type of appliance, we
provide also disaggregated results by separating intermittent (washing machines and
dishwashers) and continuous (refrigerators and freezers) appliances. By doing so, we expect
not only finer elasticity estimations in the demand function, but also an additional control in
the stochastic frontier model which mitigates the bias deriving from those intermittent
appliances more prone to be characterized by rebound effects, thus producing more reliable
efficiency scores. The results of demand elasticity estimations are showed in Table 1 and
Table 2.
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3.3 Separating technical efficiency

In order to derive a measure of EE performance, we assume the technical efficiency as a
function of technology. Hence, the technology level drives the process of energy saving
through the increasing development and market penetration of EE technologies. To this aim,
we employ SFA technique, which here requires a well-defined input minimisation setting
through the use of a cost function. In energy economics, several studies have successfully
adjusted the production efficiency analysis using SFA to the framework of household’s
energy demand. Accordingly, households purchase and combine inputs to benefit from the
utility represented by a composite of energy commodities (Filippini, 1995; Filippini and
Pachauri, 2004; Filippini and Hunt, 2012). More in detail, “the production of energy services
can be represented with a production function and a set of input demand functions” (Filippini
et al., 2014, p. 75). By this definition, the ‘production frontier’ provides the minimum energy
input used by a household, for given level of output (i.e. energy services). Departing from this
conceptual framework, the stochastic input-demand frontier cost function in a panel setting is
given by:

Ejy =X 1B + € (4)

€ir = Vip T Uit ()

i 2Y. 0y~ 2 (6)
Vie~iid N'(0,0%); uge~ 11D Fy(w?)

where E;, represents the theoretical demand frontier, x; , the vector of inputs and controls and
p the vector of unknown parameters to be estimated. The error term is composed by an
inefficiency component, u; ¢, that follows here a generic distribution F, with support defined
over R* (e.g., truncated normal or exponential) and scale parameter w, and an idiosyncratic
component, v;., that is normally distributed and represents measurement errors in
consumption reporting and other random factors. Both the error components are assumed to
be independent from x. Furthermore, by denoting z;, as a vector of exogenous variables
(including a constant term) affecting the level of inefficiency and i a vector of unknown
parameters to be estimated, it is possible to explicitly model the statistical distribution of the
inefficiency term as follows:

Uit = Zil,tlp (7)

According to the stochastic frontier framework, the actual demand level E;. equals the
theoretical frontier E;;, plus the one-sided error u; ., whose distribution depends on the vector
of auxiliary variables z;,. In order to model a technology-driven technical efficiency, we
include the two technology components as exogenous auxiliary variables. Besides the
advantage of directly accounting for the effect of technology market penetration, such a
choice allows to exploit a greater heterogeneity, over time and across countries, of the
efficiency process which also facilitates the model convergence.
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3.4 Estimation

There is no unanimous consensus among the empirical scholars upon the best efficiency
estimator in a panel stochastic frontier setting. Although Cornwell and Schmidt (1996) point
out that repeated observations over time should allow for some advantage as more precise
estimations of technical (in)efficiency, when dealing with panel data several issues have to be
carefully considered.

The empirical literature on stochastic frontier analysis has evolved in a variety of
contributions® mainly distinguishable in fixed and random effects model (FE and RE
henceforth). FE specification models allow for capturing unobserved heterogeneity among
units of analysis but in the specific case of SFA they are subject to some limitations. By
intrinsic modelling construction, the standard FE model treats the unit-specific inefficiency
levels as fixed, meaning that the inefficiency term captures all the heterogeneity with no
possibility to distinguish between persistent actual inefficiency and time-invariant
heterogeneity and with overestimation of the inefficiency component. Moreover, no
distributional assumptions are made upon the inefficiency term (which remains constant over
time) as well as on the correlation between inefficiency term, independent variables and
idiosyncratic error term. Although some modelling alternatives have been proposed to
overcome these limitations, as the Cornwell, Schmidt and Sickles' time-varying random-
quadratic trend model or the parametric extension by Lee and Schmidt (1993), simple FE
formulations preclude the possibility to disentangle between actual inefficiency and unit-
specific heterogeneity.

On the other hand, the random effect model as originally proposed by Pitt and Lee (1981)
assumes unit-specific inefficiency, although remaining time-invariant in its basic formulation.
In our case, this means that only the variation across countries would be explained. Further
extensions introduced different distributional assumptions, heteroscedasticity in the
inefficiency term (Kumbhakar and Lovell, 2000) and time-varying specification in order to
overcome the rigid assumption of time-invariant inefficiency, in particular in panel data with
long T (Battese and Coelli, 1992; 1995; Kumbhakar, 1990).

An interesting class of models allows for explicitly separating the unobserved heterogeneity
affecting the distribution of inefficiency term through variables able to explain the
inefficiency level but not directly entering the production process. The distribution of
inefficiency term u can be modelled as a function of a vector of auxiliary variables z. It is
thus possible to model the mean (Kumbhakar et al., 1991; Battese and Coelli, 1995; Huang
and Liu, 1994), the variance (Caudill and Ford, 1993; Caudill et al., 1995; Hadri, 1999) or
both parameters of the distribution (Wang, 2002; Wang and Schmidt, 2002). For all of these
combinations, it is important to point out that the assumption of non-correlation between the
set of predictors and the auxiliary variables must hold. In this respect, Stern (2012) argues that
if "a sufficient number of auxiliary variables that co-vary with the unobserved state of
technology can be included in the model, the correlation between the remaining residual term
and the regressors will be eliminated”. In addition, the assumption of strict exogeneity when
the z vector is included should facilitate the model convergence.

A possible approach to estimate the inefficiency determinants by using auxiliary exogenous
variables is the two-step procedure. This envisages the estimation of the standard production
or cost function in the first step, while in the second step the efficiency scores are regressed
over a set of auxiliary variables. Although relatively easy to be implemented, this approach
can produce biased results both in the case of heteroscedasticity, i.e. when the vector of inputs
x and the vector of auxiliary variables z are correlated, as well as when z is correlated with
the idiosyncratic term v (Wang and Schmidt, 2002).

% For a review of SFA models see Murillo-Zamorano (2004).
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Interesting solutions have been introduced for addressing the issue of unobserved
heterogeneity in the True Fixed Effect and True Random Effect model (TFE and TRE)
(Greene, 2005a,b), allowing to disentangle the time varying efficiency level from time
invariant unobserved heterogeneity. Moreover, a valuable feature of the TFE and TRE model
is that they are consistently and efficiently estimated by the means of maximum likelihood
estimation (MLE) method, thus correcting the shortcomings deriving from the two-step
procedure,

Nevertheless, the TFE model is not exempt from some limitations. In particular, some
inconsistency may arise in small panel samples, especially when T is short (Greene, 2005a).
In addition, the unit-specific intercepts can be inconsistently estimated in panel data
characterised by large N and short observation periods, due to the incidental parameter
problem (Neyman and Scott, 1948; Lancaster, 2002). In this respect, Belotti and Ilardi (2012)
recently demonstrated that the inconsistency bias is negligible in samples with T longer than
10 years, thus allowing the validation of our empirical strategy, which relies on the TFE
model,

With respect to the possible modelling choice of the inefficiency term as a time variant or
invariant process, considering that our dataset includes a rather long period of observations
(T = 21), a time-varying specification seems to be the most plausible choice. Statistical
support to this hypothesis is also signalled by the significance of time dummies in the
electricity demand estimation and further confirmed by the preliminary specification of the
stochastic frontier energy demand function a la Battese and Coelli (1992) (see Table 3).

The issue of unobserved heterogeneity assumes relevant importance in cross-country
comparisons, given that the variance distribution of the inefficiency term is directly governed
by the technology dynamics. Accordingly, we can exploit the advantages of fixed effects
estimator fruitfully employed in the empirical innovation literature for addressing different
country-specific capabilities to innovate or other factors not explicitly included as explanatory
variables, while minimising the above-mentioned shortcomings arising when the FE
specification is used in the stochastic-frontier setting. At the same time, the specific effect of
innovation process, here represented by the technology components calculated for the two
groups of domestic appliances, is explicitly taken into account by introducing
heteroschedasticity in the technical inefficiency component. In doing so, the variance of
inefficiency term is expressed as a function of the covariates defined in the vector of auxiliary
variables z, which map the dynamics of innovation process both in its national and
international dimension.

4 Results and discussion

4.1 Energy-demand estimations

Table 1 reports our baseline estimates of the (derived) demand for electricity based on a
standard linear fixed effect model (eq. 3). At this stage we cannot claim causal relationship
between our set of drivers and the demand for electricity as simultaneity between demand and
prices and omitted variable bias are likely to give rise to endogeneity. Nevertheless, they

° In this respect, Farsi et al. (2005) argued that the TFE estimator can be also estimated by using the Least
Square Dummy Variable estimator specifically adjusted with Mundlak's (1978) means, showing that both
methods reduce the estimation bias by separating the time-invariant unobserved heterogeneity, captured by the
Mundlak's group means, from technical inefficiency. Nevertheless, the authors found inconsistent results due to
the different estimation methods, since the TFE model relies on the convergence of simulated maximum
likelihood.

1 The stochastic frontier function has been estimated with Stata software v. 13.1 using the recent sfpanel
command by Belotti et al. (2013).
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represent useful descriptive tools to identify relationships between our variables of interest.
We first estimate the demand function for total demand of electricity (columns 1 and 2) which
is then split into the demand for electricity to operate washing appliances (washing machines
and dishwashers, columns 3 and 4) and to operate cooling appliances (fridges and freezers,
columns 5 and 6). For all categories, we proceed in two steps. First, we do not consider
technology trends explicitly (columns 1, 3 and 5) but leave technical change to be explained
by time-specific and country-invariant unobserved components captured by time dummies.
Second, we introduce our measure of technology as defined in section 3.1 as additional
covariate.

In all cases, the price elasticity of the demand for electricity is negative and significantly
different from zero. The range of variation of point coefficients (between 0.144 and 0.225
depending on the appliance and specification) is consistent with the existing literature
(Alberini and Filippini, 2011 among others). The elasticity of energy consumption to energy
prices is slightly higher for cooling appliances than for washing appliances although such a
difference is not statistically significant. The price elasticity of the demand for electricity
tends to be smaller once we include the stock of technology as the two variables are positively
correlated2. The positive correlation is potentially due to the fact that higher energy prices
induce consumers to increase the demand for more energy efficient appliances and induce
producers of appliances to innovate in order to offer more energy efficient appliances. GDP
per capita is generally negatively correlated with electricity consumption but the relationship
is always insignificantly different from zero. Average dwelling size is an important driver of
energy consumption, with an elasticity around one when considering all appliances, greater
for washing appliances than for cooling appliances and significantly different from zero in all
specifications. This strong result is in line with the discussion presented in section 3.2. It
should be noted, however, that the average dwelling size is strongly correlated with affluence,
as richer households may afford larger houses:. To understand whether the absence of a
significant relationship between energy demand and GDP per capita is due to the inclusion of
average dwelling size, that already captures the affluence of households, we estimate our
derived demand equation excluding the average dwelling size from the set of predictors
(Table 2). Even when we exclude average dwelling size, our measure of affluence does not
influence energy consumption after controlling for time-invariant unobserved difference in
GDP per capita (fixed effect), thus signalling a relevant inelasticity of household electricity
demand for the set of appliances here considered. The share of urban population is not
significantly related to energy demand, the effect being generally negative (with one
exception) but always far from significance. This variable, however, turns out to be
significant for total electricity demand and cooling appliances when we exclude average
dwelling size from the set of covariates (Table 2). This is in line with the hypothesis that
urbanized areas are characterized by smaller dwellings, thus resulting in lower electricity
consumption.

12
When regressing the log of the patent stock on the electricity price and a set of year and country dummies we
obtain an elasticity of the patent stock to energy prices of about 0.32, significant at the 1 per cent level.

13 The correlation between the two measures is 0.72.
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Table 1 — Demand for electricity (baseline estimates)

1) ) @) (4) (%) (6)
Dep: log electr. consumption All appliances All appliances Washing appl Washing appl Cooling appl  Cooling appl
log(electr_price)  -0.207*** -0.182*** -0.171** -0.144** -0.225%** -0.204***
(-5.73) (-8.38) (-2.98) (-2.74) (-4.89) (-5.61)

log(GDP pc) -0.0555 -0.0829 -0.0841 -0.114 -0.0629 -0.0858
(-0.39) (-0.90) (-0.63) (-1.28) (-0.37) (-0.63)

log(av size dwelling) 0.965** 0.917*** 1.202** 1.149%** 0.815** 0.774***
(2.70) (5.08) (2.39) (3.38) (2.73) (4.61)

Share urban population -0.230 -0.0689 -0.0746 0.102 -0.272 -0.136
(-0.63) (-0.23) (-0.09) (0.13) (-0.67) (-0.32)

1991 (D) 0.0113 0.0361* 0.00518 0.0324* 0.0145 0.0353*
(0.90) (2.25) (0.49) (2.24) (0.95) (2.04)

1992 (D) 0.00109 0.0438* -0.0103 0.0365* 0.00772 0.0436
(0.07) (1.96) (-0.87) (1.92) (0.38) (1.69)

1993 (D) -0.0198 0.0381 -0.0351** 0.0282 -0.0104 0.0381
(-1.18) (1.47) (-3.00) (1.27) (-0.43) (1.28)

1994 (D) -0.0337 0.0404 -0.0505%*** 0.0306 -0.0238 0.0384
(-1.71) (1.35) (-4.05) (1.25) (-0.83) (1.10)

1995 (D)  -0.0587** 0.0304 -0.0751%** 0.0224 -0.0487 0.0261
(-2.54) (0.92) (-4.87) (0.81) (-1.49) (0.68)

1996 (D)  -0.0697** 0.0334 -0.0906*** 0.0223 -0.0565 0.0299
(-2.61) (0.92) (-5.02) (0.75) (-1.51) (0.70)

1997 (D)  -0.0748** 0.0378 -0.0984*** 0.0249 -0.0599 0.0346
(-2.44) (0.95) (-4.33) (0.74) (-1.42) (0.74)

1998 (D)  -0.0876** 0.0340 -0.113*** 0.0205 -0.0715 0.0304
(-2.56) (0.80) (-4.38) (0.59) (-1.53) (0.60)

1999 (D)  -0.113*** 0.0161 -0.141%** 0.0000907 -0.0945* 0.0136
(-3.33) (0.40) (-5.13) (0.00) (-2.00) (0.28)

2000 (D)  -0.129%*** 0.00676 -0.153*** -0.00513 -0.113* 0.000808
(-3.44) (0.17) (-4.78) (-0.15) (-2.19) (0.02)

2001 (D)  -0.144*** -0.00215 -0.168*** -0.0127 -0.128** -0.00946
(-3.86) (-0.05) (-5.00) (-0.35) (-2.45) (-0.19)

2002 (D)  -0.166*** -0.0190 -0.193*** -0.0320 -0.149** -0.0255
(-4.53) (-0.46) (-5.66) (-0.81) (-2.80) (-0.51)

2003 (D)  -0.187**= -0.0357 -0.213*** -0.0476 -0.170** -0.0436
(-4.74) (-0.78) (-5.89) (-1.08) (-2.96) (-0.80)

2004 (D)  -0.203*** -0.0478 -0.230*** -0.0594 -0.186** -0.0559
(-4.67) (-0.96) (-5.68) (-1.25) (-2.93) (-0.94)

2005 (D)  -0.209*** -0.0497 -0.239*** -0.0642 -0.191** -0.0570
(-4.28) (-0.91) (-5.04) (-1.16) (-2.75) (-0.89)

2006 (D)  -0.214*** -0.0501 -0.238*** -0.0585 -0.198** -0.0603
(-4.12) (-0.85) (-4.59) (-0.96) (-2.64) (-0.88)

2007 (D)  -0.214*** -0.0442 -0.237*** -0.0513 -0.198** -0.0556
(-3.77) (-0.70) (-4.22) (-0.77) (-2.40) (-0.76)

2008 (D)  -0.229**= -0.0513 -0.263*** -0.0678 -0.209** -0.0593
(-4.18) (-0.80) (-4.97) (-1.09) (-2.49) (-0.77)

2009 (D)  -0.260*** -0.0763 -0.287*** -0.0862 -0.243** -0.0894
(-4.96) (-1.26) (-5.59) (-1.41) (-3.00) (-1.22)

2010 (D)  -0.270*** -0.0811 -0.297*** -0.0898 -0.254** -0.0953
(-5.01) (-1.30) (-5.47) (-1.40) (-3.06) (-1.26)
log(technology) -0.0653*** -0.0715*** -0.0548**
(-4.06) (-5.47) (-2.28)

N=200. Fixed effect model. Dependent variable: log of electricity consumption. t statistics based on robust standard errors in
parenthesis. * p<0.1, ** p<0.05, *** p<0.01
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Table 2 — Demand for electricity (excluding average dwelling size)

@ (2) 3)
All Washing Cooling
appliances  appliances  appliances
log(electr_price)  -0.220"" -0.166™ -0.248"™
(-5.11) (-2.22) (-5.31)
log(GDP pc) -0.0350 0.0628 -0.0636
(-0.68) (0.54) (-0.94)
Share urban population ~ -0.364 " -0.0493 -0.507"
(-2.21) (-0.06) (-2.32)
Time dummies Yes Yes Yes
N 200 200 200

Fixed effect model. Dependent variable: log of electricity
consumption. t statistics based on robust standard errors in
parenthesis. * p<0.1, ** p<0.05, *** p<0.01

In summary, we observe a strong decrease in energy consumption in all countries after
controlling for our control variables and time-invariant unobserved differences across
countries (time dummies in column 1, 3 and 5): electricity consumption to operate our
selection of home appliances given income, electricity prices, average dwelling size and share
of urban population decreased of about 27 percent over the period 1990-2010, with a slightly
greater decrease for washing appliances than for cooling appliances. Time dummies in
columns 1, 3 and 5 are strongly significant. Most importantly, when controlling for our
variable of technology, time dummies (i.e. trends common to all countries) lose significance,
while the technology variable (time- and country-specific) represents a good predictor of
electricity saving. The elasticity is around 0.065, slightly greater for washing appliances than
for cooling appliances, and strongly significant. This result highlights the relevance of
technology as a means for reducing electricity consumption to satisfy a given demand for
energy services.

In light of the previous results, as a preliminary step for conducting further analysis on
technical efficiency we test the hypothesis of normally distributed residuals on the energy
demand estimation and significantly reject the normality assumption. This revealed the
existence of inefficiency not only captured by the idiosyncratic error and allows us to enrich
the analysis by widening the empirical framework to stochastic frontier models.

4.2 Disentangling energy efficiency from energy saving

In order to derive a reliable specification of the frontier model, we provide a first evidence
by testing the existence of time-varying inefficiency. To this aim, we employ the model by
Battese and Coelli (1992), which accounts for the inefficiency term to be varying over time.
Accordingly, our stochastic frontier model is specified as follows:

UTbPOP)
POP /it (8)

GDP
In (Bye) = Bo + B (B o1 (355) +In(Dwesizedic +In
Lt

+ Ve + U

14
We used the Shapiro-Wilk test. Results are available upon request.
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where P,, =—, Dwes;,, and —=2 represent the demand drivers previously described, u; , is
POP POP ’

a non-negative random variable which is assumed to account for technical inefficiency and
follows a truncated normal distribution, while n; , = e 1t=T) js a time-varying parameter to
be estimated together to the vectors of § with t = 1990, ...,T. These preliminary results
(Table 3) show coherent and significant elasticity values for the appliance-specific electricity
demand, the latter being negatively correlated with increases in prices. The relatively inelastic
value of the price coefficient (20%) signals a low responsiveness of households to price
changes, in line with the assumption that the use of large traditional electrical appliances is
aimed at satisfying non-substitutable needs. This evidence is further supported by the
insignificance of the income variable. A factor strongly affecting the appliance consumption
is represented by the household size, since larger dwellings not only imply more space for
appliances, but the term is also presumably associated to higher incomes and more
sophisticated needs to be satisfied. Most importantly, our preliminary estimations show that
the efficiency level is affected by time variation, the n parameter being strongly significant.
This suggests the need of modelling the inefficiency term as a time-varying variable.

Table 3 —Stochastic frontier estimates based on the Battese and Coelli (1992) model

Dep. variable: BC92
log electr. consumption
log(electr_price)  -0.205

(-5.71)

log(GDP pc)  -0.0858

(-0.81)

log(av. size dwelling) ~ 0.853™
(2.52)

Share of urban -0.428
population  (-1.45)
Intercept -1.824

(-0.53)
Sigma  -4.199
(-7.78)

Gamma 25147
(4.16)

Mu  5.895

(2.49)

Eta 0.00222""

(3.24)

Lambda 3.515
N 200

Battese and Coelli (1992) model. t
statistics based on robust standard
errors in parenthesis. * p<0.1, **
p<0.05, *** p<0.01. A (Signal-to-Noise
ratio) = g,,/a, provides information on
the relative contribution of u;; and v;;
on the decomposed error term &;;

In this respect, it has been argued that the contribution of technology in the framework of
stochastic frontier can be indirectly captured by a number of factors, as for instance by the
price and income effects (see Filippini and Hunt, 2012). More recently, Filippini et al. (2014)
introduced a specific variable to control the amount of wasted energy due to households not
using the best available technologies, although admitting the limitations of this approach, such
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as the lack of data on consumers’ behaviour, heterogeneity in the level of electricity
consumption and the fact that such a method is not able to disentangle the energy saving
deriving from a more efficient use of inputs or from the adoption of energy saving
technologies.

In this respect, we overcome the limitations of the current literature which relies on the
implicit modelling of technology, which is generally treated as a latent process. On the
contrary, we assume that the technology level is strictly connected to the efficiency
performance. By exploiting the advantages of the recent empirical literature, we model the
variance distribution of the inefficiency term. As a result, our energy-input demand directly
incorporates the appliance-specific technology level which governs the efficiency dynamics.

In light of the previous considerations and consistently with our empirical strategy, the
technology-augmented stochastic frontier model is specified using the TFE model as follows:

GDP Urbpop
In (Ey) = a; + By In(R) ¢+ Bz In (—POP)M +In(Dwesize)se +‘“( POP )Lt )
+ vi,t + ui,t
10
Ui = Bit ()
Zi't — ln (ZiD’tomestic + forelgn) (11)

in which the technical inefficiency component u is assumed to be heteroscedastic and its
variance is expressed as a function of z.

Table 4 — Stochastic frontier analysis with TFE model

) (2)

Dep variable: log electr  Truncated
consumption normal

log(electr_price) -0.214***  -0.213***
(-3.59) (-10.27)

log(GDP pc) -0.477***  -0.488***
(-5.83) (-12.99)

log(av size dwelling)  0.623** 0.650***

Exponential

(2.13) (4.39)
Share urban population  -1.297***  -1.329***
(-5.22) (-7.27)

Variance of the inefficiency component
log(technology)  -0.812* -1.025***

(-1.71) (-3.38)
Sigma U (average) 0.0429 0.0210
SigmaV ~ 0.0388 0.0393
Lambda 1.106 0.534
N 200 200

True fixed effects model. t statistics based on robust
standard errors in parenthesis. * p<0.1, ** p<0.05, ***
p<0.01
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Table 4 presents the estimation results including the total effect of technology, in which z
represents the sum of domestic and foreign technology components. The frontier coefficients
are in line with those deriving from previous specifications, with the exception of per-capita
income and urban population, which are both significant and negatively correlated to the
electricity consumption. In particular, the income effect is also explained by the share of urban
households, which are found to make a lower use of large traditional appliances, or
alternatively, to employ more efficient appliances. This result is consistent with the empirical
literature that put in relation the electricity consumption with the urban context. For instance,
Brounen and Kok (2011) provided evidence that more densely populated areas positively affect
the rate of energy-labelled dwellings in Netherlands, while Kaza (2010) found negative
correlation between electricity consumption and urban areas when the latter are compared to
rural ones. Relevant implications can be attributed to the role of innovation in explaining the
energy saving performances. The market penetration of the total stock of new EE appliances
produces significant reduction of households’ energy consumption via technology-driven
technical efficiency. Results are robust to the choice of the distribution of the inefficiency
component, either the truncated normal or the exponential distribution.

Figure 2 — Efficiency scores by country — total electricity consumption
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Figure 2 shows the trends of efficiency scores by country for the truncated normal and
exponential distributions. Technical efficiency starts from very high values (close to unity,
meaning full efficiency) in all countries. While in some countries it remains rather stable
(Austria, France, Greece, Netherlands, Slovenia, Sweden and the UK), we observe a
remarkable efficiency gain in Denmark and Germany and, to a lesser extent, in Italy.

> When statistically compared, the two distributions are consistent with significant correlation coefficient of
0.966 and a Spearman correlation of 0.972.
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Table 5 — Stochastic frontier analysis with TFE model (domestic vs foreign technology)

Dep variable: log electr

consumption (1) )
log(electr_price) -0.215***  -0.217***
(-3.56) (-3.05)
log(GDP pc) -0.477***  -0.533***
(-6.25) (-6.74)
log(av size dwelling)  0.615** 0.708***
(2.31) (2.66)
Share urban population  -1.327***  -1.246***
(-5.49) (-4.26)

Variance of the inefficiency component
log(foreign_tech)  -1.208*

(-1.85)
log(domestic tech) -0.817**
(-2.43)
Sigma U (average)  0.0223 0.0189
SigmaV ~ 0.0384 0.0409
Lambda 0.581 0.462
N 200 200

True fixed effects model with exponential distribution.
t statistics based on robust standard errors in
parenthesis. * p<0.1, ** p<0.05, *** p<0.01

As previously discussed, the import of new energy efficient appliances may assume relevant
importance in countries where the innovative effort of domestic firms is negligible since it
allows these countries to reach increasing levels of energy security and to significantly
contribute to reducing polluting emissions deriving from fossil fuel energy generation. In
order to disentangle the role of international market, we separate the z variable in two
components, referring respectively to the domestic and foreign market penetration of new EE
appliances. Results reported in Table 5 (assuming an exponential distribution for the
inefficiency component) confirm the significant role of international technology diffusion.
Even though the coefficient associated to the domestic market is larger than the one referring
to the import component, the latter shows stronger significance, meaning that, in a well-
established market relationship, the invention and diffusion efforts of foreign innovative firms
are significant substitutes to those carried out by domestic firms.

As a further step, we split total electricity consumption into consumption to operate
cooling appliances and consumption to operate washing appliances (Table 6). By this
separation, we expect relatively lower influence of the rebound effect in cooling appliances,
which are characterized by continuous operation and do not allow households to vary the
amount of energy consumed. In both cases we observe similar results for the input of the
stochastic frontier function and a significant effect of the technology variable, slightly bigger
in magnitude for washing appliances than for cooling appliances.

Figure 3 shows efficiency scores for the two categories of home appliances as well as the
efficiency scores estimated for total electricity consumption. We observe that technical
efficiency of washing appliances is generally lower than the one of cooling appliances but it is
increasing at faster pace.
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Table 6 — Stochastic frontier analysis with TFE model (by appliance)
Yy )

Dep variable: log electr ~ Washing Cooling
consumption appliances  appliances
log(electr_price) -0.184***  -0.204***
(-7.85) (-8.14)
log(GDP pc) -0.557***  -0.466***
(-12.86) (-11.88)
log(av size dwelling)  0.870*** 0.535***

(5.14) (3.54)
Share urban population  -1.217***  -1.423***
(-5.77) (-7.77)

Variance of the inefficiency component
log(technology) -0.881***  -0.691***

(-2.68) (-2.79)
Sigma U (average) 0.0215 0.0398
SigmaV  0.0453 0.0316
Lambda 0.474 1.260
N 200 200

True fixed effects model with exponential distribution.
t statistics based on robust standard errors in
parenthesis. * p<0.1, ** p<0.05, *** p<0.01

Figure 3 — Efficiency scores by country — by type of appliance
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5 Conclusions

The present study presents an original methodology to account for the role of innovation
process when investigating the level of efficiency processes by means of stochastic frontier
analysis, a well-known parametric technique able to disentangle the technical efficiency as a
measure of distance between the observed and the maximum theoretically efficient frontier.

In order to test the effectiveness of the methodology here proposed, we analyse the
efficiency trend in two groups of traditional home appliances in the period 1990-2010 and in
ten European countries. The choice of using domestic appliances aimed at fulfilling primary
needs such as cooling or washing which show low behavioural consumer’s responsiveness to
changes in energy prices, allows us to minimise the share of energy saved due to potential
rebound effect and to better identify the impact of technology in reducing energy
consumption.

To this aim, in line with the growing empirical literature on eco-innovation, an ad hoc
patents selection is employed in order to consider specific EE technologies embodied in the
set of considered appliances, namely freezers and refrigerators, washing machines and
dishwashers.

In considering the innovation process as a whole, we model the technology invention and
diffusion process by combining patent information and data on both import and domestic
production, these latter approximating the level of market penetration of new energy efficient
appliances. In order to derive energy efficiency scores, we take advantage of the existing
literature on the derived households’ energy demand in order to fruitfully employ a
technology-augmented specification of stochastic frontier function.

Consistently with the existing literature, our results show that the most important drivers of
electricity consumption for the set of appliances under scrutiny are represented by the
electricity price and the size of dwelling, while affluence and urbanization only enter
significantly the demand function for electricity in the stochastic frontier specification.

The significance of the set of time dummies in the basic demand regression model signals a
latent important effect, which disappears when the technology enters as a covariate. This
provides a first important evidence of the relevant role assumed by the innovation process in
driving the energy reduction pattern and deserves further investigation that we address in the
second part of the analysis by employing a stochastic frontier analysis. In such a setting, the
variance distribution of the inefficiency term is explicitly modelled through two technology
components which incorporate, respectively, the effect of domestic and foreign market
penetration of new energy efficient appliances. Given the fine disaggregation of our data, we
are able to test the effects of both total and domestic vs. foreign market penetration and in
different types of appliances. This part of analysis shows that the diffusion of energy efficient
appliances is a good predictor of efficiency scores and contributes substantially to
improvements in technical efficiency. We also observe that both the domestic and the foreign
component are relevant in explaining improvements in technical efficiency.

Regarding the efficiency performance, our estimations show that the efficiency level range
from about 85 per cent to almost 100 per cent, depending on the type of appliance considered
in the analysis. This evidence suggests that households are highly efficient in combining
‘energy inputs’ at the minimum cost in order to obtain energy services such as cooling and
washing. Nevertheless, the values obtained may appear very high with respect to other studies
employing similar methodologies. On the one hand, this may depend on the methodology we
use (i.e. a true fixed effect model) that tends to underestimate cross-country differences in
technical efficiency and is more prone to provide higher efficiency levels. On the other hand,
a possible reason explaining such a difference can be the fact that our analysis focuses on
appliances classified as ‘traditional’. These latter constituted a class of devices that benefited
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from a persistent effect of technology improvements over time, with the effect of significantly
saturating their efficiency potential in terms of electricity employed.

Our study suggests relevant policy implications. State-of-the-art technology improvements
of appliance manufacturers translate into relevant improvements in technical efficiency for
what concerns the appliances under scrutiny. The efficiency gain, which implies significant
degrees of energy saving in favour of the households, is led both by domestic and foreign
blueprints. This observation has implications for both innovation policies (i.e. targeted R&D
subsidies and enforcement of IPRs) and trade policies (i.e. barriers to trade may limit further
improvements of energy efficiency).
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Appendix A — Descriptive statistics

Table A1 — Summary statistics and sources of data employed in the analysis.

Variable  Unit of measure Mean N Min  Max  SD Source
log(elec. consumption) kWh 7.276 200 6.809 7.539 0.16
log(elec. cons. cooling appl) kWh 6.792 200 6.248 7.29 0.266
log(elec. cons. washing appl.) kWh 6.258 200 5.627 6.695 0.277
log(elec. cons. freezers) kwh 6.199 200 5.611 6.541 0.233  Odyssee-Enerdata
log(elec. cons. refrigerators) kwh 5967 200 5.282 6.65 0.364
log(elec. cons. washing machines) kWh 5478 200 4.927 6.011 0.25
log(elec. cons. dishwashers) kWh 5.628 200 4.942 6.192 0.347
log(end-use electricity price) 2 dooolfarpsi(PV\L/JhS -2.071 200 -292 -1.416 0.32 IEA-Eurostat
log(per-capita income) 2005 PPP US dollars 10.181 200 9.235 10.548 0.251 Word Bank
log(dwelling size) sg. meters 4514 200 4.244 4714 0.111  Odyssee-Enerdata
Share of urban_pop percentage 0.726 200 0.548 0.868 0.095 Word Bank
log(foreign tech.) patents 2.844 200 0.076 4.825 1164 OECD REGPAT,
log(domestic tech.) patents 1545 200 0 4426 1.298 Eu,;%s'rt:;tZtR gol?ncégtM’
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Appendix B — Selection of appliance-specific energy efficiency patents

Table B1 - CPC Energy Efficiency Classes (Y02B)

Y02B 40 - "Climate Change Mitigation
Technologies"
Refrigerators or freezers

IS/%% YO02B 40/32
Y02B 40/34
Dishwashers
Z(()) /i% Y02B 40/42
Y02B 40/44
Washing machines
Y02B 40/52
Ig/%% YO02B 40/54
YO02B 40/56
Y02B 40/58
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