Des Fourmis et des Hommes

Modèles stochastiques d’interactions et rationalité individuelle active en économie du changement technique

Jean-Michel DALLE
Dominique FORAY

Cahiers d'économie et sociologie rurales, n° 37, 1995
Of Ants and Men.
Stochastic interaction models and active individual rationality

Summary – The paper presents a survey of stochastic interaction models that have been recently proposed to analyze the diffusion of technologies and standards. They range from Polya urns to Markov and Gibbs random fields and to percolation. Following this survey, the paper takes up the question of the nature of the individual rationality. These models tend to neutralize the active parts of agent’s behavior. Are particle models suitable to describe human coordination phenomena? What is the main causal force for economic history: inspired inventors or collective cumulative forces? Heroes or herds - an expression coined by Paul David?

Des Fourmis et des Hommes.
Modèles stochastiques d’interactions et rationalité individuelle active en économie du changement technique

Résumé – Ce papier s’interroge sur la nature de la rationalité des agents économiques dans les modèles d’interaction stochastique, développés notamment en économie du changement technique. Après une présentation de ce courant de recherche, l’attention se porte sur la question de la neutralisation de la rationalité active des individus dans ces modèles afin d’envisager différentes directions de développement de ce programme de recherche. Quelle est la principale force de l’économie historique : les inventeurs inspirés ou les dynamiques collectives cumulatives ? Héros ou troupeaux, pour reprendre une expression présentée par Paul David?

* IEPE-CNRS, 59-61 rue Pouchet, 75017 Paris.
** IRIS-CNRS, Université de Paris Dauphine, 75775 Paris cedex 16.
Un grand nombre de travaux sont consacrés, dans le domaine de l'économie du changement technique, à l'élaboration de modèles d'interactions stochastiques pour rendre compte de l'émergence et de la diffusion spontanées d'un standard (voir notamment Arthur, 1989; David, 1988; Dalle, 1995a; David et Foray, 1992, 1995). Nous pensons que ce point de vue est le meilleur pour montrer que les processus de changement technique sont par nature des processus de destruction de la diversité et pour identifier les facteurs qui poussent à une corrélation extrême de choix, sans besoin de mécanisme formel de coordination. Ce programme de recherche consiste notamment à spécifier les conditions (temporelles et spatiales) dans lesquelles l'émergence spontanée d'un standard a une probabilité positive de se réaliser; à étudier les conditions dans lesquelles une standardisation complète est supérieure, du point de vue du bien-être social, à la persistance d'une certaine diversité; à analyser les caractéristiques des systèmes qui, précisément, tolèrent la co-existence d'une variété de technologies; à étudier enfin comment un système peut se régénérer ou changer après s'être totalement aligné sur un standard, lequel correspond à une technologie qui entre en phase de saturation.

Un tel programme de recherche a bénéficié d'un transfert important de méthodes et d'outils venus de la physique (Dalle, 1995b). Cette manière de procéder oblige à bien spécifier les problèmes formels soulevés par le domaine particulier de l'économie de la standardisation. Autrement dit, pour reprendre l'interrogation générique de Hors et Lordon (1994), peut-on justifier, en économie du changement technique, l'existence d'une sorte de « prime » à l'alignement des choix (qui caractérise ces modèles en physique)? La réponse est positive: l'économie de la standardisation est propice à ces transferts de méthode. Basée sur l'existence de rendements croissants, l'émergence d'un standard résultant d'une parfaite corrélation des choix représenté, sous certaines conditions, un résultat socialement meilleur que celui qui résiderait dans la persistance de différentes technologies (David et Foray, 1992). Ainsi le thème de la standardisation de facto (c'est-à-dire l'émergence spontanée d'une norme en situation de rendements croissants) permet un lien simple entre le problème économique posé et le formalisme développé.

Cet article a pour objectif de discuter un point précis de ce programme de recherche, relatif à la rationalité accordée aux agents(1). Quelle est « l'épaisseur des comportements individuels » dans un mode explicatif essentiellement orienté vers des phénomènes « d'ordre spon-

---

(1) Les auteurs tiennent à remercier Giovanni Dosi, Pierre-Benoît Joly, Alban Richard et Peyton Young, ainsi que trois lecteurs anonymes pour leurs commentaires et leurs suggestions à propos d'une version préliminaire de cet article.
tané» ? C’est en lisant Arthur (1989) que l’on saisit le mieux de quelle façon ce programme de recherche mobilise un principe de causalité alternatif. Les conséquences d’un choc initial ou transitoire s’expliquent par les effets systémiques de choix additivement interdépendants, modélisés à travers des interactions stochastiques. Ce principe de causalité prend la place des comportements individuels complexes incorporant une rationalité active. Ainsi, la mise en évidence de la « beauté » de ces systèmes, de leur conduite collective -phénomène d’embarquement collectif vers un « mauvais » standard, incapacité collective à migrer ou au contraire précipitation collective (excès d’inertie et excès de vitesse de percolation, sensibilité au temps, importance de la taille du système - impliquerait la neutralisation de « l’aspect actif du comportement individuel ». Peut-on sortir de cette tension entre une capacité explicative entièrement liée aux interactions stochastiques entre agents et une capacité explicative soucieuse d’équiper les individus d’une rationalité active ? Si travailler sur des fourmis (Kirman) ou sur des « gens-qui-s’installent-dans-une-salle-de-spectacle » (Schelling) est satisfaisant pour montrer que les lois qui gouvernent l’économie agrégée ne peuvent être considérées comme dérivant du comportement d’un individu représentatif (ou non) et omniscient, le coût de ces approches semble élevé. Nous souhaitons montrer comment cette tension entre différents principes explicatifs (le principe des interactions additivement interdépendantes et le principe de l’agent individuel actif) s’aggrave avec la progression du programme de recherche. Nous souhaitons aussi esquisser les voies alternatives possibles face à cette tension analytique, en apportant les éclairages d’autres disciplines et en examinant les différentes options qui s’offrent aux économistes, soit la construction de compromis, soit la définition d’ordres, entre ces différentes structures causales.

LES MODÈLES STOCHASTIQUES D’INTERACTION: UNE MISE EN PERSPECTIVE

Le concept de changement technique localisé

L’économie de l’émergence d’un standard technologique fait référence sur le plan théorique au concept de changement technique localisé, qui s’est imposé progressivement à la suite des grands débats de l’économie historique de la croissance sur les caractéristiques respectives des trajectoires de progrès technique aux États-Unis et en Grande-Bretagne au XIXe(2). Dans cette approche, les effets d’apprentissage localisé confé-

rent aux choix des techniques, essentiellement statiques et microéconomiques, des implications dynamiques, de long terme et macroscopiques. Le passage suivant nous semble bien rendre compte du caractère précurseur des débats de l’économie historique sur les facteurs déterminant la direction du progrès technique. Il est aussi intéressant car il fait déjà référence à la tension entre les deux principes explicatifs que nous avons évoquées :

« Parce que l’apprentissage technologique dépend de l’accumulation des expériences de production effectives, des choix à courte vue concernant le produit et surtout la méthode de production, parmi un ensemble de méthodes connues, régiront ce qui sera appris ultérieurement. Le choix de technique devient le lien à travers lequel des conditions économiques prédominantes peuvent influencer les dimensions futures des connaissances techniques. Ce n’est pas le seul lien imaginaire. Mais il peut être beaucoup plus important historiquement que la seule réponse rationnelle d’inventeurs optimisateurs, que les économistes ont trop souvent considérée comme responsable de l’apparition de changements induits dans l’état de la technologie » (David, 1975).

La vision de l’innovation qui procède de cette construction correspond dès lors à la façon dont les structures d’interdépendance entre les agents – adopteurs et utilisateurs – véhiculent le contenu de choix initiaux et donnent une certaine persistance aux conditions historiques et à certaines circonstances transitoires, dans lesquelles les premiers choix ont été accomplis.

Les urnes de Polya

Un des premiers économistes a avoir montré les implications de la localisation du progrès technique (au sens de la fonction de production) en analysant la rivalité entre technologies et l’émergence de standards est W. B. Arthur (1989). Son point de départ est le suivant : il y a de multiples raisons pour lesquelles la décision d’un agent d’adopter telle ou telle technologie va dépendre des choix des autres agents de l’industrie ou de l’économie. Ces raisons sont souvent résumées sous la notion d’externalités de réseau (Katz et Shapiro, 1985) ou de rendements croissants d’adoption. Par exemple, les technologies de la communication sont d’autant plus utiles que le nombre d’abonnés est grand. Plus généralement, la diffusion d’une technologie est composée d’une série d’adoptions et d’expérimentations, qui opèrent comme autant de processus d’apprentissage et de découvertes, améliorent les performances de cette technologie et élèvent la probabilité que de nouveaux agents l’adoptent à leur tour.

Le modèle proposé par Arthur, Ermoliev et Kaniowski (1987) est maintenant bien connu : deux technologies diffusent au sein d’une population d’adopteurs potentiels qui arrivent les uns après les autres sur le
marché. Les agents choisissent une technologie en tenant compte de leurs préférences personnelles mais l’utilité de chaque technologie dépend aussi du nombre d’agents qui l’ont précédemment adoptée. D’un point de vue mathématique, les processus étudiés sont de type « urnes de Polya » : on considère dans une urne un certain nombre de boules rouges et noires représentant les proportions des technologies au temps t, que nous représentons par le vecteur x. La probabilité qu’un nouvel arrivant opte pour l’une ou l’autre des technologies dépend de x. Nous la notons \( P(x) \). Arthur, Ermoliev et Kaniovski ont montré que, sous certaines hypothèses, le système convergeait vers un point fixe de \( P \). Selon ces auteurs, on assiste donc à l’apparition d’une structure du fait de l’interaction entre les agents : l’agrégation de comportements d’adoption coordonnés par des externalités (ou rendements croissants d’adoption) conduit à l’émergence « spontanée » d’une structure.


Nous allons voir comment les différentes critiques apportées au modèle de base ont donné naissance à de nouvelles problématiques qui tendent à prendre en compte la nature plus complexe de l’économie.

**Une information non individualisée**

Dans ces modèles d’urnes, l’information dont disposent les agents est imparfaite, puisqu’ils n’ont pas accès aux choix de chacun des adopteurs qui les ont précédés. L’information est en effet agrégée, résumée dans un coût ou dans la performance d’un dispositif, qui « ponctualise » toute la complexité de l’histoire des adoptions antérieures. Cette hypothèse est discutable, et particulièrement lorsqu’elle concerne le début du processus de diffusion, c’est-à-dire au moment même où, selon les conclusions de ces modèles, le « choix » se fait (Dalle, 1995b). Les premiers agents, en effet, ne peuvent s’appuyer sur des séries temporelles probabilistes robustes sur les futurs possibles (Kurz, 1988). Plutôt que de s’intéresser à la répartition agrégée des premiers choix entre les deux options, ils chercheront à savoir qui a fait quel choix. En outre, des informations

---

contradictoires circuleront probablement lorsque certains agents auront pris parti pour l’une ou l’autre des technologies et chercheront à inciter d’autres agents à faire le même choix.


**Choix non révisables et information globale**

Nous présentons à présent deux autres critiques, qui seront prises en compte ensemble dans la construction du *voter model*.

Premièrement, les modèles basés sur un schéma d’urne supposent que les agents choisissent une option une fois pour toute. Cette hypothèse implique que les variations dans les proportions de balles placées dans l’urne ne peuvent provenir que d’additions au stock de balles (c’est-à-dire de nouvelles entrées); ceci ne permet donc pas de considérer la révision de choix (opérée par exemple à l’occasion d’une opération de remplacement) en tant qu’agent essentiel de la modification des proportions. Or dans de nombreuses situations, le cœur de la dynamique est régi non pas par l’entrée de nouveaux agents effectuant un choix unique et déterminé mais par les révisions successives de choix effectués par des agents, appartenant à une population finie d’adopteurs.

Deuxièmement, ces modèles supposent que, pour effectuer leur choix, les agents utilisent une information globale sur les parts de marché des technologies en compétition: c’est la distribution totale des couleurs dans l’urne qui détermine la probabilité du prochain tirage. Cette hypothèse est discutable car, dans de nombreuses situations concrètes, l’agent utilise une information locale. En d’autres termes, il prend en compte la distribution des choix antérieurs effectués dans son voisinage. Quand vous souhaitez acheter un ordinateur, ce n’est pas les ventes mondiales qui influenceront votre choix (même si à un certain niveau de
«généricité», il y a effectivement une influence notamment sur le prix, la qualité des biens complémentaires et sur l’information elle-même), mais plutôt les décisions qui ont été prises dans votre laboratoire ou votre cercle d’amis. Pour étudier des situations où l’information qui compte est locale, il convient donc d’intégrer une dimension spatiale. Chaque agent économique est situé dans un espace constitué par un petit nombre d’autres agents représentant ses partenaires privilégiés. Ces espaces peuvent être (ou non) interrelïés. Dans cet esprit, Dosi et Kaniowski (1993) considèrent un modèle spatial constitué de plusieurs urnes. Le formalisme des urnes de Polya, déjà daté mathématiquement, semble cependant peu adapté. Tous les modèles d’urnes se réfèrent à des processus strictement temporels, en négligeant la dimension spatiale de l’économie, ou plus précisément la dimension de la proximité, qui n’est pas nécessairement géographique. De surcroît, ces auteurs posent ex ante l’existence de plusieurs lieux, comme dans certains modèles de différenciation géographique, alors qu’il serait souhaitable d’endogéniser la dimension spatiale et de montrer comment des «lieux» apparaissent sans être supposés au départ (Salais et Storper, 1993).


Dans le voter model, un nombre fini d’agents sont situés aux nœuds d’un réseau fréquemment torique, le plus souvent en dimension 1 (cercle) ou 2 (morceau de Z^2 «replié sur lui-même»). Ils vont se déterminer en fonction des choix de leurs voisins. Heuristiquement, on peut considérer que le voisinage de chacun des agents constitue une sorte de petite «urne de Polya» locale où ils tirent une boule selon une loi de probabilité uniforme. Ils adoptent la couleur de la boule tirée. Ils accèdent donc à un échantillon d’information véhiculée par un petit nombre d’autres agents, toujours les mêmes, dont seuls dépend leur choix: ce sont des modèles markoviens «spatiaux». La propriété essentielle, notée par David (1988) et David et Foray (1992), est que les voisinages sont interconnectés. Il y a autant d’urnes que d’agents, et ces urnes sont très fortement liées entre elles. Ces auteurs montrent que le voter model conduit au lock in uniforme avec une population infinie en dimensions 1 et 2.

Un début de synthèse: les «champs de Gibbs»

Toutefois, cette propriété du lock in constitue à la fois l’une des raisons essentielles de la notoriété de ces modèles, mais aussi un élément des plus critiquables, puisque le lock in est trop strict, comme le notent David et Greenstein (1990). Selon ces modèles, la fin de l’histoire est ar-
teinte en un temps assez court, et l’on ne peut entrevoir aucune possi-
bilité d’évolution dynamique des technologies, telle que Foray et Grübler
(1990), par exemple, la décrivent. Ces modèles peuvent, dans le meilleur
des cas, donner lieu à une description de statique comparative, mais ils
ne peuvent rendre compte de propriétés dynamiques. En un sens, les ré-
sultats du voter model sont encore plus forts que ceux des « urnes de
Polya », puisque, dans ce dernier cas, subsisterait toujours une population
résiduelle d’agents ayant, au début du processus, opté pour la techno-
logie finalement délaissée. Dans le cas du voter model, les agents modifient
périodiquement leurs choix technologiques et, de ce fait, s’uniformisent
strictement.

Figure 1. 
Économie structurée

L’émergence d’une structure stable est donc le résultat essentiel ob-
tenu dans cette classe de modèles d’agrégation, au sein desquels existent
des externalités entre les décisions et des interactions entre les actions
des agents économiques. Pour que soient satisfaits les exigences de réal-
lisme de l’économie dynamique, cette structure ne devrait toutefois être
ni uniforme ni indéfiniment stable.

Dans cette perspective, la propriété essentielle est celle qui confère
aux agents une capacité d’initiative individuelle, la possibilité d’adopter
des comportements « contra-variants », de choisir la technologie délaiss-
ée (Dalle, 1995b). On pourra aussi caractériser ces comportements
« idiosyncrasiques » par une préférence pour l’interne vis-à-vis de l’exter-
ne en termes de compatibilités technologiques: le coût de reconfigu-
ration des actifs est tel que la firme préfère réinvestir dans la technologie
délaissée.

**Figure 2.**

**Économie diversifiée**

```
# # # # . # # # . . . . # . # # # #
# # # # . # # # . . . . # # # # #
# # # # . # # # . . . . # # # # #
. # # # # # # # . . . . # # # # #
. . # # # # # # . . . . # # # # #
. . . # # # # # # . . . . # # # # #
. . . . # # # # # # . . . . # # # # #
. . . . . # # # # # # . . . . # # # # #
```

Dans ce cas, la probabilité qu’un agent choisisse une technologie A alors même que tous ses voisins ont adopté B est très faible mais jamais nulle. Cette propriété simple suffit, grâce au théorème d’Hammersley-Clifford, à assurer l’existence d’une loi de probabilité uniforme – une exponentielle jamais nulle – qui décrit les choix des agents dans leurs « urnes locales » et d’un paramètre qui caractérise leur « indépendance » et leur propension relative à adopter des comportements contravariants. C’est de la valeur de ce paramètre que dépend la dynamique du processus : s’il favorise des comportements moutonniers, le système évoluera vers un *lock in* non strict où subsistent des niches technologies stables (figure 1) qui peut donc évoluer dynamiquement et observer un « retournement » de la domination technologie à la faveur d’une innovation importante pour la technologie dominée (Foray et Grubler, 1990). S’il favorise des comportements contravariants, les deux technologies coexis-

78
teront dans des proportions approximativement et asymptotiquement égales (figure 2). Ce modèle a le mérite de prendre en compte les différentes critiques énoncées ci-dessus; cela, même si la probabilité d'observer un retournement de la domination technologique est extrêmement faible. Il permet en outre d'expliquer certains faits stylisés, en particulier le développement de structures de coordination locales – le fait par exemple que le Bétamax domine toujours parmi les professionnels de l'audiovisuel.

Un tel modèle permet en outre de prendre en compte des comportements appartenant à différents modes de coordination dans un seul cadre théorique: seuls, quelques agents situés dans le voisinage d'une firme sont pertinents lorsque celle-ci en vient à choisir une technologie. Cette pertinence se traduit dans les modèles par une influence dans la loi probabiliste – le choix technologique d'une firme \( x \), \( T(x) \), dépend des actions et des choix technologiques de quelques autres agents \( y \) : \( T(x) = F(y) \). A l'inverse, seuls quelques agents ont une chance d'influer sur le choix technologique d'une firme donnée. Mais les facteurs à l'origine de ces influences peuvent varier. Il pourra par exemple s'agir de complémentarités technologiques, dans le cas d'une technologie de réseau, qui dictent un alignement automatique de choix; ou bien d'une relation de confiance liée à des effets de réputation, ou encore d'un effet de « territoire collectif » à la Schelling dans le cas d'une petite firme sous-traitante qui n'a tout simplement pas d'autres choix, ou enfin d'un mécanisme d'association industrielle qui provoque des « embarquements collectifs » liés à un enchevêtrement de facteurs technologiques, culturels, géographiques. Ainsi, les voisins pertinents d'une firme peuvent l'être pour de multiples raisons. La force de cet outil est cette grande souplesse qui permet de prendre en compte cette diversité de facteurs.

Dans le même temps, Dalle (1995a) a proposé un modèle qui permet d'intégrer, dans le cadre décrit par les champs de Gibbs, le comportement d'agents disposant à la fois d'une information locale et d'une information globale avec le traitement original suivant: l'information globale n'est pas traitée différemment des informations locales; les premières ne s'imposent pas aux secondes et sont simplement accessibles de manière identique et standardisée à tous les agents. On pourra représenter, de manière heuristique, un super-agent en surplomb par rapport au réseau des autres agents, et constituant pour chacun d'entre eux leur cinquième voisin. Ni plus, ni moins. Des simulations montrent que l'on retrouve alors dans tous les cas le lock in technologique, et que la technologie délaissée ne survit plus dans des niches cohérentes, mais est simplement le fait de quelques individus isolés.

On pourra considérer cette approche comme une tentative pour prendre en compte le rôle coordinateur de la puissance publique ou d'une agence collective de normalisation, mais aussi afin d'étendre le champ d'application de ces modèles au cas délaissé des sponsored technolo-
gies — pour reprendre l’expression d’Arthur\(^{(4)}\). Cette situation semble aussi propice à l’analyse de situations de standardisation *ex ante* ou de préannouncements: *i.e.* lorsqu’une firme annonce à l’avance la sortie d’un nouveau produit pour « fermer » le marché, apportant en cela une même information globale à tous ses clients potentiels (Farrell et Saloner, 1986), ou encore lorsqu’une agence publique ou de standardisation choisit d’annoncer qu’elle imposera dans le futur un standard donné.


**La percolation**

La notion de percolation, inventée par le mathématicien Hammersley dans les années 50, est l’analogue dual de la notion de diffusion: lorsque l’on parle de diffusion, on visualise un fluide qui diffuse stochastiquement dans un milieu donné; lorsqu’il s’agit au contraire de percolation, c’est le milieu qui est stochastique et le fluide qui ensuite diffuse sur le réseau ainsi constitué. C’est donc le réseau des relations entre les firmes adoptrices de technologie qui est désormais « variable ». La percolation possède deux propriétés: la réceptivité qui caractérise la probabilité d’ouverture des nœuds et la connectivité qui caractérise la probabilité d’ouverture des branches.

David et Foray (1992) ont proposé d’utiliser ces outils en économie, et ont envisagé des applications aux standards d’échanges électroniques de données. Ils montrent que des niches isolées peuvent apparaître, et apparaissent dès lors que les probabilités critiques qui déterminent si les nœuds et les branches sont ouverts ou fermés sont inférieures à certaines valeurs données qui ne dépendent que de la nature du réseau. On retrouve ici la présence d’un seuil critique autour duquel la nature des pro-

cessus étudiés change. Ces modèles sont appelés modèles de transition de phase par la physique contemporaine.

Dans tous les cas, la notion de percolation s'impose comme une grille de lecture utile pour différents modèles : en effet, le voter model possède implicitement une structure de percolation pour les nœuds, qui caractérise par ailleurs son comportement. De la même manière, les champs de Gibbs peuvent être étudiés comme un cas exemplaire de percolation des nœuds. La percolation des branches, relative aux liens qui se constituent dynamiquement entre les agents, reste largement non étudiée et mériterait plus ample attention. L'étude des propriétés de percolation des différents modèles de réseaux d'interaction permettront d'illustrer tous les apports de cette approche par rapport aux modèles simplifiés d'urnes de Polya en particulier.

En guise de premier bilan

L’évolution que nous venons de retracer traduit bien le travail de transfert effectué par les économistes afin de proposer des modèles progressivement mieux adaptés à une classe de problèmes centrés sur les conséquences macroéconomiques de l’existence d’interactions entre les agents économiques. Cette évolution permet en particulier de préciser l’adéquation des hypothèses des modèles à la réalité économique considérée : la réflexion sur la nature de l’information disponible a conduit à améliorer les modèles d’urnes de Polya ; celle sur la taille de la population et la flexibilité des choix a orienté les travaux vers les modèles markoviens spatiaux ; celle sur l’absence de propriétés dynamiques et l’unicité de la structure possible a conduit aux champs de Gibbs et à la percolation.

Dans presque tous les cas, la rationalité des agents n’est en aucun cas le principe de causalité essentiel qui expliquerait les propriétés mises en scène par les modèles. Dans les modèles d’urne, il s’agit de choix simplistes entre deux options ; le voter model nous porte vers des logiques de comportement totalement routinisées (rappelons-nous l’aphorisme du balayage de la neige par les commerçants évoqué par Schelling et utilisé par David dans son modèle heuristique). En ce qui concerne les champs de Gibbs enfin, la capacité d’initiative individuelle accordée aux agents ne suppose pas nécessairement une rationalité importante de leur part. Elle n’offre en outre qu’une probabilité extrêmement faible de retourner technologique.

Dans tous les cas, ce sont donc bien les interactions entre les agents, basées sur des rendements croissants d’adoption, qui régissent la dynamique de ces systèmes. Avec la percolation ou l’existence d’un métagent dans les champs de Gibbs, c’est même la structure, de plus en plus précise, des modes de coordination spontanée qui détermine des com-
portements agrégés très différents et laisse supposer qu'il existe une grande variété de situations qui n'ont pas encore été étudiées.

INTERACTIONS STOCHASTIQUES CONTRE RATIONALITÉ INDIVIDUELLE ACTIVE

Une économie du changement technique qui tend à neutraliser la rationalité «active»

La vision proposée, concernant l'émergence spontanée d'un standard technologique, ne nous apprend donc rien sur la capacité des agents à construire des projets et à produire des connaissances. Le seul acte de «créativité» autorisé dans les approches décrites correspond au fait de s'écarter de la norme («être contravariant»). Le principe de dynamique est saisi au niveau de la conduite collective des processus d'interactions entre des agents, eux-mêmes dépourvus de dispositifs cognitifs complexes. A ce niveau, la question centrale demeure celle de la nature des structures causales ainsi révélées (causalité «collective», «distribuée», «systémique» ?)

Cet appauvrissement de l'analyse du comportement individuel semble être le prix à payer pour mettre en évidence les propriétés complexes de la coordination collective dans les systèmes où les choix individuels produisent des rétroactions positives; propriétés qui permettent de comprendre les mécanismes conduisant à «l'embarquement» collectif d'un groupe (industrie, pays, secteur) dans un choix «hasardeux», la persistance de standards bien au delà des circonstances factuelles ayant présidé à leur conception, l'incapacité collective à migrer, etc.

La neutralisation de la rationalité active de l'agent individuel ne signifie cependant pas l'absence de fondement théorique aux décisions individuelles, qui sous-tendent le comportement macroscopique du système. Cohendet (1992) a ainsi montré que la théorie de la cohérence intertemporelle des choix dynamiques fonde rigoureusement les comportements macroscopiques des systèmes décrits précédemment.

Cohendet établit cela à partir d'un rappel sur le postulat conséquentialiste: l'agent cohérent cherche à éliminer tout changement potentiel de ses plans dans le futur et se contraint à respecter sa stratégie passée; cela, quand bien même pourraient surgir des sources d'incohérence, notamment lorsque l'agent cherche à maximiser son utilité en présence d'une fonction d'actualisation évolutive. Ce principe de pré-engagement fonde donc la décision de l'agent de contribuer au processus collectif d'enfermement, en créant une sorte d'irréversibilité subjective indivi-
duelle: «le comportement conséquentialiste joue le rôle de fidélisation par rapport à la décision prise d’adhérer au réseau» (Cohendet, 1992). Ce rôle est particulièrement important lorsque l’agent doit prendre sa décision dans un contexte où la brièveté de l’histoire du processus ne permet pas de générer des séries temporelles assez longues, pour que l’agent concerné puisse former des estimations probabilistes robustes sur les futurs possibles (Kurz, 1988).

On peut prolonger l’analyse de la cohérence des choix en tenant compte de la conscience acquise progressivement par l’agent de l’existence d’irréversibilité objective; c’est-à-dire de la perte au cours du chemin de certaines options. Il peut surgir, chez l’agent qui perçoit le risque de disparition d’une option, un comportement contradictoire par rapport au principe de préengagement. La théorie de la valeur d’option nous enseigne en effet que l’agent rationnel est prêt à payer un surcoût, appelé valeur d’option, pour préserver toutes les options dans le futur. Un conflit existerait donc entre les comportements conséquentialistes, qui expriment une préférence pour les stratégies irrévocables en vue d’assurer la cohérence intertemporelle des choix, et les comportements de type valeur d’option, qui expriment une préférence pour la flexibilité en situation d’incertitude et d’irréversibilité objective. Il reste que les travaux les plus récents montrent que, dans la plupart des cas, l’agent individuel préfère prendre le risque d’irréversibilité, pour assurer la cohérence de ses choix et maximiser le rendement attendu de son action immédiate, plutôt que de chercher à accroître, pour la collectivité, la valeur future des choix ultérieurs, en payant pour éviter la perte d’une option. Cowan (1991) montre ainsi que «l’agent myope» choisira la technologie la plus connue, en visant la maximisation du rendement immédiat. Le choix de la technologie la moins connue (expérimentation), qui aura pour conséquence de diminuer l’incertitude et d’éclairer le choix des adeptes suivants, n’appornerait rien à l’usager considéré. L’agence publique en revanche, attentive à ce que la meilleure technologie l’emporte en définitive, choisira la technologie la moins connue (celle dont la variance des rendements antérieurs est la plus élevée) et privilégiera donc l’expérimentation; cela sous la contrainte de maximisation de la valeur attendue du processus global d’adoption. Ainsi, les principaux résultats de la théorie de la décision en situation d’incertitude et d’irréversibilité soutiennent les propriétés macroscopiques des processus stochastiques avec rétroactions positives (P. Cohendet indique une exception, où le conflit est résolu en faveur de la flexibilité: celle-ci correspond à la situation d’irréversibilité certaine (opposée au risque d’irréversibilité), lorsque les options potentiellement perdues ne possèdent pas de «proches voisines».

On retrouve alors un problème de mesure de la diversité ou de la «dissimilarité collective» à la Weitzman.
Le besoin d'une vision complémentaire

En développant une économie du standard technologique, les auteurs choisissent donc de neutraliser les acteurs pour mieux comprendre les propriétés complexes de la coordination, dans des systèmes où les choix individuels produisent des rétroactions positives. Mais ces acteurs ne restent pas longtemps inertes. A tout moment, les actions non héroïques peuvent affecter grandement le déroulement à long terme du processus. Dans les conditions de rétroactions positives, la personnalité des entrepreneurs autonomes, de même que les convictions idéologiques des décideurs publics doivent être analysées. Il est clair en outre que, comme déjà suggéré, certaines structures dynamiques ne généreraient jamais de séries temporelles probabilistes robustes sur les futurs possibles. Les choix s’effectuent donc dans des conditions d’incertitude à la Knight. Dès lors, l’étude des mentalités et des traditions s’impose.


Elle repose analytiquement sur d’autres fondations micro-économiques : la production et l’entretien de relations inter-individuelles ou inter-organisationnelles, bilatérales ou multilatérales, qui permettent aux agents d’engager des ressources dans des projets, compte tenu d’un contexte d’asymétrie d’information, d’incertitude et d’appropriabilité imparfaite des biens produits. Dans cette perspective, l’aspect actif de la rationalité individuelle et collective redevient central, mais au prix d’un effacement de la vision précédente des conduites collectives et de leurs propriétés complexes.

Cette discussion sur l’existence de structures causales distinctes peut être approfondie en examinant rapidement de quelle façon celle-ci traverse d’autres disciplines, depuis l’histoire des techniques jusqu’à l’intelligence artificielle, en passant par l’économie.
La tension entre rationalité individuelle active et intelligence collective distribuée : un débat transdisciplinaire

En histoire des techniques, cette tension pose le problème de la séparation entre l’histoire des systèmes et l’histoire des inventeurs ; en économie, elle oppose l’agent représentatif rationnel au système d’interactions entre des individus situés ; en intelligence artificielle enfin, elle mène au dépassement de la modélisation de l’expert unique pour aller vers la construction d’ensemble « d’insectes sociaux ».

Une certaine histoire des techniques, qui a choisi la notion de système technique, comme cadre d’analyse, délaisse « l’activité de l’agent » au profit de « l’activité du système » dans l’explication des facteurs de l’innovation. Bertrand Gille (1978) en particulier établit le rôle critique des interrelations et des cohérences techniques : celles-ci jouent à la fois un rôle d’opportunités et de mécanismes d’induction. Telle innovation en un point déterminé du système introduit un déséquilibre, lié à la nécessaire cohérence entre capacités de production complémentaires. Ces tensions structurelles poussent donc à la coordination des investissements et ne peuvent se résoudre que par l’innovation en d’autres points, qui à leur tour introduisent des déséquilibres, et ainsi de suite. L’histoire des techniques, ainsi construite, devient alors le lieu d’un « instinctif recul de l’invention technique par rapport à la pression technique, qui apparaît presque toujours déterminante » (Beaune, 1984). Apparaît donc une tension analytique entre l’activité de l’agent et celle du système, puisque « si la cohérence globale du système technique en vient, par le biais des tensions entre ses éléments à dessiner le lieu où doit surgir l’innovation dans l’appareillage technique (...) le concept de système technique n’explique pas le ‘geste’ producteur de machine » (Lazzeri, 1981). Le problème que l’on pourrait poser aux historiens des techniques est sans doute moins de choisir entre les options (soit l’histoire des pratiques usuelles qui permet de révéler quelle méthode « typifiait » l’activité productive à telle époque, soit la chronique disjointe de la marche des inventions, où la création de nouveauté est moins analysée comme apport d’instrumentalité dans l’activité économique que comme un art spécifique, révélateur du génie des sociétés humaines (David, 1975), que de définir les fondements d’une unification des approches.

Cet individu peut être considéré comme représentatif, ou au contraire comme membre particulier d’une population hétérogène par certaines théories évolutionnistes. Mais quelle que soit l’école de pensée, l’interaction est toujours limitée à celle entre l’individu et son environnement et est toujours étudiée du point de vue de l’individu lui-même. L’autre vision consiste à concevoir l’économie comme contenant beaucoup d’individus, chacun ne connaissant que les aspects locaux de l’économie qui le concernent directement : « Ils s’ajustent en fonction des facteurs locaux et en fonction des autres agents avec lesquels ils font des transactions ou desquels ils reçoivent des informations ».

Comprendre le lien entre la simplicité des programmes individuels régissant le comportement d’une fourmi et l’émergence au niveau macroscopique de structures sociales élaborées, tel est le programme de « l’intelligence artificielle distribuée ». Les chercheurs contribuant à cette perspective considèrent en effet que la modélisation d’un expert unique, capable de résoudre les tâches les plus difficiles, constitue une fausse piste et doit être délaisée au profit de la construction d’ensemble « d’insectes sociaux » auxquels l’intelligence artificielle est distribuée. Un pas de plus est franchi ici : tandis que l’économie d’une certaine manière confronte les points de vue et admet une pluralité d’approches possibles, l’intelligence artificielle, comme discipline visant à opérationnaliser l’analyse des dispositifs cognitifs, évalue la pertinence respective des différentes approches au regard de ses objectifs d’instrumentalisation.

DEUX OPTIONS ?

« L’intelligence de l’innovation » peut donc avoir un contenu différent, selon que l’on étudie un processus cumulatif d’apprentissage et de standardisation ou bien un entrepreneur, un savant, un ingénieur qui mène à bien un projet. Les deux points de vue sont-ils conciliables ? Face à cette tension analytique entre une capacité explicative entièrement liée aux processus d’interaction stochastiques et une capacité explicative soucieuse d’équiper les agents individuels de rationalité active, deux grandes options nous semblent possibles pour les spécialistes travaillant sur ces modèles. La première option consiste à passer des compromis entre les deux modes explicatifs. C’est en particulier la ligne des travaux sur les réseaux d’automates et les agents artificiels adaptatifs. La seconde option consiste à définir un ordre entre les modes explicatifs ; c’est-à-dire d’une certaine manière choisir un mode explicatif majeur et n’utiliser l’autre que d’une façon subsumée. C’est donc un véritable problème de stratégie de recherche qui se pose devant nous.

Passer des compromis

Cette première option nous semble assez bien caractériser les travaux de Arthur, Holland et Miller, sur les comportements adaptatifs, dont on
trouvera un premier aperçu dans les Papers and proceedings de l’American Economic Review de mai 1991. Il s’agit bien de partir de systèmes complexes adaptatifs, c’est-à-dire de réseaux d’agents en interaction possédant une dynamique de comportement agrégé résultant des activités individuelles laquelle, pour être décrite, ne requiert pas une connaissance détaillée des comportements individuels. L’objectif est alors de placer dans ces réseaux des agents économiques qui agissent et font des choix « d’une manière humaine ». Comme dans les modèles présentés ci-dessus, il s’agit bien de faire émerger des lois gouvernant l’économie agrégée qui soient déterminées par l’organisation d’interactions et non pas par le comportement d’un individu omniscient et totalement rationnel. Mais la façon dont chaque individu se comporte dans son réseau d’interactions devient le produit de son apprentissage, de ses essais et de ses erreurs. Par exemple, dans un classique problème de choix entre une option d‘exploitation (dont le rendement est connu) et une option d’exploration (dont le rendement est inconnu mais qui peut être potentiellement plus élevé), on substituera un algorithme d’apprentissage basé sur l’actualisation des probabilités de choisir telle action, compte tenu des rendements des expériences précédentes, au comportement traditionnel de maximisation du rendement moyen espéré. Au-delà des caractéristiques spécifiques des différents modèles qui apparaissent aujourd’hui, il nous semble que tous ces travaux partagent le même objectif de transformer le statut de la capacité cognitive distribuée dans le réseau d’interactions, en s’efforçant de produire une métamorphose: celle des fourmis en quelque chose qui se rapprocherait des êtres humains.

Définir un ordre dans les structures causales

L’autre grande option consiste à définir un ordre entre les structures causales pour construire sur cette base des séquences d’explication dans lesquelles chaque relation pourra être considérée tour à tour comme déterminante ou déterminée. Il s’agit donc de privilégier l’analyse temporelle du processus de standardisation en vue d’identifier les périodes où la rationalité active, la créativité n’ont pas de valeur économique et les fenêtres où toute action individuelle (ou collective) peut être déterminante sur le devenir du processus. Dans cette perspective, les outils de la théorie de la percolation sont déterminants pour indiquer les périodes et les espaces où la créativité et la diversité possèdent une certaine valeur économique.

Cette décomposition du temps pour identifier les périodes historiques propices aux « héros » est au cœur de l’œuvre de Musil, comme le montre un récent ouvrage de Bouweresse, intitulé L’Homme Probable. La question centrale du livre de Musil confronte « le Moi – un souverain qui promulgue ses édits » et l’homme probable, statistique, car « il semble que quoiqu’il fasse ou ne fasse pas, ce qui est prévu pour l’ensemble arrivera de toute manière » (Bouweresse, 1993, p. 53).
D'une part, Musil dans *l'Homme sans qualité* souligne la prégnance du règne de la moyenne, du mode de pensée probabiliste qui implique que les irréregularités introduites par le comportement exceptionnel d'individus anormaux ne paraissent pas susceptibles de modifier sensiblement et durablement le résultat global. On peut faire ce que l'on veut, dit « l'Homme sans qualité » en haussant les épaules, dans cet imbroglio de forces, cela n'a aucune importance(3).

D'autre part, le cours de l'histoire est le résultat d'une multitude de petites causes qui agissent de façon essentiellement imprévisible. C'est la conception que Musil appelle « anti-héroïque » ou « petite bourgeoise ». Ainsi précise-t-il, il suffit parfois d'un geste minime effectué au bon moment pour modifier considérablement le résultat global.

Evidemment, les économistes ayant l'habitude de travailler sur les processus « dépendants du chemin », aussi bien d'un point de vue historique (chronologique) que théorique, ne pourront être que fascinés par la présence chez Musil d'un fort écho philosophique au problème économiique formel qu'ils étudient : la philosophie des petites causes, cette sensibilité des effets aux différences les plus imperceptibles qui peuvent exister dans les conditions initiales et cette disproportion extrême qu'il peut y avoir en fin de compte entre la petitesse des causes et l'énormité des effets – tous ces éléments reflètent une certaine conception de l'histoire qui est celle de l'économie de la dépendance du sentier.

Or Musil adopte cette conception particulière de l'histoire, puisque si « l'homme sans qualité » est bien enfermé dans une « tyrannie de petites décisions », cette histoire laisse une possibilité d'agir (« il suffit d'un geste minime. »). Mais l'efficacité de l'action est très étroitement dépendante du moment choisi (« .effectué au bon moment ») ce qui nous renvoie à nouveau au résultat économique de l'extrême sensibilité au temps des politiques d'intervention dans les processus dépendants du sentier. Ainsi l'ouvrage de Bouveresse montre bien la façon dont les structures causales (la dynamique des interactions stochastiques, d'une part et la rationalité active de l'individu, d'autre part) peuvent se déterminer les unes par rapport aux autres : il y a bien un règne global de l'imprévisibilité des petites causes mais « il suffit d'un geste minime effectué au bon moment ». Ainsi, ce que recommande Musil, c'est bien l'analyse temporelle des processus d'interactions, la décomposition temporelle des séquences de choix qui nous fera découvrir ces fenêtres dans lesquelles l'action individuelle, la déviance ou la décision de mise en conformité devient déterminante. C'est donc bien à partir de la reconnaissance de l'extrême sensibilité au temps des réseaux d'interactions stochastiques que peuvent être définis des ordres de relations causales. Ainsi, l'historien de Stanford – Kirsch (1994) – montre

(3) L'un des grands mérites de l'ouvrage de Bouveresse est de situer la pensée de Musil dans le mouvement scientifique des années 20 - celui des écrits de Schrödinger et Exner sur l'ordre émergeant du désordre, la question des causalités, les problèmes d'irréversibilité, de lois moyennes et absolues, dont Musil est totalement imprégné.
bien comment, durant une très courte période, tous les choix sont possibles entre moteur à essence, moteur électrique et moteur à vapeur, pour équiper les automobiles. Durant cette période, chaque décision, même minime, est déterminante et pèse lourd. C'est l'époque des « héros ». Avec l'émergence du standard de facto (tableau ci-dessous), les actions, même les plus lourdes (de type « énorme investissement pour promouvoir le véhicule électrique »), ne pèsent plus d'aucun poids. C'est l'époque du « troupeau ».

<table>
<thead>
<tr>
<th>Année</th>
<th>Moteur électric</th>
<th>Moteur à vapeur</th>
<th>Moteur à essence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1899</td>
<td>1575</td>
<td>1681</td>
<td>936</td>
</tr>
<tr>
<td>1904</td>
<td>1425</td>
<td>1568</td>
<td>18 699</td>
</tr>
<tr>
<td>1909</td>
<td>3826</td>
<td>2374</td>
<td>120 393</td>
</tr>
<tr>
<td>1914</td>
<td>4669</td>
<td>NA</td>
<td>564 385</td>
</tr>
</tbody>
</table>


On comprend mieux ainsi le titre « Heros, Herds... » , qui met en perspective l'action de T. Edison dans la bataille des systèmes de fourniture du courant électrique: « Les récentes contributions sur les phases initiales d'évolution des industries de réseau doivent nous préparer à reconnaitre le degré selon lequel des événements discrets, d'une nature largement accidentelle et incluant les actions spécifiques des décideurs, peuvent avoir une grande influence sur la mise en place des paramètres technologiques qui définiront ensuite la trajectoire de la future industrie » (David, 1992). Edison apparaît soudain au croisement d'une rationalité active et d'une temporalité.

Dès lors, l'analyse combine deux niveaux d'explication causale: une décomposition temporelle des processus stochastiques d'interaction; une exploration des comportements individuels (et collectifs) à certains moments. Le premier niveau est toujours déterminant. C'est lui qui définit le cœur du programme de recherche et c'est l'apparition de nouveaux outils suscités par cette analyse temporelle (et spatiale) qui scande la progression d'un tel programme. Ainsi, les travaux sur le calcul des vitesses de percolation sont importants, puisque la vitesse de percolation va définir les phases où la créativité et la diversité sont « économiquement de valeur » et les phases où ces comportements sont dépourvus de valeur économique. De même, les travaux sur l'évolution stochastique des structures des réseaux seront utiles. Cette analyse temporelle et spatiale indique alors les périodes (ou les espaces) où les comportements individuels actifs sont déterminants et doivent donc être analysés(6).

(6) Précisons pour finir que l'ordre de détermination des structures causales ainsi défini n'est pas le seul possible ni le seul acceptable. Ainsi, F. Eymard-Duverney propose un ordre exactement inverse pour une « économie des relations de proximité » : les dispositifs d'accord sont étudiés dans le cadre de deux formes de coordination – contrat et règle – et sont le résultat de la complexité des comportements individuels, elle-même « réduite » par les relations de proximité. Or ces dispositifs soutiennent des dynamiques d'interactions locales, « chaque association rendant plus probable la suivante, du fait de rendements croissants d'adoption » (Eymard-Duverney, 1994).
CONCLUSION

Ainsi, la première option consiste à produire une sorte de modèle unificateur des structures de causalité; une machine qui permet aux fourmis de devenir un peu « humaines ». Cette option est particulièrement soutenue par les partisans d’une économie ouverte à la méthode expérimentale et aux apports des sciences cognitives, voire de la psychologie. La seconde option ne cherche pas à unifier les structures de causalité. Elle propose d’en définir l’ordre; cela même si elle reconnaît l’importance des rétroactions (par exemple des rationalités actives vers la longueur des fenêtres temporelles). Cette seconde option semble plus proche de l’économie historique.

BIBLIOGRAPHIE


ARTHUR (W.B.), ERMOLIEV (Y.) et KANIOVSKI (Y.), 1987 — Path-dependent processes and the emergence of macro-structure, European Journal of Operational Research, 301.


ARTHUR (W.B.) et LANE (D.), 1993 — Information contagion, Structural Change and Economic Dynamics, 41.

BEAUNE (J.-C.), 1984 — Formes philosophiques de l’invention technique, Milieux, 18.


Cowan (R.) et Cowan (W.), 1994 — Local externalities and spatial equilibria: technological standardization and the preservation of variety, miméo.

Cusano (M.A.), Mylonadis (Y.) et Rosenbloom (R.S.), 1990 — Strategic maneuvering and mass market dynamics: the triumph of VHS over BETA, Consortium on Competitiveness and Cooperation, working paper no 90-5.


David (P.A.), 1985 — Clio and the economics of QWERTY, American Economic Review, 752.

David (P.A.), 1988 — Putting the past into the future of economics, technical report no 533, Institute for mathematical studies in the social sciences, Stanford University.

David (P.A.) et Greenstein (S.), 1990 — The economics of compatibility standards: an introduction to recent research, Economic Innovation and New Technologies, 1.1.


Dosi (G.) et Kanioukovski (Y.), 1993 — The method of generalized urn scheme in the analysis of technological and economic dynamics, working paper, 93-17, IIASA.

Dosi (G.), Ermoliev (Y.) et Kanioukovski (Y.), 1991 — Generalized urn schemes and technological dynamics, working paper, 91-9, IIASA.


KIRSCH, 1994 — Flexibility and stabilization of technological systems: the case of the second battle of the automobile engine, papier présenté à la conférence EUNETIC, Strasbourg, octobre.

KURZ (M.), 1988 — On the impossibility of learning the equilibrium process in a complex economic environment, Institute for Mathematical Studies in the Social Sciences, Stanford University.


LIGGETT (T.M.), 1985 — *Interacting Particle Systems*, Springer Verlag.


