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Abstract  

This article provides some first evidence of the welfare impacts of modern peanut 

varieties in China using a nationally representative survey. Propensity score matching 

is employed to address the choice nature of adoption and identify its impacts on peanut 

yield and multiple sources of income. Impact on income inequality is further simulated 

by comparing inequality measures using observed and counterfactual income distri-

butions. It is found that adoption of modern peanut varieties significantly boosts 

peanut income and total household income, but increases income inequality. There-

fore, household-level welfare improvement with agricultural technology adoption may 

not meet the governmental goals such as inequality reduction, and complementary 

policies are called for. 
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1 Introduction 

Technological change is a key driver of modern agricultural growth. As a major line of 

agricultural technology development, crop research has led to thousands of modern 

varieties and long-term agricultural growth in the developing world (EVENSON and 

GOLLIN, 2003; RENKOW and BYERLEE, 2010). As a result, the socioeconomic implica-

tions of crop technologies are receiving increasing attention. Existing studies focus on 

the welfare impacts of modern crop varieties in a wide range of developing countries 

across Sub-Saharan Africa, South Asia and Latin America (MATUSCHKE et al., 2007; 

MENDOLA, 2007; BECERRIL and ABDULAI, 2010; KASSIE et al., 2011). However, 

much less is known about such impacts in China, a major crop producer of the world. 
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This gap needs to be filled as China feeds 20% of world population using 8% of 

world’s arable land (BRÄUTIGAM, 2009), whose experience is extremely policy-

relevant for many other developing economies faced by chronical food insecurity as 

well as related issues such as poverty and malnutrition. 

Agricultural growth in China largely benefits from domestic crop research since the 

1970s (YUAN, 1998). Unlike the rest of the world where crop research is mainly 

financed by private companies or international organizations, the Chinese government 

is the funder of almost all crop research in the country (HUANG et al., 2000). Crop 

research in China has received substantial investment which accounts for more than 

half of the total research expenditure in the developing world, and modern varieties of 

major crops such as rice, wheat, maize, peanut, cotton and soybean are aggressively 

adopted by smallholders (HUANG et al., 2002). Despite the prominence of crop re-

search in reshaping China’s agriculture, literature on its welfare impacts is rather 

limited. Existing studies mainly focus on either cotton or rice (PRAY et al., 2001; 

HUANG et al., 2002; HUANG et al., 2005; WU et al., 2010; DING et al., 2011). While 

more evidence is needed for other important crops whose impacts are almost un-

known.  

This article helps bridge these gaps by evaluating the welfare impacts of modern 

peanut varieties (MPVs). This study employs a nationwide survey of peanut farmers 

and use propensity score matching (PSM) techniques to address the choice nature of 

farmers’ adoption decisions. In addition to yield effect, impacts of MPVs on peanut 

income, other agricultural income, off-farm income and household income are further 

disentangled through multiple PSM identifications. The impact on income inequality is 

finally estimated as the differences of inequality measures of observed income 

distribution (with MPVs) and counterfactual income distribution (without MPVs) 

simulated using treatment effect estimates (DING et al., 2011; ZENG et al., 2015). It is 

found that the MPV adoption significantly boosts peanut income and total household 

income, but increases income inequality.  

Our contribution is twofold. First, we provide some first evidence of the welfare 

impacts of peanut technologies in China, the most important industrial and oilseed 

crop of the largest producer in the world (USDA-FAS, 2012), and complement the 

growing impact analysis literature of crop technologies worldwide. Second, we apply 

innovative control for certain unobserved characteristics, differentiate possible impacts 

that occur through multiple income sources, and further disentangle the impacts on 

income and inequality, thereby obtaining more accurate impact estimates as well as 

multidimensional policy implications. 
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2 Peanut Production and Research in China  

Peanut is the most important industrial and oilseed crop in China. Modern peanut is 

known to be of South American origin and introduced in the last few centuries. Peanut 

is grown for both domestic consumption and exports in most agro-ecological zones, 

and is usually rotated other crops to improve soil fertility through nitrogen fixation. 

Chinese farmers utilize peanut in a variety of ways, including using peanut seeds for 

direct consumption, oil extraction and peanut butter manufacturing, while using stalks 

and leaves for animal feed and peanut shell for fuel (YAO, 2004). Peanut is generally 

considered a cash crop in many parts of China. 

China is the largest peanut producer of the world, accounting for 21.1% of total 

cropping area and 43.4% of total production worldwide in 2010-2011 (USDA-FAS, 

2012). From 1961 to 2011, peanut production in China has increased from 1.05 million 

metric tons to 16.05 million metric tons (FAO, 2014). Peanut cultivation area in China 

observes steady expansion since the 1960s, while it is not until the late 1970s have 

tremendous yield increases been observed (Figure 1), largely due to the adoption of 

MPVs (YAO, 2004).  

Figure 1.  Trends of total peanut area and yield in China: 1961-2011 

 
Source: FAO (2014) 

 

Peanut research in China started in the 1950s from farmers’ own breeding practices 

(HUANG et al., 2002). Almost all MPVs in China are developed and released 

domestically, by either the Oil Crops Research Institute, a research sector of the 
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Chinese Academy of Agricultural Science, or numerous provincial academies of agri-

cultural science. In fact, provincial academies are major contributors of MPV research, 

where most of them are developed with traits that meet local agro-ecological condi-

tions (YU, 2008). Unlike key staples (e.g. rice) where yield is the major concern in 

crop research, peanut research in China largely focuses on alternative traits such as 

disease resistance, pest resistance, drought tolerance, as well as oil and protein content 

enhancement in seeds (YU, 2008).  

In 2007, China’s Ministry of Agriculture has initiated the building of the Modern Agri-

cultural Technology System to promote sustainable agricultural growth and improve 

rural welfare. As a result, the National Peanut Research System was established in 

2008, which consists of 25 experimental stations located in various agro-ecological 

zones across the country. Since then, peanut research has been implemented in a more 

systematic manner, with an increasing number of MPVs released each year. Although 

MPVs released previously and proved successful are still commonly adopted, most 

MPVs identified in our study are released after the 2000s. The only existing study of 

modern peanut production in China focuses on technical efficiency (ZHOU et al., 

2013), and we are aware of no empirical assessment of the welfare impacts of MPVs, 

which directly motivates the current study. 

3 Analytical Framework 

PSM techniques are employed to estimate treatment effects of interest, where the 

treatment is the adoption decision of MPVs. The basic idea is to compare the outcomes 

of the treated (adopters) and the untreated (dis-adopters) with the most similar 

characteristics, matched by the propensity score, or the estimated probability of 

adoption. Firstly developed in ROSENBAUM and RUBIN (1983), PSM is increasingly 

applied to empirical impact evaluation (MENDOLA, 2007; BECERRIL and ABDULAI, 

2010; WU et al., 2010; KASSIE et al., 2011). 

Treatment effects are identified using the standard potential outcome framework 

(RUBIN, 1974). Suppose a total of 𝑁 households (indexed by 𝑖) are observed, in-

cluding 𝑁1 adopters and 𝑁0 dis-adopters. Each household observes the outcome of 

either 𝑌𝑖(1) if treated (adopting), or 𝑌𝑖(0) if untreated (dis-adopting). The treatment 

effect can be naively computed as the difference of expected outcomes: 

𝐷 = 𝐸[𝑌𝑖(1)|𝑋𝑖 , 𝑇𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝑋𝑖 , 𝑇𝑖 = 0]  (1) 

where 𝑋𝑖  is a vector of observed characteristics. However, such characteristics of the 

adopters and dis-adopters may not be similar prior to the treatment, and selection bias 

occurs. To see this, Equation (1) can be rewritten as: 
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𝐷 = 𝐴𝑇𝑇 + {𝐸[𝑌𝑖(0)|𝑋𝑖 , 𝑇𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝑋𝑖 , 𝑇𝑖 = 0]} (2) 

where 𝐴𝑇𝑇 is the average treatment effect on the treated, which is equal to 

𝐸[𝑌𝑖(1)|𝑋𝑖 , 𝑇𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝑋𝑖 , 𝑇𝑖 = 1]. It is obvious that 𝐷 does not equal to 𝐴𝑇𝑇 in 

general given possible selection bias expressed as the last term in Equation (2). Also, 

𝐴𝑇𝑇 is not directly estimable given that the second term of its expression, 

 𝐸[𝑌𝑖(0)|𝑋𝑖 , 𝑇𝑖 = 1], is unobservable. Thus, empiricists focus on the elimination of the 

selection bias so as to obtain 𝐴𝑇𝑇 estimates as 𝐷 which is directly computable.  

PSM assumes that selection, or the endogenous adoption decision, is based on 

observed characteristics, and constructs a statistical comparison group by matching 

each adopter with one or several dis-adopters with the most similar observed 

characteristics. Identification of 𝐴𝑇𝑇 is then facilitated as the average difference of 

outcomes between each adopter and matched dis-adopter(s). As there are multiple 

observed characteristics, matching in all dimensions is difficult. However, ROSENBAUM 

and RUBIN (1983) show that matching with the propensity score, or the estimated 

probability of adoption, is equivalent to directly matching observed characteristics in 

all their dimensions. The propensity score is defined as: 

𝑝(𝑋𝑖) ≡ Pr(𝑇𝑖 = 1|𝑋𝑖) = 𝐸[𝑇𝑖|𝑋𝑖] (3) 

PSM eliminates selection bias under two assumptions. First, the unconfoundedness 

assumption suggests that conditioned on observed characteristics, the outcome in the 

absence of adoption is independent of the adoption decision. Intuitively, as adoption is 

a self-made decision which should not be treated as random, only random “left-outs” 

are needed, while arbitrary correlation between adoption decision and outcome is 

allowed for adopters. Second, the common support assumption further suggests that 

there exists substantial overlap in covariates between adopters and dis-adopters so that 

the propensity scores of both groups can be similar. These assumptions can be 

mathematically represented as: 

𝐸[𝑌𝑖(0)|𝑝(𝑋𝑖), 𝑇𝑖 = 1] = 𝐸[𝑌𝑖(0)|𝑝(𝑋𝑖), 𝑇𝑖 = 0] (4) 

With these assumptions satisfied, and given the equivalence between matching with all 

observed characteristics and matching with propensity score, the 𝐴𝑇𝑇 estimator can be 

expressed as the difference of expected outcomes between adopters and matched dis-

adopters with balanced propensity score on the common support: 

𝐴𝑇𝑇 = 𝐸[𝑌𝑖(1)|𝑝(𝑋𝑖), 𝑇𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝑝(𝑋𝑖), 𝑇𝑖 = 0] (5) 

Using a surveyed sample, empirical PSM procedure computes the 𝐴𝑇𝑇 estimator as: 
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𝐴𝑇𝑇 =
1

𝑁1
[∑ 𝑌𝑖(1)𝑖∈𝑁1

− ∑ 𝜔(𝑖, 𝑗)𝑌𝑖(0)𝑗∈𝑁0
] (6) 

where 𝜔(𝑖, 𝑗) is the weight applied to outcomes of matched dis-adopters. The final step 

is to estimate the standard error of 𝐴𝑇𝑇, which is obtained through bootstrapping. 

The advantages of PSM as compared with alternative strategies that deal with selection 

bias are that it requires no distributional and functional form assumptions which, 

however, are critical to procedures such as instrumental variable regression and 

HECKMAN (1979) selection model. Such assumptions are rather restrictive and hardly 

testable, the relaxation of which can potentially reduce selection bias (HECKMAN et al., 

1998). PSM avoids these issues by assuming no function forms while all covariates 

can be endogenous (HECKMAN and VYTLACIL, 2007).  

A major concern of PSM lies in the assumption that selection, or the adoption 

decision, is based on observables. It is arguable that unobservable factors such as the 

farmer’s attitude, experience, motivation, risk preference and ability would affect 

adoption decision making, producing hidden bias that threats the estimated  𝐴𝑇𝑇  
(ROSENBAUM, 2002). Two strategies are implemented to address this concern. First, 

beyond traditional explanatory variables, we aim to minimize hidden bias by explicitly 

including additional covariates to partially control for unobservables, a strategy also 

implemented in TAKAHASHI and BARRETT (2013). Second, as it is impossible to fully 

control for unobserved factors, ROSENBAUM’s (2002) bounds are also computed to 

check the sensitivity of estimated 𝐴𝑇𝑇 to hidden bias, which reveals the magnitude of 

unobservables’ effect needed to reverse the estimation results (critical levels of hidden 

bias). 

Multiple 𝐴𝑇𝑇s are estimated using PSM, including peanut yield, peanut income, other 

agricultural income and total household income. Investigation of the impact on income 

inequality then proceeds through counterfactual simulation (DING et al., 2011; ZENG et 

al., 2015). Specifically, we subtract the estimated 𝐴𝑇𝑇 of total household income from 

observed total household income, while keep the total household income the same for 

dis-adopters, and a counterfactual income distribution is derived. Gini coefficients are 

then twice computed using observed and counterfactual income distributions, 

respectively, and the impacts of MPVs on income inequality are obtained as the 

differences of these Gini coefficients. 

4 Data Description 

This study is facilitated by a household survey of peanut farmers implemented in 2012. 

The survey was organized by the National Peanut Research System and data were 
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collected by multiple experimental stations of the System, which provides information 

of the 2011-2012 cropping year. Stratification strategy is undertaken where counties 

are first randomly selected by experimental stations within provinces where they are 

located, and farm households are then randomly surveyed within each selected county. 

The data cover 19 provinces which jointly accounted for 97.37% of total peanut 

acreage and 98.26% of total peanut production in China in 2011. 748 farm households 

from 115 counties were originally included in the analysis, while 712 from 98 counties 

grew peanuts in the surveyed period with all needed information available.  

MPVs are categorized as those primarily identified by the National Peanut Research 

System (YU, 2008), and subsequent releases of the same genealogy after 2008. 

Adopters are defined as those who grew MPVs in the previous cropping season, and 

dis-adopters are those who only grew traditional varieties in that season. As peanut is a 

self-pollinating crop, farmers can recycle seeds for a number of seasons without 

significant yield reduction. Thus, concerns on estimation bias due to seed recycling 

should be minimized. Accounting for sampling weights, our data suggest an adoption 

rate of 63.23% by area. 

Basic household characteristics, including those of the household head, and plot 

features are recorded in the survey. Varietal information and details of peanut 

production in the last cropping season, such as acreage, inputs and yields are recalled 

by the farmer. Various types of income are reported by the farmer on an annual basis. 

The data also include variables that may partially capture unobserved factors in peanut 

variety selection. Specifically included are indicators of peanut growing experience, 

self-reported health condition of household head, village social network (existence of a 

village cadre in the household and farmer’s cooperative membership), ability (pilot 

household status in peanut production1), social learning (number of field training 

attended) as well as risk attitude (the length of peanut seed recycling period and the 

number of stated concerns in adoption2). In addition to these observed covariates, 

provincial dummies are also included to capture any unobserved heterogeneity across 

different agroecological and macroeconomic landscapes (alternative inclusion of 

county fixed effects yields very similar coefficient estimates of major covariates). 

                                                   
1
  A pilot household of peanut production is a selected attendant of peanut field schools, who is supposed 

to learn new peanut technologies first during intensive training and then communicate these tech-

nologies to other farmers. 
2
  Farmers were asked to make multiple choices among factors that potentially discourage their 

adoption of MPVs. These factors include: 1) lack of labor, 2) peanut price instability, 3) lack of 

harvesting machinery, 4) pest outbreaks, 5) lower profitability than other crops, and 6) high produc-

tion costs. The number of selected concerns are included as an explanatory variable in the adoption 

decision modeling. 
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Table 1 presents summary statistics. As a major cash crop, peanut provides nearly one 

half of total agricultural income for both adopters and dis-adopters. Peanut yield and 

peanut income of adopters are significantly higher than those of dis-adopters, while 

this is not the case for total input costs. Off-farm income is slightly lower for adopters, 

but such difference is small and insignificant. As a result, total household income is 

significantly higher for adopters. 

Table 1.  Summary of selected characteristics
1
 

 Adopter 

(n=441) 

Dis-adopter 

(n=271) 

Landscape (1=hill, 0=plain) .557 (.497) .681 (.466)
***

 

Soil type (1=sandy loam; 0=other) .705 (.459) .728 (.446) 

Household size 4.296 (1.474) 4.436 (1.509) 

Total land holding (mu)
2
 17.53 (28.58) 16.49 (20.72) 

Peanut area (mu) 10.05 (22.82) 8.117 (12.65) 

Village cadre in household (1=yes; 0=no) .187 (.391) .213 (.410) 

Head gender (1=M; 0=F) .958 (.199) .930 (.255)
*
 

Head age (years) 50.02 (9.463) 49.77 (9.081) 

Head education (years) 9.336 (2.640) 9.471 (3.407) 

Head health (1=good; 0=average or poor) .903 (.297) .873 (.332) 

Peanut growing experience (years) 16.45 (9.83) 17.42 (10.02) 

Pilot peanut household (1=yes; 0=no) .468 (.500) .423 (.495) 

Number of peanut trainings attended 1.297 (1.293) 1.040 (1.073)
***

 

Cooperative membership (1=yes; 0=no) .346 (.476) .299 (.458) 

Recycling seed >3 years (1=yes; 0=no) .345 (.277) .505 (.301)
***

 

Number of concerns in adoption 1.599 (.879) 1.771 (.951)
**

 

Peanut yield (kg/mu) 574.1 (191.3) 483.2 (152.5)
***

 

Total input cost (yuan/mu)
3
 226.73 (301.12) 212.04 (293.34) 

Total peanut income (yuan)
4
 14,764 (20,366) 10,898 (15,131)

***
 

Other agricultural income (yuan) 15,666 (14,380) 14,310 (19,412) 

Off-farm income (yuan) 4,835 (15,573) 5,858 (14,333) 

Total household income (yuan) 35,265 (34,322) 31,066 (30,291)
*
 

1
  Standard deviations are reported in parentheses. 

*
, 

**
, 

***
 indicate significant mean difference 

between adopters and dis-adopters at 10%, 5% and 1% levels, respectively. 
2
  1 mu = 0.067 hectare. 

3
  the aggregate monetary value of all physical inputs excluding labor 

4 
 Daily average exchange rate in 2011 is 1 RMB yuan = 0.157 US dollar. 

Source: authors’ survey 



 Welfare Impacts of Modern Peanut Varieties in China 229 

Quarterly Journal of International Agriculture 54 (2015), No. 3; DLG-Verlag Frankfurt/M. 

5 Results 

Empirical analysis starts with MPV adoption decision modeling. This is implemented 

using a logit model (probit model yields extremely similar results). Table 2 presents 

the results. 

Table 2.  Logit estimation of MPV adoption (n=712)
1, 2

 

Variable Coefficient estimate Marginal effect 

Landscape -0.544 (0.162)
***

 -0.137 (0.034)
***

 

Soil type -0.121 (0.168) -0.024 (0.043) 

Household size 0.019 (.034) 0.010 (0.011) 

Total land holding -0.005 (0.004) -0.001 (0.001) 

Village cadre in household -0.153 (0.173) -0.059 (0.054) 

Head gender 0.356 (0.171)
**

 0.093 (0.045)
**

 

Head age -0.050 (0.035) -0.011 (0.014) 

Head age square 0.001 (0.001) 0.000 (0.000) 

Head education 0.089 (0.044)
**

 0.022 (0.009)
**

 

Head health -0.091 (0.232) -0.041 (0.060) 

Peanut growing experience -0.005 (0.003)
*
 -0.001 (0.002) 

Pilot peanut household 0.452 (0.197)
**

 0.110 (0.047)
**

 

Number of peanut trainings attended 0.184 (0.053)
***

 0.060 (0.018)
***

 

Farmer cooperative membership 0.202 (0.114)
*
 -0.057 (0.042) 

Seed recycling period >3 years -0.337 (0.121)
***

 -0.098 (0.048)
**

 

Number of concerns in adoption -0.194 (0.088)
**

 -0.046 (0.021)
**

 

Constant 1.073 (1.259)  

Provincial dummies Included  

Pseudo R
2
 0.219  

Log-likelihood -357.11  

LR chi-square (p-value) 69.45 (0.000)
***

  

Correct prediction 69.66%  

1
  Standard errors are reported in parentheses. 

*
, 

**
, 

***
 indicate significance at 10%, 5% and 1% 

levels, respectively. 
2
  Coefficient estimates of provincial dummies are not reported for the interest of space. 

Source: authors’ own estimation 

 

Households adopting MPVs are more likely to be located in plain areas, headed by 

male and better educated individuals. Profounder linkages, in terms of marginal effects, 
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appear to be associating adoption decision with those factors we purposely included to 

partially control for unobservables. Specifically, adoption is positively associated with 

pilot peanut household status and the number of field training attended, and is 

negatively associated with the length of peanut seed recycling period and stated 

number of concerns in adoption. Confirmation of these effects imply that these 

unobserved characteristics as captured by the latter group of variables may play an 

even bigger role than commonly observed characteristics in adoption decision making, 

and that the incorporation of these factors may potentially reduce hidden bias. 

Based on the logit estimates, propensity scores are obtained for each household as the 

predicted probability of adoption. Propensity scores of adopters range from 0.179 to 

0.928 and those of dis-adopters range from 0.154 to 0.854, suggesting the common 

support of 0.179 to 0.854. Only a trivial portion of observations out of this common 

support are dropped (9 out of 712). Figure 2 presents the histograms of propensity scores 

of adopters and dis-adopters, where the common support condition is visually satisfied. 

Figure 2.  Propensity score distribution and common support 

 

Source: authors’ own estimation 

 

Formal balancing tests are further implemented to check if covariates are distributed 

similarly between adopters and dis-adopters after matching. ROSENBAUM and RUBIN 

(1985) propose to check the mean absolute standardized bias of covariates, where a 

standardized difference is suggested not to exceed 20% after successful matching. 

Alternatively, SIANESI (2004) suggests the comparison of pseudo R
2
 and likelihood 
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ratio test of the joint significance of all covariates in the logit model using the samples 

before and after matching. Hypothesizing no systematic differences of covariate 

distribution between adopters and dis-adopters after matching, the pseudo R
2
 is 

expected to be lower and the joint insignificance of covariates should not be rejected.  

Detailed results of these tests are presented in Table 3. The mean standardized biases 

of all covariates are reduced to 2.98%-3.93% after PSM. Pseudo R2 also observes 

decrease with PSM. Moreover, the null hypothesis that all covariates are zero cannot 

be rejected using the after-matching sample, meaning the observed characteristics of 

adopters and dis-adopters are similar enough and are thus not able to jointly predict 

adoption. Therefore, our PSM procedure has fairly successfully balanced covariates 

distribution between adopters and dis-adopters. 

Table 3.  Balancing tests of matching quality with logit propensity score 

estimation
1
 

Matching algorithm
1
 NNM-1 NNM-5 KM-0.03 KM-0.06 

Mean std. bias (before) 13.17 13.17 13.17 13.17 

Mean std. bias (after) 3.93 3.55 3.21 2.98 

Percentage of bias reduction 68.79 69.78 75.25 76.99 

Pseudo R
2
 (before) .217 .217 .217 .217 

Pseudo R
2
 (after) .019 .024 .011 .009 

LR χ
2
 with p-value (before) 61.43 (.000) 61.43 (.000) 61.43 (.000) 61.43 (.000) 

LR χ
2
 with p-value (after) 20.71 (.189) 20.38 (.205) 21.93 (.147) 23.07 (.112) 

1
 NNM-1: single nearest neighbor matching with replacement; NNM-5: five nearest neighbors matching 

with replacement; KM-0.03: kernel matching with bandwidth 0.03; KM-0.06: kernel matching with 

bandwidth 0.06 

Source: authors’ own estimation 

 

PSM procedures are then applied to obtain 𝐴𝑇𝑇s on multiple outcomes, namely peanut 

yield, peanut income, other agricultural income, off-farm income and total household 

income. Possible impacts on the other income sources are also investigated MPV 

adoption may lead to relocation of resources such as labor, and so it may affect other 

agricultural activities and off-farm employment. Several matching algorithms are 

applied, including nearest neighbor matching with either one nearest neighbor with 

replacement (NNM-1) or five nearest neighbors with replacement (NNM-5), and 

Epanechnikov kernel matching with alternative bandwidths of 0.03 (KM-0.03) and 

0.06 (KM-0.06). We also check if the estimated 𝐴𝑇𝑇s are robust to radius matching 



232 Wu Huang, Di Zeng and Shudong Zhou 

Quarterly Journal of International Agriculture 54 (2015), No. 3; DLG-Verlag Frankfurt/M. 

(with the radius being either 0.001 or 0.005), and find that they are. Finally, standard 

errors of 𝐴𝑇𝑇s are obtained using bootstrapping with 1,000 replications. 

Results are presented in Table 4. The first panel shows the yield 𝐴𝑇𝑇 of MPVs, 

estimated as 101.2-118.3 kilogram per mu, a 20.9%-24.5% increase from the average 

yield of traditional peanut varieties.3 These results are robust with multiple matching 

algorithms, all with high statistical significance (at least at 5% level).  

As a result of the yield boost, peanut income per mu of an average adopter is increased 

by 434.0-452.3 RMB yuan (yuan hereafter, see the second panel of Table 4). Although 

the average peanut area of adopters is slightly larger than that of dis-adopters, such 

difference is statistically insignificant. Consequently, the total peanut income of an 

average adopter is increased by 4,511-5,084 yuan at the household level (the third 

panel of Table 4),4 a 41.4%-46.7% increase as compared to an average dis-adopter. 

Such increase is much larger than that of peanut yield (20.9%-24.5%). The difference 

might be explained by unobserved factors such as better quality and appearance of 

peanut seeds and related products associated with MPVs which result in higher sale 

prices. This is of policy significance as it suggests that welfare impacts of MPVs can 

go way beyond their yield advantages alone.  

The impacts of MPV adoption on other agricultural income and off-farm income are 

reported in the third and fourth panels of Table 4. Although no significant tradeoff is 

observed between peanut adoption and other cropping activities, there is weak 

evidence that could associate peanut adoption with decreased off-farm income. This 

might be explained by resource relocation with MPV adoption especially labor. As our 

data do not contain information on off-farm labor inputs, such hypothesis is not 

directly testable. However, it is still partly evidenced by our backstage check that 

compares labor inputs in peanut production between adopters and dis-adopters using 

the same PSM algorithms, where peanut labor inputs of adopters appear to be higher 

than those of dis-adopters (with at least 10% significance). Despite such likely 

tradeoffs, the magnitude of off-farm income lose is much smaller than the income gain 

with adoption, suggesting the overall welfare improvement can still be positive. 

The impacts on total household income is finally presented in the last panel of Table 4, 

confirming the positive overall welfare improvement hypothesized above. Specifically, 

an average adopter observes a total household income increase of 4,365-4,822 yuan, 

14.1%-15.5% higher than an average dis-adopter. Again, such results are highly sig-

nificant and robust across specifications. 
                                                   
3
  1 mu equals 0.067 hectare; so these numbers translate into a yield boost of 1,554-1,835 kilogram 

per hectare. 
4
  Daily average exchange rate in 2011 is 1 RMB yuan = 0.157 US dollar. 
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Table 4.  PSM estimation of multiple treatment effects 

Outcome variable Matching algorithm
1
 ATT 

2
 

Critical level of 

selection bias 

Peanut yield 

(kg/mu)
3
 

NNM-1 101.2 (46.44)
**

 1.45 

NNM-5 117.9 (40.32)
***

 1.75 

KM-0.03 118.3 (37.60)
***

 1.65 

KM-0.06 102.9 (32.66)
***

 1.55 

Peanut income per area 

(yuan/mu)
4
 

NNM-1 441.6 (202.5)
**

 1.70 

NNM-5 452.3 (156.2)
***

 1.65 

KM-0.03 434.0 (177.4)
**

 1.65 

KM-0.06 440.5 (208.7)
**

 1.60 

Total peanut income 

(yuan) 

NNM-1 4,822 (2,315)
**

 1.65 

NNM-5 5,084 (1,898)
***

 1.75 

KM-0.03 4,511 (2,193)
**

 1.60 

KM-0.06 4,774 (2,156)
**

 1.60 

Other agricultural income 

(yuan) 

NNM-1 885.4 (1,022) 1.45 

NNM-5 707.3 (1,151) 1.50 

KM-0.03 822.9 (954.2) 1.65 

KM-0.06 916.3 (932.4) 1.65 

Off-farm income 

(yuan) 

NNM-1 -1,042 (656.4)
*
 1.45 

NNM-5 -763.5 (697.2) 1.45 

KM-0.03 -836.0 (563.1) 1.55 

KM-0.06 -944.4 (526.8)
*
 1.60 

Total household income 

(yuan) 

NNM-1 4,467 (2,601)
*
 1.55 

NNM-5 4,822 (2,309)
**

 1.75 

KM-0.03 4,365 (2,078)
**

 1.75 

KM-0.06 4,581 (2,184)
**

 1.70 

1
  NNM-1: single nearest neighbor matching with replacement; NNM-5: five nearest neighbors matching 

with replacement; KM-0.03: kernel matching with bandwidth 0.03; KM-0.06: kernel matching with 

bandwidth 0.06 
2
  Standard errors are reported in parentheses. 

*
, 

**
, 

***
 indicate significance at 10%, 5% and 1% levels, 

respectively. 
3
  1 mu = 0.067 hectare 

4
  Daily average exchange rate in 2011 is 1 RMB yuan = 0.157 US dollar. 

Source: authors’ own estimation 
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As a major procedure to check the sensitivity of estimated 𝐴𝑇𝑇s to hidden bias and 

their robustness, ROSENBAUM’s (2002) bounds are also computed that reveals the 

magnitude of unobservables’ effect needed to reverse the estimation results. The 

critical values of selection bias computed in all PSM procedures range from 1.45 to 

1.75, suggesting that only if farmers with the same observed characteristics differ in 

their odds of adoption by a factor of 45%-75% would our 𝐴𝑇𝑇 estimates be invalid. 

However, this is very unlikely as we have already controlled for important covariates 

affecting the adoption decision, including several measures that partially control for 

unobservable factors. Therefore, the impacts of hidden bias on the 𝐴𝑇𝑇 estimates 

discussed above can be reasonably considered as minimal. 

Three robustness check procedures are further applied. First, as it is suggested that 

PSM-estimated 𝐴𝑇𝑇s can be sensitive to propensity scores (HECKMAN et al., 1998), 

we alternatively obtains propensity scores using probit model to re-estimate all 𝐴𝑇𝑇s. 

These results are extremely close to our main estimates, lending credit to the latter.  

Second, recent impact studies also carry out robustness checks using alternative 

definitions of the technology (TAKAHASHI and BARRETT, 2013), which is of practical 

value in crop impact assessment as varietal features may change overtime with seed 

recycling. We, therefore, investigate how relative impacts change with a stricter 

definition of MPVs. Specifically, as farmers are asked about the lengths they recycle 

peanut seeds, we utilize the information and redefine adopters as those who grew 

MPVs in the previous cropping season and also who recycle seeds for no more than 

three years. This narrower definition leads to a decreased number of adopters, with the 

dis-qualified adopters dropped from our sample. Our results show that the 𝐴𝑇𝑇  esti-

mates are in general slightly larger than our main estimates, suggesting the latter are 

rather conservative. Detailed results are available upon request in the interest of space. 

Finally, we estimate a series of post-matching regressions to further validate our 

results. In each regression, the dependent variable is one of the outcomes in Table 4, 

and the independent variables include a binary adoption indicator and the same set of 

covariates used in propensity score prediction. We estimate these regressions through 

OLS with county-level clustered standard errors. If our PSM procedures have correctly 

identified the ATTs of interest (which appropriately account for self-selection bias in 

adoption), these ATTs would be reproduced using the simple OLS regressions with the 

post-matching sample. We see that this is the case for all outcomes. Therefore, we con-

clude from all these robustness check procedures that our main estimates are robust. 

We now turn to the investigation of the impacts of MPV adoption on income 

inequality using the estimated 𝐴𝑇𝑇 of total household income. This is done through 

simulating the counterfactual household income were MPVs not adopted (DING et al., 
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2011; ZENG et al., 2015). Specifically, we subtract the estimated ATT of total 

household income from observed total household income for adopters, while keep 

observed total household income the same for dis-adopters. The counterfactual 

distribution of total household income without MPVs is then derived. Gini coefficients 

are computed separately based on observed and counterfactual total household income 

distributions, respectively. The differences between these Gini coefficients are the 

impacts of MPV adoption on income inequality. As the change of total household 

income already incorporates different impacts on multiple income sources both on-

farm and off-farm, our results go beyond any partial-equilibrium analysis and are 

general enough as an overall measurement of the income inequality impacts of MPVs. 

Multiple counterfactual Gini coefficients are simulated using the total income 𝐴𝑇𝑇  
estimated through alternative PSM algorithms. Table 5 presents the results. Although 

one may envision all-round welfare improvement due to increased income, it is seen 

that, however, MPV adoption has actually widened income inequality, as evidenced by 

an increase of Gini coefficient by 0.004-0.006.  

Table 5.  Impacts of MPV adoption on income inequality 

Matching algorithm for  

total income ATT 

Gini coefficient with 

observed income 

Gini coefficient with 

counterfactual income 

NNM-1 0.424 0.419 

NNM-5 0.424 0.418 

KM-0.03 0.424 0.420 

KM-0.06 0.424 0.420 

Source: authors’ own estimation 

 

These impacts due to MPVs alone is not trivial. However, it does not necessarily imply 

welfare deterioration. For example, it can be the case that adopters benefit from MPV 

adoption, while dis-adopters are left with little welfare change, thereby widening the 

income gap. In that case, there is still Pareto welfare improvement at the population 

level which, however, is not captured by the Gini coefficient. Moreover, the Gini 

coefficient may observe an increase even if all farmers observe household income 

increases but to different extends (ARNOLD, 2007: 573-581). Given the limitations of 

this measure, further analysis beyond the support of our data is needed to disentangle 

the welfare change with MPV adoption. While our results do suggest that, with the 

mass adoption of MPVs, special attention may be needed from social planners among 

whose goals is inequality reduction. 
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6 Conclusion 

This study provides some first evidence on the welfare impacts of MPVs in China. Our 

empirical procedure consists of PSM estimation of treatment effects on multiple 

outcomes and counterfactual simulation of impacts on income inequality. It is found 

that MPV adoption significantly increases peanut yield and peanut income. Although it 

might negatively affect off-farm income due to labor relocation, such impacts are 

small. As a result, total household income still observes significant increase with 

adoption. However, it is further found that the adoption of MPVs increases income 

inequality. Therefore, the diffusion and adoption of MPVs alone may not be able to 

meet the governmental goal of inequality reduction. 

Our policy suggestions are twofold. First, given the positive welfare improvement at 

the household level, the adoption of MPVs should be consistently encouraged and 

peanut research should be continuously funded. Future research may focus on labor-

saving MPVs which do not negatively affect farmers’ off-farm employment, thereby 

expecting a larger increase in total household income. Also, agricultural extension 

agencies should continue investment in the diffusion of MPVs. As revealed by our 

logit estimation, factors like pilot household status, field training, seed recycling habits 

and concerns are all found important in adoption decision making, where effective 

extension can make a difference. More efforts are needed in strengthening the effects 

of training and trained attendants, encouraging frequent seed renewal, and eliminating 

farmers’ concerns that prevent them from adoption. 

On the other hand, the positive impacts of MPV adoption on income inequality should 

not discourage adoption promotion. Our findings simply suggest the benefits of MPVs, 

though positive and significant, might not have been evenly distributed across 

households. Thus, it is necessary to identify complementary strategies to improve the 

welfare status of the disadvantageous group. Policy instruments to encourage MPV 

adoption among such group may include provisions of seeds, credits and other 

necessary but expensive inputs, and subsidies. General income transfers from relative 

governmental funds may also work to reduce inequality, thereby serving as an 

effective supplement. Moreover, opportunities and mechanisms concerning technology 

diffusion through formal or informal learning should be enhanced for dis-adopters, 

which may facilitate wider adoption in the long run. With complementary policies that 

aim to improve the welfare status of the disadvantaged, Pareto improvement at the 

social level can be expected. 
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